CN113834509A - 一种基于深度学习的弱反射光纤光栅串解调仪 - Google Patents

一种基于深度学习的弱反射光纤光栅串解调仪 Download PDF

Info

Publication number
CN113834509A
CN113834509A CN202110992137.XA CN202110992137A CN113834509A CN 113834509 A CN113834509 A CN 113834509A CN 202110992137 A CN202110992137 A CN 202110992137A CN 113834509 A CN113834509 A CN 113834509A
Authority
CN
China
Prior art keywords
weak reflection
deep learning
reflected light
fiber grating
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110992137.XA
Other languages
English (en)
Inventor
李裔
陶缙超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110992137.XA priority Critical patent/CN113834509A/zh
Publication of CN113834509A publication Critical patent/CN113834509A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Abstract

本发明提供了一种基于深度学习的弱反射光纤光栅串解调仪,主要用于分布式温度或应力的解调。该解调仪的原理为:光栅的反射光中心波长易受温度和应力的影响,通过检测反射光的中心波长来解调温度或应力。反射光通过环形器的一端到光散射介质形成散斑图案,再通过多片式组合光电传感器收集到信号序列,将经过滤波后的信号序列输入到训练好的深度神经网络中,即可解调出温度或应力值。本发明提出了一项新型的弱反射FBG解调方案,不使用昂贵扫描激光器TLS,也不使用EOM和AOM来进行脉冲调制,结构简单,成本低,测量速度快。并且在5km长的光纤尾端串联20个反射率为0.01%左右弱反射光栅,可实现0.1℃的精确测量。

Description

一种基于深度学习的弱反射光纤光栅串解调仪
技术领域
本发明专利属于光纤传感领域,可用于分布式温度或应力的测量。
技术背景:
光纤光栅(FBG)传感器对环境温度、外界应力等物理量有很高的灵敏度,且具备电磁隔离、耐腐蚀、体积小和可复用等优点,因此在能源、海洋、军事、民用建筑和航空航天等领域有着广泛的应用。
近年来为解决分布式传感的需求,很多学者提出了准分布式弱反射光纤光栅串传感原理。几百个具有相同或近似反射光谱的弱反射光纤光栅,前后连接成串被集成到一根光纤上,通过光时域反射技术(OTDR)便可以同时解调这几百个 FBG,从而对光纤布设区域的温度、应力或振动等物理量进行分布式测量。众所周知,FBG解调的关键在于得到其反射光谱峰的中心波长,但要获得反射光谱需要付出不小的成本与代价。其中比较成熟的解调方案,一是使用光谱仪,二是使用扫描激光器(TLS)。但由于光谱仪响应速度慢,无法快速得到FBG反射谱,所以很难与OTDR技术融合应用于解调系统,因此基于TLS的解调方案就占据了弱反射光纤光栅传感系统的核心地位。目前,较成功的解调方案有“扫描激光器+ 光时域反射技术(TLS+OTDR)”和“扫描激光器+光频域反射技术(TLS+OFDR)”。 TLS+OTDR系统主要利用OTDR技术实现对光栅位置的定位,通过扫描特定波长范围的光得到FBG的光谱,实现对温度、应力等物理量变化的测量。但该系统要求 TLS的连续输出光调制成脉冲光,则需要用到电光调制器(EOM)或声光调制器 (AOM)。而且由于TLS的光功率较低,还需要掺铒光纤放大器(EDFA)来对光脉冲进行放大以便其能够传输到较远距离,这使得整个系统结构复杂,而且成本高昂。另外,由于光脉冲在光纤中需要一定传播时间,因此在解调过程中TLS只能逐点扫描FBG的光谱,导致解调速度慢,只适用于静态温度或应力的测量。而在 TLS+OFDR系统中,TLS可以进行快速扫描,利用本振光与参考光的干涉来对FBG 的位置进行定位。虽然该系统的解调速度有了较大提高,但对TLS的性能要求较高,要求其波长扫描速度极快并且中间无跳模,因此价格昂贵,动辄十几万人民币。另外,波长扫描中的无法规避的非线性调谐对解调精度影响较大,还需另外的波长实时监测与校准系统,也导致系统结构非常复杂。
针对以上问题,我们提出了一项新型的弱反射FBG解调方案,不使用昂贵扫描激光器TLS,也不使用EOM和AOM来进行脉冲调制,结构简单,成本低,测量速度快。
发明内容:
本发明提出了一种基于深度学习的弱反射光纤光栅串解调仪,可解决现存解调仪的部分技术问题,实现对分布式温度或者应力的精确解调,并且结构简单、成本低、测量速度快。
为实现上述发明的目的,本发明第一方面提供了一种弱反射光纤光栅串解调仪,包括:脉冲驱动电路、激光器、光纤环形器、传感光纤、光散射介质、多片组合式光电探测器和信号采集与解调系统。
脉冲驱动电路驱动激光器产生周期光脉冲,经由光纤环形器进入传感光纤,该传感光纤中有多个前后接续并相隔固定距离的若反射光纤光栅;光脉冲遇到弱反射光纤光栅后的部分反射光再经光纤环形器回到光栅解调装置;反射光先进入光散射介质形成散斑图像,然后该散斑图像被多片组合式光电探测器分割接收,并由信号采集与解调系统依次解调出传感光纤中每个弱反射光纤光栅的反射谱中心波长。将各个弱反射光纤光栅的反射谱中心波长标定各个光纤光栅处的温度或应力。
进一步的:所述光散射介质为使入射光发生多重散射与折射的光波导,包括但不仅限于:多模光纤、毛玻璃和散射微粒。
进一步的:所述多片组合式光电探测器由光学图像分割棱镜与与多个可独立运行的光电探测器组成。
进一步的:所述光学图像分割棱镜由至少一个多角棱镜组成。
进一步的:所述激光器的线宽大于传感光纤中弱反射光纤光栅反射谱宽度;
进一步的:所述信号采集与解调系统包括一个、两个或多个存储单元和处理器。
本发明第二方面提供了一种在弱反射光纤光栅串解调仪中基于深度学习的解调方法,所述方法包括:
对于含有X个弱反射光纤光栅的传感光纤,在发射一次光脉冲后,采集一组按照时间顺序生成的反射光信号序列;
将所述按照时间顺序生成的反射光信号序列输入到训练好的深度学习网络模型,以输出X个待测物理量的值。
进一步的:所述深度学习网络模型的训练方法包括以下步骤:
步骤一:对于含有X个弱反射光纤光栅的传感光纤,设置N组待测物理量、每组采样M次,共获得N×M组反射光信号序列和N×M组待测量的目标序列;
步骤二:建立数据集。随机选取步骤一中0.8×N×M组反射光信号序列及其对应的0.8×N×M组待测量的目标序列作为训练数据集,其中反射光信号序列为输入数据,待测量的目标序列为目标数据。并将剩下的0.2×N×M组反射光信号序列及其对应的待测量的目标序列作为验证数据集;
步骤三:将步骤二所述的训练数据集输入到深度学习网络模型中,每迭代完一次,将验证集输入到深度学习网络模型中进行验证,得到98%以上的准确率停止训练;
步骤四:保存深度学习网络模型参数。
进一步的:所述深度学习网络模型包括:预处理层、卷积层、激活层、归一化层、池化层和全连接层。所述卷积层用于提取信号序列特征;所述激活层使网络具备解决非线性问题能力,采用ReLU激活函数;池化层可减小数据运算量,采用最大池化下采样。
本发明的有益效果:
在本发明中,FBG反射光谱首先通过散射介质形成散斑图像,然后利用多片组合式光电探测器实现对散斑图像的降维采集与解析。基于反射光谱散斑的解调实现对温度、应力等物理量的测量,摆脱了传统方案中的扫描激光器、EOM和AOM。因此系统结构更简单,成本大大降低,而且测量速度快。实验数据表明,本专利的弱光纤串解调仪可实现5km长的光纤尾端串联20个反射率为0.01%左右弱反射光栅,可实现0.1℃的精确测量。
附图说明:
构成本申请的说明书附图用作进一步理解本发明,提供示意性实例,并不构成对本发明的不当限定。
在附图中:
图1是本发明的总体结构示意图;
图2是光栅解调装置和信号采集与解调系统示意图;
图3是散斑图像裂像示意图;
图4是不同温度下单个光纤光栅的采集数据图;
图5是信号采集与解析系统的处理流程图。
具体实施方式
下面将结合附图以及具体实例来详细地阐述本发明,其中的示意性实例以及相应说明仅用于解释本发明,并不构成对本发明的不当限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
一种弱反射光纤光栅串解调仪,包括有脉冲驱动电路(1)、激光器(2)、光纤环形器(3)、传感光纤(4)、光散射介质(5)、多片组合式光电探测器(6)和信号采集与解调系统(7)。
脉冲驱动电路驱动激光器,产生光脉冲,经光纤环形器进入传感光纤,该传感光纤中有多个前后接续并相隔固定距离的弱反射光纤光栅串;光脉冲遇到弱反射光纤光栅后的部分反射光再经光纤环形器的一端口(303)回到光栅解调装置,最后到信号采集与解调系统解调,所述光栅解调装置包括光散射介质和多片组合式光电探测器。
所述光散射介质为随机散射光波导。光散射介质使入射光发生多重散射与折射,最后在出射端面形成散斑。优选的是,本发明的光散射介质为多模光纤。
所述多片组合式光电探测器可使入射光分光后投射到不同空间区域,并且进行光电转换、收集信号。优选的是,所述多片式组合式光电探测器包括光学图像分割棱镜与多个可独立运行的光电探测器。
本发明中光散射介质使入射光发生多重散射与折射,最后在出射端面形成散斑。散斑是由大量的具有独立相位的复分量相叠加而成,散斑包含大量的原始光信号信息,尤其是它与波长相关;然后经过本发明中的多片组合式光电探测器,把光信号转化为电信号;最后经过信号采集与解调系统,将收集到的信号序列输入到训练好的神经网络中,解调出各个弱反射式光栅处的温度或应力值。当某个光栅处的温度或应力改变时,其反射光的中心波长会发生改变,经过环形器的一端口(303)到光散射介质,在其出射端的散斑会呈现出不一样的形状与强度分布,最终经过光电转换后获得的电信号也会产生变化。
如图2所示为光栅解调装置和信号采集与解调系统示意图。在本实例中使用的光散射介质为多模光纤(MMF),在多模光纤出射端产生的散斑图案投射到光学图像分割棱镜。在本实例中光学图像分割棱镜为一个多角棱镜。经光学图像分割棱镜分光,并由4个独立的光电探测器(PD)接收,生成4路目标电信号,经信号采集与解析电路板采集、滤波和解调,最后在计算机上显示相应温度或应力。
如图3所示为散斑图像裂像示意图。经过光散射介质后的散斑图案如图3(a) 所示;再经过光学图像分割棱镜后所投射出的裂像图如图3(b)所示,投射出的裂像图(A、B、C、D)由光电探测器接收并生成电信号。
如图4是25℃到30℃下单个光纤光栅的采集数据图。改变光纤光栅所处环境的温度,经过多模光纤后的散斑图案也随之发生改变。散斑图案裂像后由4 个光电探测器接收,生成的电信号经过滤波处理并输出,输出的4路信号(A、B、 C、D)分别对应于投射出的裂像图(A、B、C、D)。由图可知,改变光纤光栅所处环境的温度,采集到的4路数据也有不同的变化。
如图5是信号采集与解析系统的处理流程图。具体包括如下步骤:
(1)系统标定。包括如下步骤:
步骤一:对于含有X个弱反射光纤光栅的传感光纤,将传感光纤放置于可设置温度的恒温箱中,设置N组待测温度、每组采样M次,共获得N×M组反射光信号序列和N×M组待测量的目标序列;
步骤二:建立数据集,随机选取步骤一中0.8×N×M组反射光信号序列及其对应的0.8×N×M组待测量的目标序列作为训练数据集,其中反射光信号序列为输入数据,待测量的目标序列为目标数据,并将剩下的0.2×N×M组反射光信号序列及其对应的待测量的目标序列作为验证数据集;
步骤三:将步骤二所述的训练数据集输入到深度学习网络模型中,学习率设为0.0001、BatchSize为32、采用Adam优化器进行优化,并进行训练。
步骤四:在每迭代完一次训练数据集后,将验证数据集集输入到深度学习网络模型中进行验证,得到98%以上的准确率即可停止训练,之后保存网络参数,并且作为测量时的深度学习网络模型。
(2)信号解调。包括如下步骤:
步骤一:将上述弱反射光纤光栅放置于待测环境中,弱反射光纤光栅的反射光通过环形器、光散射介质、多片组合式光电探测器和信号采集与解调系统采集到反射光信号序列。
步骤二:信号预处理。由于电路等原因,所采集到的信号带有一定的噪声。因此采用滑动滤波方案。
步骤三:将经过滤波的信号序列输入到训练好的深度学习网络模型中。
步骤四:在电脑上显示当前温度的解调结果。
综上所述,本发明通过弱反射光纤串获得对温度敏感度高的散斑图案,通过多片组合式光电探测器获取到电信号,对电信号进行滤波并按照时间顺序生成的反射光信号序列,然后输入到训练好的神经网络模型中,即可得到解调结果。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种弱反射光纤光栅串解调仪,包括:脉冲驱动电路(1)、激光器(2)、光纤环形器(3)、传感光纤(4)、光散射介质(5)、多片组合式光电探测器(6)和信号采集与解调系统(7),其特征在于,所述光纤环形器(3)的一端口(303)与光散射介质连接(5),所述光散射介质(5)通过空间耦合的方式与多片式光电探测器(6)连接;
所述脉冲驱动电路(1)驱动激光器(2)产生光脉冲;
所述传感光纤(4)中有多个前后接续并相隔固定距离的弱反射光纤光栅;
所述多片式光电探测器(6)探测光信号并生成电信号;
所述信号采集与解调系统(7)采集与时间相关的光电信号序列并解析、显示出待测物理量。
2.根据权利要求1所述的一种弱反射光纤光栅串解调仪,其特征在于,所述光散射介质(5)为使入射光发生多重散射与折射的光波导,包括但不仅限于:多模光纤、毛玻璃和散射微粒。
3.根据权利要求1所述的一种弱反射光纤光栅串解调仪,其特征在于,所述多片组合式光电探测器(6)由光学图像分割棱镜与多个可独立运行的光电探测器组成。
4.根据权利要求3所述的一种弱反射光纤光栅串解调仪,其特征在于,所述光学图像分割棱镜至少由一个多角棱镜组成。
5.根据权利要求1所述的一种弱反射光纤光栅串解调仪,其特征在于,所述激光器(2)的线宽大于传感光纤(4)中弱反射光纤光栅反射谱宽度。
6.根据权利要求1所述的一种弱反射光纤光栅串解调仪,其特征在于,所述信号采集与解调系统(7)包括一个、两个或多个存储单元和处理器,所述存储单元存储有可在所述处理器上运行的深度学习网络模型程序,所述处理器执行所述程序实现信号的解调。
7.一种在弱反射光纤光栅串解调仪中基于深度学习的解调方法,其特征在于,所述方法包括:
对于含有X个弱反射光纤光栅的传感光纤,在发射一次光脉冲后,采集一组按照时间顺序生成的反射光信号序列;
将所述按照时间顺序生成的反射光信号序列输入到训练好的深度学习网络模型,以输出X个待测物理量的值。
8.根据权利要求6所述的基于深度学习的解调方法,其特征在于,所述深度学习网络模型的训练方法包括以下步骤:
步骤一:对于含有X个弱反射光纤光栅的传感光纤,设置N组待测物理量、每组采样M次,共获得N×M组反射光信号序列和N×M组待测量的目标序列;
步骤二:建立数据集。随机选取步骤一中0.8×N×M组反射光信号序列及其对应的0.8×N×M组待测量的目标序列作为训练数据集,其中反射光信号序列为输入数据,待测量的目标序列为目标数据。并将剩下的0.2×N×M组反射光信号序列及其对应的待测量的目标序列作为验证数据集;
步骤三:将步骤二所述的训练数据集输入到深度学习网络模型中,每迭代完一次,将验证集输入到深度学习网络模型中进行验证,得到98%以上的准确率停止训练;
步骤四:保存深度学习网络模型参数。
9.根据权利要求6所述的基于深度学习的解调方法,其特征在于,所述深度学习网络模型包括:预处理层、卷积层、激活层、归一化层、池化层和全连接层。
CN202110992137.XA 2021-08-27 2021-08-27 一种基于深度学习的弱反射光纤光栅串解调仪 Pending CN113834509A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110992137.XA CN113834509A (zh) 2021-08-27 2021-08-27 一种基于深度学习的弱反射光纤光栅串解调仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110992137.XA CN113834509A (zh) 2021-08-27 2021-08-27 一种基于深度学习的弱反射光纤光栅串解调仪

Publications (1)

Publication Number Publication Date
CN113834509A true CN113834509A (zh) 2021-12-24

Family

ID=78961475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110992137.XA Pending CN113834509A (zh) 2021-08-27 2021-08-27 一种基于深度学习的弱反射光纤光栅串解调仪

Country Status (1)

Country Link
CN (1) CN113834509A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014404A (zh) * 2022-05-09 2022-09-06 武汉理工大学 一种基于深度学习的高精度高速光纤光栅解调方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273414A (zh) * 1999-04-20 2000-11-15 三星电子株式会社 光学拾取器
CN101064771A (zh) * 2006-04-26 2007-10-31 中国科学院自动化研究所 基于分布式数据传输的高速摄像机系统
CN102072710A (zh) * 2009-11-20 2011-05-25 上海微电子装备有限公司 角度光学测量装置及角度测量方法
CN103091737A (zh) * 2012-12-18 2013-05-08 北京理工大学 基于曲面透镜阵列的宽视场对数极坐标映射成像方法
CN105553550A (zh) * 2015-12-31 2016-05-04 南京理工大学 一种应用于混沌介质中的光无线通信装置及其方法
CN105652285A (zh) * 2016-01-12 2016-06-08 中国科学院上海光学精密机械研究所 直视合成孔径激光成像雷达本振增强接收装置
CN109357615A (zh) * 2018-09-27 2019-02-19 北京信息科技大学 散斑干涉与剪切散斑干涉的共用装置
CN109579887A (zh) * 2018-12-04 2019-04-05 上海第二工业大学 一种基于复合编码的时分复用光纤光栅传感系统及方法
CN109633203A (zh) * 2018-12-17 2019-04-16 中国人民解放军战略支援部队航天工程大学 一种基于涡旋光旋转多普勒效应的物体转向检测装置
CN110146180A (zh) * 2019-05-22 2019-08-20 重庆连芯光电技术研究院有限公司 一种基于焦面哈特曼波前传感器的大视场图像清晰化装置及方法
CN111366557A (zh) * 2020-03-24 2020-07-03 东南大学 一种基于薄散射介质的相位成像方法
CN111813161A (zh) * 2020-06-30 2020-10-23 武汉理工大学 一种基于弱光栅的仿生温控神经网络系统及其工作方法
CN112097923A (zh) * 2020-07-30 2020-12-18 福建华科光电有限公司 一种简易的光学件波前测量方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273414A (zh) * 1999-04-20 2000-11-15 三星电子株式会社 光学拾取器
CN101064771A (zh) * 2006-04-26 2007-10-31 中国科学院自动化研究所 基于分布式数据传输的高速摄像机系统
CN102072710A (zh) * 2009-11-20 2011-05-25 上海微电子装备有限公司 角度光学测量装置及角度测量方法
CN103091737A (zh) * 2012-12-18 2013-05-08 北京理工大学 基于曲面透镜阵列的宽视场对数极坐标映射成像方法
CN105553550A (zh) * 2015-12-31 2016-05-04 南京理工大学 一种应用于混沌介质中的光无线通信装置及其方法
CN105652285A (zh) * 2016-01-12 2016-06-08 中国科学院上海光学精密机械研究所 直视合成孔径激光成像雷达本振增强接收装置
CN109357615A (zh) * 2018-09-27 2019-02-19 北京信息科技大学 散斑干涉与剪切散斑干涉的共用装置
CN109579887A (zh) * 2018-12-04 2019-04-05 上海第二工业大学 一种基于复合编码的时分复用光纤光栅传感系统及方法
CN109633203A (zh) * 2018-12-17 2019-04-16 中国人民解放军战略支援部队航天工程大学 一种基于涡旋光旋转多普勒效应的物体转向检测装置
CN110146180A (zh) * 2019-05-22 2019-08-20 重庆连芯光电技术研究院有限公司 一种基于焦面哈特曼波前传感器的大视场图像清晰化装置及方法
CN111366557A (zh) * 2020-03-24 2020-07-03 东南大学 一种基于薄散射介质的相位成像方法
CN111813161A (zh) * 2020-06-30 2020-10-23 武汉理工大学 一种基于弱光栅的仿生温控神经网络系统及其工作方法
CN112097923A (zh) * 2020-07-30 2020-12-18 福建华科光电有限公司 一种简易的光学件波前测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINCHAO TAO 等: "Speckle-based interrogation system for quasi-distributed weak fiber Bragg gratings", 《CHINESE OPTICS LETTERS》, vol. 21, no. 2, 8 December 2023 (2023-12-08) *
曹品奇 等: "基于分组测量和边沿滤波的大容量光纤光栅快速传感系统", 《中国激光》, vol. 43, no. 10, 28 July 2016 (2016-07-28), pages 1010003 - 8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014404A (zh) * 2022-05-09 2022-09-06 武汉理工大学 一种基于深度学习的高精度高速光纤光栅解调方法

Similar Documents

Publication Publication Date Title
Luo et al. A time-and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings
CN102052930B (zh) 光纤光栅分布式应变传感器及其应变监测方法
CN102914321B (zh) 一种极弱光纤光栅传感系统及其查询方法
EP0377549B1 (en) Remote measurement of physical variables with fiber optic systems
CN103604446B (zh) 一种基于单探测器的多通道光纤光栅绝对波长解调系统的解调方法
CN201845405U (zh) 标准具与温控光栅联合的光纤光栅温度火灾报警系统
CN106643832A (zh) 一种基于线性调频脉冲的相位敏感光时域反射计及测量方法
CN102102998A (zh) 基于弱布拉格反射结构光纤的分布式传感系统
CN101852627B (zh) 提高分布式光纤传感器探测性能的编码技术及其用途
CN103591971B (zh) 一种光纤光栅的定位方法
CN109959403B (zh) 一种多参量大容量传感系统
Muanenda et al. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection
CN103364070A (zh) 一种基于体相位光栅解调的光纤光栅振动传感系统
CN110006562B (zh) 一种基于模式耦合的分布式光纤传感系统
CN105806374B (zh) 一种光纤光栅波长的解调方法
CN108106643A (zh) 基于光学啁啾链的超快分布式布里渊光学时域分析仪
CN105698831A (zh) 双芯光纤光栅阵列传感网络及分布式传感信息获取方法
CN108007603B (zh) 一种基于非对称双芯光纤的多参量分布测量系统
CN111811554A (zh) 基于光腔衰荡大范围高精度光纤光栅传感方法及装置
CN103674082A (zh) 一种基于四波混频过程的高空间分辨率光频域反射计系统
CN101520509B (zh) 混沌光时域波形帧间比较测距方法
CN113834509A (zh) 一种基于深度学习的弱反射光纤光栅串解调仪
CN110048768A (zh) 一种针对同波长光纤编码组的识别系统及识别方法
CN109141487A (zh) 一种分布式光纤传感器
CN110082068A (zh) 一种具有波长修正功能的光纤光栅波长解调系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination