CN113837498A - 一种充电设施规模预测方法及系统 - Google Patents

一种充电设施规模预测方法及系统 Download PDF

Info

Publication number
CN113837498A
CN113837498A CN202111312703.4A CN202111312703A CN113837498A CN 113837498 A CN113837498 A CN 113837498A CN 202111312703 A CN202111312703 A CN 202111312703A CN 113837498 A CN113837498 A CN 113837498A
Authority
CN
China
Prior art keywords
grid
charging
density
ith
charging facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111312703.4A
Other languages
English (en)
Other versions
CN113837498B (zh
Inventor
郑华
张颖
杜柏楠
伏睿
唐林权
谢莉
孙一飞
杨舒云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
State Grid Xinjiang Electric Power Co Ltd
Original Assignee
North China Electric Power University
State Grid Xinjiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University, State Grid Xinjiang Electric Power Co Ltd filed Critical North China Electric Power University
Priority to CN202111312703.4A priority Critical patent/CN113837498B/zh
Publication of CN113837498A publication Critical patent/CN113837498A/zh
Application granted granted Critical
Publication of CN113837498B publication Critical patent/CN113837498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及了一种充电设施规模预测方法及系统,所述预测方法包括如下步骤:对研究区域的配电网进行网格划分;确定每个所述网格的净负荷曲线;基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度;确定每个网格的平均充电功率密度;根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。基于净负荷峰谷差的电动私家乘用车充电设施规模预测,克服了现有规划方法的无法考虑新能源消纳特性的缺点,且无需模型的复杂计算,提高了计算效率。

Description

一种充电设施规模预测方法及系统
技术领域
本发明涉及充电设施规划技术领域,特别是涉及一种充电设施规模预测方法及系统。
背景技术
由于新能源设备,例如电动私家乘用车的出行具有随机性和不确定性,所以针对其涉及到的充电设施的规划需要综合考虑众多因素,既要考虑城市发展需要,也要考虑城市的职能区域划分与功能定位,还有考虑区域配电网的承载能力等区域电网特点和负荷需求来综合布局。
然而,现有的电动私家乘用车的充电设施规模预测方法主要分为两类:一类是方法以比值外推的方法,如车桩比等规划模型,该类方法存在无法考虑新能源消纳特性和城市功能区的需求特点等问题,使得规划结果与实际存在较大误差;另一类方法则基于优化模型的方法,该类方法存在模型复杂、求解规模大、维数灾、效率低等问题,距离实用尚有较多问题需要解决。
如何实现在减小充电设施规模预测的误差的同时,提高预测的效率,成为一个亟待解决的技术问题。
发明内容
本发明的目的是提供一种充电设施规模预测方法及系统,实现在减小充电设施规模预测的误差的同时,提高预测的效率。
为实现上述目的,本发明提供了如下方案:
一种充电设施规模预测方法,所述预测方法包括如下步骤:
对研究区域的配电网进行网格划分;
确定每个所述网格的净负荷曲线;
基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度;
确定每个网格的平均充电功率密度;
根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。
可选的,所述确定每个所述网格的净负荷曲线,具体包括:
利用公式
Figure BDA0003342311530000021
计算每个网格的负荷占比;
其中,
Figure BDA0003342311530000022
表示第i个网格的负荷占比,Li表示第i个网格的负荷,Lsum表示研究区域的总负荷;
利用公式Nt=Dt-Pt+St,确定研究区域的总净负荷曲线;
其中,Nt表示t时刻研究区域的总净负荷,St表示t时刻研究区域对外联络线的功率总和,Dt表示t时刻研究区域的总负荷,
Figure BDA0003342311530000023
Figure BDA0003342311530000024
表示t时刻研究区域的第n个负荷,N表示t时刻研究区域中作为负荷的新能源设备的个数,Pt表示t时刻研究区域的新能源出力,
Figure BDA0003342311530000025
Figure BDA0003342311530000026
表示t时刻研究区域的第n′个新能源出力,N′表示t时刻研究区域出力的新能源设备的数量;
根据每个网格的负荷占比和研究区域的总净负荷曲线,利用公式
Figure BDA0003342311530000027
Figure BDA0003342311530000028
确定每个网格的净负荷曲线;
其中,
Figure BDA0003342311530000029
表示t时刻第i个网格的净负荷。
可选的,所述基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度,具体包括:
基于每个网格的净负荷曲线的峰谷差,利用公式
Figure BDA00033423115300000210
计算每个网格的净负荷峰谷差密度;
其中,β表示峰谷差密度系数,τi表示第i个网格的净负荷峰谷差;Vi表示第i网格的面积;
利用公式
Figure BDA00033423115300000211
计算每个网格的充电功率密度;
其中,Pch,i表示第i个网格的充电功率密度,Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pk.ch表示第i类充电设施的充电功率;Hi,k表示第k类充电设施的充电同时率;
根据每个网格的净负荷峰谷差密度和充电功率密度,利用公式ai=Pre,i-Pch,i,计算每个网格的充电设施密度;
其中,ai表示第i个网格的充电设施密度。
可选的,所述确定每个网格的平均充电功率密度,具体包括:
利用公式
Figure BDA0003342311530000031
确定每个网格的平均充电功率密度;
其中,Pi,ch.av表示第i个网格的平均充电功率密度,ni表示第i个网格内的充电设施总数,
Figure BDA0003342311530000032
Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率。
可选的,根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模,具体包括:
根据每个网格的充电设施密度和平均充电功率密度,利用公式
Figure BDA0003342311530000033
Figure BDA0003342311530000034
确定每个网格的可规划充电设施的规模;
Ai表示第i个网格的可规划充电设施的规模,ai表示第i个网格的充电设施密度,Pi,ch.av表示第i个网格的平均充电功率密度,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率。
可选的,所述根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模,之后还包括:
汇总每个网格的可规划充电设施的规模,得到研究区域的整体规划模块。
一种充电设施规模预测系统,所述预测系统包括:
网格划分模块,用于对研究区域的配电网进行网格划分;
净负荷曲线确定模块,用于确定每个所述网格的净负荷曲线;
充电设施密度计算模块,用于基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度;
平均充电功率密度确定模块,用于确定每个网格的平均充电功率密度;
规模确定模块,用于根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。
可选的,所述净负荷曲线确定模块,具体包括:
负荷占比计算子模块,用于利用公式
Figure BDA0003342311530000041
计算每个网格的负荷占比;
其中,
Figure BDA0003342311530000042
表示第i个网格的负荷占比,Li表示第i个网格的负荷,Lsum表示研究区域的总负荷;
总净负荷曲线确定子模块,用于利用公式Nt=Dt-Pt+St,确定研究区域的总净负荷曲线;
其中,Nt表示t时刻研究区域的总净负荷,St表示t时刻研究区域对外联络线的功率总和,Dt表示t时刻研究区域的总负荷,
Figure BDA0003342311530000043
Figure BDA0003342311530000044
表示t时刻研究区域的第n个负荷,N表示t时刻研究区域中作为负荷的新能源设备的个数,Pt表示t时刻研究区域的新能源出力,
Figure BDA0003342311530000045
Figure BDA0003342311530000046
表示t时刻研究区域的第n′个新能源出力,N′表示t时刻研究区域出力的新能源设备的数量;
净负荷曲线确定子模块,用于根据每个网格的负荷占比和研究区域的总净负荷曲线,利用公式
Figure BDA0003342311530000047
确定每个网格的净负荷曲线;
其中,
Figure BDA0003342311530000048
表示t时刻第i个网格的净负荷。
可选的,所述充电设施密度计算模块,具体包括:
净负荷峰谷差密度计算子模块,用于基于每个网格的净负荷曲线的峰谷差,利用公式
Figure BDA0003342311530000049
计算每个网格的净负荷峰谷差密度;
其中,β表示峰谷差密度系数,τi表示第i个网格的净负荷峰谷差;Vi表示第i网格的面积;
充电功率密度计算子模块,用于利用公式
Figure BDA00033423115300000410
计算每个网格的充电功率密度;
其中,Pch,i表示第i个网格的充电功率密度,Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pk.ch表示第i类充电设施的充电功率;Hi,k表示第k类充电设施的充电同时率;
充电设施密度计算子模块,用于根据每个网格的净负荷峰谷差密度和充电功率密度,利用公式ai=Pre,i-Pch,i,计算每个网格的充电设施密度;
其中,ai表示第i个网格的充电设施密度。
可选的,所述平均充电功率密度确定模块,具体包括:
平均充电功率密度确定子模块,用于利用公式
Figure BDA0003342311530000051
确定每个网格的平均充电功率密度;
其中,Pi,ch.av表示第i个网格的平均充电功率密度,ni表示第i个网格内的充电设施总数,
Figure BDA0003342311530000052
Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明公开了一种充电设施规模预测方法及系统,所述预测方法包括如下步骤:对研究区域的配电网进行网格划分;确定每个所述网格的净负荷曲线;基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度;确定每个网格的平均充电功率密度;根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。基于净负荷峰谷差的电动私家乘用车充电设施规模预测,克服了现有规划方法的无法考虑新能源消纳特性的缺点,且无需模型的复杂计算,提高了计算效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种充电设施规模预测方法的流程图;
图2为本发明提供的一种充电设施规模预测方法的原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种充电设施规模预测方法及系统,实现在减小充电设施规模预测的误差的同时,提高预测的效率。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
当前电动私家乘用车的充电设施规划方法对配电网的协同规划考虑较少,一方面简单模型无法考虑新能源消纳特性和城市功能区功能等核心要素,另一方面复杂精细化模型计算量庞大、对数据质量等需求较高,计算过程十分艰巨。本发明旨在提出一种基于净负荷峰谷差的电动私家乘用车充电设施规模预测方法,能够实现科学化、高效化的电动私家乘用车的充电设施规模规划.
如图1所示,本发明提供一种充电设施规模预测方法,所述预测方法包括如下步骤:
步骤101,对研究区域的配电网进行网格划分。
步骤102,确定每个所述网格的净负荷曲线.
步骤103,基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度。
步骤104,确定每个网格的平均充电功率密度。
步骤105,根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。
如图2所示,本发明如图1所示的充电设施规模预测方法的具体实施方式为:
(1)按照现有配电网规划中各类空间网格地块功能属性进行划分,按照网格类型,统计各网格平均最大负荷
Figure BDA0003342311530000061
网格最小负荷
Figure BDA0003342311530000062
网格峰谷差τi等基础数据;
(2)按照不同类型的网格,分别计算各网格负荷占总负荷的比例,网格负荷占比=网格负荷/总负荷;
第i个子网网格负荷占比:
Figure BDA0003342311530000071
式中:Li为第i个子网网格负荷;Lsum表示系统总负荷。
(3)计算全地区净负荷曲线=本地负荷-本地新能源出力-本地区对外联络线功率总和,本地区对外联络线功率总和为正表示外送,本地区对外联络线功率总和负正表示受入;
指定时间段内第i个地区的负荷:
Figure BDA0003342311530000072
式中:T为时间段个数,本文T取24;n为负荷总个数。
t时刻本地负荷
Figure BDA0003342311530000073
指定时间段内第i个地区的新能源出力
Figure BDA0003342311530000074
t时刻本地新能源出力
Figure BDA0003342311530000075
t时刻全地区净负荷曲线
Nt=Dt-Pt+St
式中:St为t时刻本地区对外联络线功率总和,外送为正。
(4)计算各网格净负荷曲线=网格i负荷占比*全地区净负荷曲线;
t时刻第i个网格净负荷曲线
Figure BDA0003342311530000076
(5)按照不同类型的网格,分别计算各网格的净负荷曲线的峰谷差密度,网格净负荷峰谷差密度=0.5*网格净负荷峰谷差/网格面积;
网格的净负荷峰谷差密度
Figure BDA0003342311530000081
式中:β为峰谷差密度系数,取0.5;τ为网格净负荷峰谷差;V为网格面积。
(6)针对不同类型的网格,计算一定同时率下的网格充电功率密度Pch,网格充电功率密度=∑(网格内充电设施i数量*充电设施i的充电功率*充电同时率)/网格面积;
Figure BDA0003342311530000082
式中:K为网格内充电设施种类数;ni为网格内第i类充电设施的数量;Pi.ch为第i类充电设施的充电功率;H为第i类充电同时率。
(7)计算充电设施密度a=Pre-Pch,其中pre表示网格净负荷峰谷差密度,pch表示网格充电功率密度。如果a>0,则该网格差值为可扩展充电设施密度;否则,该网格不具备充电设施扩展能力,即a=0;
(8)针对不同类型的网格,计算一定同时率下的网格平均充电功率密度Pch.av,网格平均充电功率密度=(网格内充电设施数量*充电设施平均充电功率*充电同时率)/网格面积;
网格内充电设施数量
Figure BDA0003342311530000083
网格平均充电功率密度
Figure BDA0003342311530000084
式中:Pav为充电设施平均充电功率。
(9)计算规划年各网格的可规划充电设施的规模为=(a*Vi*网格平均充电功率密度/(充电设施平均充电功率*充电同时率)),其中Vi表示第i个网格的面积;
Figure BDA0003342311530000091
(10)汇总各地市和全省的规划年网格可规划充电设施的规模,形成整体规划规模。
本发明还提供一种充电设施规模预测系统,所述预测系统包括:
网格划分模块,用于对研究区域的配电网进行网格划分。
净负荷曲线确定模块,用于确定每个所述网格的净负荷曲线。
所述净负荷曲线确定模块,具体包括:负荷占比计算子模块,用于利用公式
Figure BDA0003342311530000092
计算每个网格的负荷占比;其中,
Figure BDA0003342311530000093
表示第i个网格的负荷占比,Li表示第i个网格的负荷,Lsum表示研究区域的总负荷;总净负荷曲线确定子模块,用于利用公式Nt=Dt-Pt+St,确定研究区域的总净负荷曲线;其中,Nt表示t时刻研究区域的总净负荷,St表示t时刻研究区域对外联络线的功率总和,Dt表示t时刻研究区域的总负荷,
Figure BDA0003342311530000094
Figure BDA0003342311530000095
表示t时刻研究区域的第n个负荷,N表示t时刻研究区域中作为负荷的新能源设备的个数,Pt表示t时刻研究区域的新能源出力,
Figure BDA0003342311530000096
Figure BDA0003342311530000097
表示t时刻研究区域的第n′个新能源出力,N′表示t时刻研究区域出力的新能源设备的数量;净负荷曲线确定子模块,用于根据每个网格的负荷占比和研究区域的总净负荷曲线,利用公式
Figure BDA0003342311530000098
确定每个网格的净负荷曲线;其中,
Figure BDA0003342311530000099
表示t时刻第i个网格的净负荷。
充电设施密度计算模块,用于基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度。
所述充电设施密度计算模块,具体包括:净负荷峰谷差密度计算子模块,用于基于每个网格的净负荷曲线的峰谷差,利用公式
Figure BDA00033423115300000910
计算每个网格的净负荷峰谷差密度;其中,β表示峰谷差密度系数,τi表示第i个网格的净负荷峰谷差;Vi表示第i网格的面积;充电功率密度计算子模块,用于利用公式
Figure BDA00033423115300000911
计算每个网格的充电功率密度;其中,Pch,i表示第i个网格的充电功率密度,Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pk.ch表示第i类充电设施的充电功率;Hi,k表示第k类充电设施的充电同时率;充电设施密度计算子模块,用于根据每个网格的净负荷峰谷差密度和充电功率密度,利用公式ai=Pre,i-Pch,i,计算每个网格的充电设施密度;其中,ai表示第i个网格的充电设施密度。
平均充电功率密度确定模块,用于确定每个网格的平均充电功率密度。
所述平均充电功率密度确定模块,具体包括:平均充电功率密度确定子模块,用于利用公式
Figure BDA0003342311530000101
确定每个网格的平均充电功率密度;其中,Pi,ch.av表示第i个网格的平均充电功率密度,ni表示第i个网格内的充电设施总数,
Figure BDA0003342311530000102
Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率。
规模确定模块,用于根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。
与现有技术相比本发明的主要的技术优点如下:
(1)本发明提出了基于净负荷峰谷差的电动私家乘用车充电设施规模预测方法,填补了现有规划方法的无法考虑新能源消纳特性的缺点。
(2)本发明提出了基于网格负荷占比的网格净负荷曲线估计方法,可有效降低对规划年数据的需求及其计算模型的复杂度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种充电设施规模预测方法,其特征在于,所述预测方法包括如下步骤:
对研究区域的配电网进行网格划分;
确定每个所述网格的净负荷曲线;
基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度;
确定每个网格的平均充电功率密度;
根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。
2.根据权利要求1所述的充电设施规模预测方法,其特征在于,所述确定每个所述网格的净负荷曲线,具体包括:
利用公式
Figure FDA0003342311520000011
计算每个网格的负荷占比;
其中,
Figure FDA0003342311520000012
表示第i个网格的负荷占比,Li表示第i个网格的负荷,Lsum表示研究区域的总负荷;
利用公式Nt=Dt-Pt+St,确定研究区域的总净负荷曲线;
其中,Nt表示t时刻研究区域的总净负荷,St表示t时刻研究区域对外联络线的功率总和,Dt表示t时刻研究区域的总负荷,
Figure FDA0003342311520000013
Figure FDA0003342311520000014
表示t时刻研究区域的第n个负荷,N表示t时刻研究区域中作为负荷的新能源设备的个数,Pt表示t时刻研究区域的新能源出力,
Figure FDA0003342311520000015
Figure FDA0003342311520000016
表示t时刻研究区域的第n′个新能源出力,N′表示t时刻研究区域出力的新能源设备的数量;
根据每个网格的负荷占比和研究区域的总净负荷曲线,利用公式
Figure FDA0003342311520000017
Figure FDA0003342311520000018
确定每个网格的净负荷曲线;
其中,
Figure FDA0003342311520000019
表示t时刻第i个网格的净负荷。
3.根据权利要求1所述的充电设施规模预测方法,其特征在于,所述基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度,具体包括:
基于每个网格的净负荷曲线的峰谷差,利用公式
Figure FDA00033423115200000110
计算每个网格的净负荷峰谷差密度;
其中,Pre,i表示第i个网格的净负荷峰谷差密度,β表示峰谷差密度系数,τi表示第i个网格的净负荷峰谷差;Vi表示第i网格的面积;
利用公式
Figure FDA0003342311520000021
计算每个网格的充电功率密度;
其中,Pch,i表示第i个网格的充电功率密度,Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pk.ch表示第i类充电设施的充电功率;Hi,k表示第k类充电设施的充电同时率;
根据每个网格的净负荷峰谷差密度和充电功率密度,利用公式ai=Pre,i-Pch,i,计算每个网格的充电设施密度;
其中,ai表示第i个网格的充电设施密度。
4.根据权利要求1所述的充电设施规模预测方法,其特征在于,所述确定每个网格的平均充电功率密度,具体包括:
利用公式
Figure FDA0003342311520000022
确定每个网格的平均充电功率密度;
其中,Pi,ch.av表示第i个网格的平均充电功率密度,ni表示第i个网格内的充电设施总数,
Figure FDA0003342311520000023
Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率,Vi表示第i网格的面积。
5.根据权利要求1所述的充电设施规模预测方法,其特征在于,根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模,具体包括:
根据每个网格的充电设施密度和平均充电功率密度,利用公式
Figure FDA0003342311520000024
Figure FDA0003342311520000025
确定每个网格的可规划充电设施的规模;
其中,Ai表示第i个网格的可规划充电设施的规模,ai表示第i个网格的充电设施密度,Pi,ch.av表示第i个网格的平均充电功率密度,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率,Vi表示第i网格的面积。
6.根据权利要求1所述的充电设施规模预测方法,其特征在于,所述根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模,之后还包括:
汇总每个网格的可规划充电设施的规模,得到研究区域的整体规划模块。
7.一种充电设施规模预测系统,其特征在于,所述预测系统包括:
网格划分模块,用于对研究区域的配电网进行网格划分;
净负荷曲线确定模块,用于确定每个所述网格的净负荷曲线;
充电设施密度计算模块,用于基于每个网格的净负荷曲线的峰谷差,计算每个网格的充电设施密度;
平均充电功率密度确定模块,用于确定每个网格的平均充电功率密度;
规模确定模块,用于根据每个网格的充电设施密度和平均充电功率密度,计算每个网格的可规划充电设施的规模。
8.根据权利要求7所述的充电设施规模预测系统,其特征在于,所述净负荷曲线确定模块,具体包括:
负荷占比计算子模块,用于利用公式
Figure FDA0003342311520000031
计算每个网格的负荷占比;
其中,
Figure FDA0003342311520000032
表示第i个网格的负荷占比,Li表示第i个网格的负荷,Lsum表示研究区域的总负荷;
总净负荷曲线确定子模块,用于利用公式Nt=Dt-Pt+St,确定研究区域的总净负荷曲线;
其中,Nt表示t时刻研究区域的总净负荷,St表示t时刻研究区域对外联络线的功率总和,Dt表示t时刻研究区域的总负荷,
Figure FDA0003342311520000033
Figure FDA0003342311520000034
表示t时刻研究区域的第n个负荷,N表示t时刻研究区域中作为负荷的新能源设备的个数,Pt表示t时刻研究区域的新能源出力,
Figure FDA0003342311520000035
Figure FDA0003342311520000036
表示t时刻研究区域的第n′个新能源出力,N′表示t时刻研究区域出力的新能源设备的数量;
净负荷曲线确定子模块,用于根据每个网格的负荷占比和研究区域的总净负荷曲线,利用公式
Figure FDA0003342311520000041
确定每个网格的净负荷曲线;
其中,
Figure FDA0003342311520000042
表示t时刻第i个网格的净负荷。
9.根据权利要求7所述的充电设施规模预测系统,其特征在于,所述充电设施密度计算模块,具体包括:
净负荷峰谷差密度计算子模块,用于基于每个网格的净负荷曲线的峰谷差,利用公式
Figure FDA0003342311520000043
计算每个网格的净负荷峰谷差密度;
其中,β表示峰谷差密度系数,τi表示第i个网格的净负荷峰谷差;Vi表示第i网格的面积;
充电功率密度计算子模块,用于利用公式
Figure FDA0003342311520000044
计算每个网格的充电功率密度;
其中,Pch,i表示第i个网格的充电功率密度,Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pk.ch表示第i类充电设施的充电功率;Hi,k表示第k类充电设施的充电同时率;
充电设施密度计算子模块,用于根据每个网格的净负荷峰谷差密度和充电功率密度,利用公式ai=Pre,i-Pch,i,计算每个网格的充电设施密度;
其中,ai表示第i个网格的充电设施密度。
10.根据权利要求7所述的充电设施规模预测系统,其特征在于,所述平均充电功率密度确定模块,具体包括:
平均充电功率密度确定子模块,用于利用公式
Figure FDA0003342311520000045
确定每个网格的平均充电功率密度;
其中,Pi,ch.av表示第i个网格的平均充电功率密度,ni表示第i个网格内的充电设施总数,
Figure FDA0003342311520000046
Ki表示第i个网格内充电设施的种类数,ni,k为第i个网格内第k类充电设施的数量,Pav,i表示第i个网格内不同充电设施的平均充电功率,Hi表示第i个网格内不同充电设施的平均充电同时率,Vi表示第i网格的面积。
CN202111312703.4A 2021-11-08 2021-11-08 一种充电设施规模预测方法及系统 Active CN113837498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111312703.4A CN113837498B (zh) 2021-11-08 2021-11-08 一种充电设施规模预测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111312703.4A CN113837498B (zh) 2021-11-08 2021-11-08 一种充电设施规模预测方法及系统

Publications (2)

Publication Number Publication Date
CN113837498A true CN113837498A (zh) 2021-12-24
CN113837498B CN113837498B (zh) 2024-01-30

Family

ID=78971277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111312703.4A Active CN113837498B (zh) 2021-11-08 2021-11-08 一种充电设施规模预测方法及系统

Country Status (1)

Country Link
CN (1) CN113837498B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037303A1 (zh) * 2014-09-09 2016-03-17 国家电网公司 一种新能源发电在线接纳能力评估方法
CN106530180A (zh) * 2016-10-28 2017-03-22 黑龙江省电力科学研究院 一种高寒地区充电服务网络规划方法
CN106855960A (zh) * 2016-12-27 2017-06-16 国网福建省电力有限公司 一种峰谷分时电价引导下的电动汽车充电负荷预测方法
CN107392400A (zh) * 2017-09-04 2017-11-24 重庆大学 计及实时交通与温度的ev充电负荷时空分布预测方法
CN109871981A (zh) * 2019-01-10 2019-06-11 国家电网有限公司 一种计及分布式电源和电动汽车影响的负荷特性预测方法
CN111092451A (zh) * 2018-10-23 2020-05-01 中国能源建设集团江苏省电力设计院有限公司 一种基于配电网网格的光伏消纳预警方法
CN111738773A (zh) * 2020-07-01 2020-10-02 国网宁夏电力有限公司 一种基于新能源与负荷的净负荷峰谷时段划分方法及系统
CN113112097A (zh) * 2021-05-12 2021-07-13 华北电力大学 一种电动汽车负荷预测及充电设施布局优化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037303A1 (zh) * 2014-09-09 2016-03-17 国家电网公司 一种新能源发电在线接纳能力评估方法
CN106530180A (zh) * 2016-10-28 2017-03-22 黑龙江省电力科学研究院 一种高寒地区充电服务网络规划方法
CN106855960A (zh) * 2016-12-27 2017-06-16 国网福建省电力有限公司 一种峰谷分时电价引导下的电动汽车充电负荷预测方法
CN107392400A (zh) * 2017-09-04 2017-11-24 重庆大学 计及实时交通与温度的ev充电负荷时空分布预测方法
CN111092451A (zh) * 2018-10-23 2020-05-01 中国能源建设集团江苏省电力设计院有限公司 一种基于配电网网格的光伏消纳预警方法
CN109871981A (zh) * 2019-01-10 2019-06-11 国家电网有限公司 一种计及分布式电源和电动汽车影响的负荷特性预测方法
CN111738773A (zh) * 2020-07-01 2020-10-02 国网宁夏电力有限公司 一种基于新能源与负荷的净负荷峰谷时段划分方法及系统
CN113112097A (zh) * 2021-05-12 2021-07-13 华北电力大学 一种电动汽车负荷预测及充电设施布局优化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MENGCHEN LIU等: "Research on the collaborative scheme of integrated peak-regulation resources based on generation-grid-load-storage", APPEEC *
李瑞杰: "配电网网格化规划中的空间负荷预测技术研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, no. 02, pages 042 - 1476 *
罗卓伟;胡泽春;宋永华;杨霞;占恺峤;吴俊阳;: "电动汽车充电负荷计算方法", 电力系统自动化, no. 14 *

Also Published As

Publication number Publication date
CN113837498B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
Wei et al. Interdependence between transportation system and power distribution system: A comprehensive review on models and applications
CN112467722B (zh) 一种考虑电动汽车充电站的主动配电网源-网-荷-储协调规划方法
CN104636828B (zh) 基于马尔科夫链的公共自行车站点供需预测方法
CN107241743B (zh) 电网专网布局建设方法
Nasiruzzaman et al. Transient stability assessment of smart power system using complex networks framework
CN110119888A (zh) 一种基于分布式电源接入的有源网格化规划方法
CN111667114A (zh) 一种基于时空大数据融合的智能路线规划推荐方法
Wang et al. Evaluation of aggregated EV flexibility with TSO-DSO coordination
CN110991810A (zh) 一种考虑水光蓄互补的区域联合体两阶段经济调度方法
CN103489139A (zh) 城市配电网规划综合分析与管理系统
CN110808600B (zh) 一种计算变电站内接入电池储能站的方法及系统
CN109829599B (zh) 基于高比例可再生能源的配电网的集群划分方法及装置
Lai et al. Energy distribution in EV energy network under energy shortage
CN108448611B (zh) 一种适应大规模新能源外送的电网网架结构构建方法
CN113935538A (zh) 基于能源互联网的主动配电网规划方法、装置和系统
CN113837498A (zh) 一种充电设施规模预测方法及系统
CN108416531A (zh) 一种配电自动化规划设计效果的自动评价方法
CN109799864B (zh) 一种区域小水电站整体发电功率预测方法及装置
CN105550385B (zh) 一种含分布式电源配电网的小步长暂态仿真方法及系统
CN116436048A (zh) 一种多目标驱动的微电网群云储能优化配置方法及装置
Martin et al. Reduced transmission grid representation using the St. Clair curve applied to the electric reliability council of Texas
CN115459256A (zh) 基于配电网-交通网协同的配网负荷恢复方法及系统
Villamarín-Jácome et al. Seismic Resilience Assessment of Electric Power Systems Using a Substation Bay-level Model
CN114021989A (zh) 一种电动私家乘用车充电设施容量的规划方法及系统
CN116436020B (zh) 新能源上网汇集站的需求判定方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant