CN113832152A - 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统 - Google Patents

一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统 Download PDF

Info

Publication number
CN113832152A
CN113832152A CN202110884617.4A CN202110884617A CN113832152A CN 113832152 A CN113832152 A CN 113832152A CN 202110884617 A CN202110884617 A CN 202110884617A CN 113832152 A CN113832152 A CN 113832152A
Authority
CN
China
Prior art keywords
rna
sequence
genome
cells
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110884617.4A
Other languages
English (en)
Inventor
汪阳明
胡鲁峰
石铭
曹慧青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jingruikang Molecular Medicine Technology Co ltd
Original Assignee
Nanjing Jingruikang Molecular Medicine Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jingruikang Molecular Medicine Technology Co ltd filed Critical Nanjing Jingruikang Molecular Medicine Technology Co ltd
Priority to CN202110884617.4A priority Critical patent/CN113832152A/zh
Publication of CN113832152A publication Critical patent/CN113832152A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,所述细胞杀伤系统包括以下几个部分:1.编码核酸酶CRISPR‑Cas9蛋白的mRNA;2.前体单链引导RNA(pre‑sgRNA)的合成RNA,所述前体合成引导RNA的含有与目标miRNA或siRNA完全互补的序列以及合成引导RNA(sgRNA)的序列;所述杀伤系统用于利用细胞特异性表达的miRNA或siRNA诱导CRISPR/Cas9切割基因组,从而实现细胞的靶向杀伤。

Description

一种利用RNA干扰机制诱导多位点切割基因组实现选择性杀 死细胞的RNA系统
技术领域
本发明涉及分子生物学领域,具体而言涉及一种利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统。
背景技术
RNA干扰机制
RNA干扰(RNA interference,RNAi)是指由单链或双链RNA(double-strandedRNA,dsRNA)诱发的同源mRNA高效特异性降解的现象。RNAi具有如下特征:1)RNAi是转录后水平的基因沉默机制;2)RNAi具有很高的特异性,只降解与之序列相应的单个内源基因的mRNA;3)RNAi抑制基因表达具有很高的效率,表型可以达到缺失突变体表型的程度,而且相对很少量的dsRNA分子(数量远远少于内源mRNA的数量)就能完全抑制相应基因的表达,是以催化放大的方式进行的;4)RNAi抑制基因表达的效应可以穿过细胞界限,在不同细胞间长距离传递和维持信号甚至传播至整个有机体以及可遗传等特点;5)dsRNA不得短于21个碱基,并且长链dsRNA也在细胞内被Dicer酶切割为21bp左右的siRNA,并由siRNA或者miRNA来介导mRNA切割。而且大于30bp的dsRNA不能在哺乳动物中诱导特异的RNA干扰,而是细胞非特异性和全面的基因表达受抑和凋亡;6)ATP依赖性:在去除ATP的样品中RNA干扰现象降低或消失显示RNA干扰是一个ATP依赖的过程。可能是Dicer和RISC的酶切反应必须由ATP提供能量。
小干扰RNA(siRNA)
病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23bp),即siRNA(小干扰RNA,small interfering RNA)。siRNA在细胞内RNA解旋酶的作用下解链成正义链和反义链,继之由反义siRNA再与体内一些酶(包括内切酶、外切酶、解旋酶等)结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)。RISC与外源性基因表达的mRNA的同源区进行特异性结合,RISC具有核酸酶的功能,在结合部位切割mRNA,切割位点即是与siRNA中反义链互补结合的两端。被切割后的断裂mRNA随即降解,从而诱发宿主细胞针对这些mRNA的降解反应。siRNA不仅能引导RISC切割同源单链mRNA,而且可作为引物与靶RNA结合并在RNA聚合酶(RNA-dependent RNA polymerase,RdRP)作用下合成更多新的dsRNA,新合成的dsRNA再由Dicer切割产生大量的次级siRNA,从而使RNAi的作用进一步放大,最终将靶mRNA完全降解。
siRNA通常作为RNAi的工具被人工合成,但是后来发现很多生物包括线虫还有人类一些特殊的细胞也会合成内源性siRNA,以用于基因表达的调控。
微小RNA(microRNA,miRNA)
miRNA是一类长度约22个碱基的非编码小RNA,广泛存在于动物、植物和病毒中。miRNA主要通过与AGO2等蛋白形成RNA沉默复合物(RNA-induced silencing complex,RISC)在转录后水平调控基因的表达。由miRNA和AGO蛋白形成的RISC复合物通过碱基配对的方式识别目标序列,依赖于miRNA与靶标序列碱基互补的程度可以直接切割靶标RNA或者通过促进RNA降解以及抑制翻译的方式调控基因表达。
miRNA与靶标序列的识别主要依赖于种子序列(第2-8位碱基),但是其他部分的碱基也参与靶标序列的识别过程。当miRNA与靶标序列完全互补配对或者接近完全互补(除种子序列以外只有极少的错配),可以诱导AGO2蛋白直接切割靶标序列。如果miRNA的种子序列可以完全匹配靶标序列,而其余部分的匹配程度不足以诱导AGO2切割,则会利用复杂的机制促进RNA降解以及抑制翻译过程。
目前人体细胞内发现的miRNA种类已经超过2000余种。细胞中miRNA的表达根据细胞类型和细胞状态的不同呈现高度的特异性,这种表达特异性已越来越广泛被用作细胞的特征标签,用于区别不同的细胞类型和细胞状态。以人体细胞为例,研究表明人体组织内不同类型的细胞有明显差异的miRNA表达谱,许多细胞具有高度特异性的miRNA表达,例如肝细胞中的miR-122,肌肉细胞中的miR-1,神经元细胞中的miR-124等。研究表明,细胞内miRNA的表达组成在个体发育以及疾病发生和发展过程中均呈现高度的表达变化。
miRNA在细胞的增殖分化、新陈代谢、细胞凋亡和个体生长发育、组织器官功能以及疾病的发生发展等多种生物学过程中发挥重要的调控作用。例如,在癌症研究方面,迄今已经发现多种可以促进癌细胞生长或转移的miRNA,比如miR-17/92、miR-222/221、miR-21、miR-155等。
除了参与调控各项生命活动外,近年来miRNA在临床应用方面也受到了越来越多的关注。在治疗疾病方面,一方面通过降低病变细胞中高表达的具有促进疾病作用的miRNA的表达水平或者调控活性,可以起到抑制缓解疾病的目的。另一方面,通过向病变细胞靶向递送功能性miRNA,可以降低疾病相关基因的表达水平或者抑制免疫逃逸相关的基因,促进免疫细胞的杀伤效果。虽然利用miRNA在疾病治疗方面的应用已经取得了不少进展,但是这些研究大多处在初步研究阶段,对于其治疗效果和安全性等方面的研究还很不充分。目前对于miRNA的应用仍然是基于miRNA和靶基因之间的调控关系来实现的。但是由于每种miRNA平均可以调控数百个靶基因的表达,而每种靶基因又往往处在多种miRNA的调控之下,因而呈现出非常复杂的冗余性和关联性。因此通过降低或者递送单个或少量几个miRNA来调控致病基因的表达水平,一方面可能没有明显调控效果,另一方面可能会带来严重的副作用。突破基于miRNA和靶基因之间的调控关系的思路和方法有望避免以上缺陷,拓展miRNA的应用,并有望推动miRNA在临床治疗领域的实际应用。
发明内容
本发明人利用miRNA或siRNA介导的sgRNA释放策略创建了CRISPR-Cas9平台,该平台可以被细胞内特定的miRNA或siRNA打开从而诱导CRISPR-Cas9多位点切割基因组,从而靶向杀伤病变细胞。
据此,本发明提供了一种利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,所述细胞杀伤系统包括以下几个部分:
1.编码核酸酶CRISPR-Cas9蛋白的mRNA;
2.前体单链引导RNA(pre-sgRNA)的合成RNA,所述前体合成引导RNA的含有与目标miRNA或siRNA完全互补的序列以及合成引导RNA(sgRNA)的序列;
所述细胞杀伤系统用于靶向杀伤表达特定miRNA或siRNA的细胞。
在本发明的一个具体实施方案中,所述mRNA编码的核酸酶CRISPR-Cas9蛋白为Streptococcus pyogenes Cas9(SpyCas9)。
在本发明的另一个具体实施方案中,所述核酸酶CRISPR-Cas9 mRNA在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构,同时内部含有5mC和pseudo U修饰。
在本发明的另一个具体实施方案中,所述前体合成引导RNA在合成引导RNA(sgRNA)的序列两端均含有与目标miRNA或siRNA完全互补的序列。
在本发明的另一个具体实施方案中,所述前体合成引导RNA在合成引导RNA(sgRNA)的序列两端含有的与目标miRNA或siRNA完全互补的序列是相同的序列。
在本发明的另一个具体实施方案中,所述合成引导RNA的序列与细胞基因组中重复元件的部分序列互补,以使得所述sgRNA可以将所述核酸酶CRISPR-Cas9蛋白引导至重复元件上产生多次切割。
在本发明的另一个具体实施方案中,所述前体合成引导RNA是串联多种,且在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构。
在本发明的另一个具体实施方案中,所述串联形式的多种前体合成引导RNA的序列两端含有的与目标miRNA或siRNA完全互补的序列是相同的序列。
在本发明的另一个具体实施方案中,所述串联形式的前体合成引导RNA与细胞基因组中重复元件序列互补的部分是不同序列。
在本发明的另一个具体实施方案中,所述合成引导RNA的序列与细胞基因组中重复元件的部分序列互补,其中所述重复元件为人类细胞基因组中的高度重复元件Alu元件(Alu elements)。
在本发明的另一个具体实施方案中,所述系统的应用形式可以是裸露的mRNA和合成RNA。
在本发明的另一个具体实施方案中,所述系统的应用形式可以是脂质纳米颗粒包装的mRNA和合成RNA。
本发明提供的DNA靶向杀伤系统通过利用RNA干扰机制和CRISPR-Cas9系统相结合,将原本对基因表达起抑制作用的miRNA或siRNA转变为激活基因表达的信号,从而有效地实现了诱导CRISPR-Cas9蛋白至重复元件上产生多次切割,破坏细胞基因组完整性,可以用于靶向杀伤表达目标miRNA或siRNA的细胞。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1为MICR-CUT RNA系统设计原理。
(a)Pre-sgRNA的设计原理。分别在由II型启动子表达产生的sgRNA的5’端和3’端插入与目标miRNA完全互补配对的靶标序列。当细胞中有目标miRNA表达时,可以通过RISC复合物对靶标序列产生切割,从而去掉pre-sgRNA两端的修饰,产生具有功能活性的sgRNA。(b)MICR-CUT RNA系统设计原理。系统包含编码核酸酶CRISPR-Cas9蛋白的mRNA和合成的pre-sgRNA。其中CRISPR-Cas9 mRNA在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构,同时内部含有5mC和pseudo U修饰。Pre-sgRNA的5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构。sgRNA设计成为靶向基因组上高度重复序列。MICR-CUT系统由特定miRNA诱导激活后,通过靶向切割基因组重复序列,造成过多DSB,从而实现特异性细胞杀伤。
图2为利用MICR-CUT RNA系统特异性杀死Hela细胞。(a)不同转染条件下Hela细胞的存活情况。向转染NC或者miR-294的Hela细胞中分别转染不同的pre-sgRNA和Cas9 mRNA。Mock对照组转染NC和Cas9mRNA。3次独立重复实验。比例尺为200μm。(b)不同转染条件下Hela细胞的相对数目。数据归一化到Mock对照组。图中所示数据为平均值±标准差。3次独立重复实验。统计方法:Two-tailed unpaired Student’s t-test。
图3为利用MICR-CUT RNA系统特异性杀死Huh-7细胞。(a)不同转染条件下Huh-7细胞的存活情况。向转染NC或者miR-294的Huh-7细胞中分别转染不同的pre-sgRNA和Cas9mRNA。Mock对照组转染NC和Cas9mRNA。3次独立重复实验。比例尺为200μm。(b)不同转染条件下Huh-7细胞的相对数目。数据归一化到Mock对照组。图中所示数据为平均值±标准差。3次独立重复实验。统计方法:Two-tailed unpaired Student’s t-test。
图4为利用LNP包装的MICR-CUT RNA系统特异性杀死Huh-7细胞。(a)不同转染条件下Huh-7细胞的存活情况。向转染NC或者miR-294的Huh-7细胞中分别转染LNP-Cas9/21T或LNP-Cas9/294T。Mock对照组LNP-Fluc。3次独立重复实验。比例尺为200μm。(b)不同转染条件下Huh-7细胞的相对数目。数据归一化到Mock对照组。图中所示数据为平均值±标准差。3次独立重复实验。统计方法:Two-tailed unpaired Student’s t-test。
具体实施方式
CRISPR-Cas9系统
CRISPR全称是clustered regularly interspaced short palindromicrepeats,中文译作周期间隔短回文重复序列簇,是一类发现于细菌和古细菌中的基因组序列。Cas9全称是CRISPR-associated protein 9,属于一类核酸酶,Cas蛋白最初于2005-2006年左右被鉴定发现。此后几年(2007-2011)的一系列研究逐渐揭示CRISPR/Cas系统作为细菌和古细菌免疫系统对抗病毒侵染的机制:研究发现CRISPR序列实际上来源于侵入细菌的质粒或者病毒DNA,并且CRISPR序列可以被转录并加工产生短的RNA,这些RNA片段与Cas蛋白结合起到对抗病毒的作用,因此这些RNA被称为cas related RNA,简称crRNA。后来又发现细菌需要同时表达另外一种RNA来激活Cas蛋白的活性,即tracrRNA(trans-activation Cas related RNA,反式激活crRNA)。最终在2012年的研究中证明Cas9可以和tracrRNA、crRNA结合,切割质粒DNA;研究同时发现tracrRNA和crRNA可以被串联成一条RNA,即sgRNA。至此,CRISPR/Cas9系统作为基因编辑工具的条件已经具备,并在2013年被成功应用在哺乳动物的基因编辑上,CRISPR-Cas9时代正式开始。
CRISPR-Cas9系统是目前应用最为广泛的基因编辑系统。如下图所示,这个系统主要由两部分构成:Cas9和sgRNA。Cas9为核酸酶,可以切割DNA,造成双链断裂(doublestrand break,DSB);sgRNA全称为合成引导RNA(synthetic guide RNA),当Cas9和sgRNA结合以后,sgRNA可以激活并引导Cas9蛋白定位到基因组特定位点,由此启动Cas9的基因编辑或调控活性。
sgRNA:合成引导RNA(sgRNA)通常为一段长度约110个核苷酸的序列。该序列主要由两部分构成:前端部分为长度约40个核苷酸的crRNA,其5’端包含有人为自主设计的和目标基因的DNA碱基互补配对的约20个核苷酸的序列,具有引导Cas9:sgRNA复合物定位到基因组目标区域的功能;后端部分为约70个核苷酸的tracrRNA序列,该部分与crRNA部分互补配对,形成特定结构,具有招募Cas9蛋白,促进Cas9:sgRNA复合物与目标序列结合的功能。crRNA与traRNA之间一般包含4个核苷酸连接序列。本发明使用sgRNA序列由UCSF的BoHuang于2013年发表,源于酿脓链球菌(S.pyogenes)。
在通常的应用中,一般使用U6启动子来表达sgRNA。这种启动子通过III型RNA聚合酶转录产生有活性的sgRNA。而本发明中使用II型RNA聚合酶的启动子进行转录,那么转录出来的sgRNA由于含有5’帽子和3’多聚核苷酸尾巴(PolyA),不能够发挥功能,因此被称为无活性sgRNA)。需要通过设计去掉5’帽子和3’PolyA才能够将其转变为有活性的sgRNA。
Alu重复元件
Alu元件是灵长类基因组中特有的、散在分布一类转座元件,也是人类基因组中丰度最高的重复元件,约占人类基因组序列的11%,拥有超过100万个拷贝。Alu元件属于短散在序列(short interspersed elements,SINEs),长度约为300bp,因末端含有Alu限制酶的切割位点而得名。研究表明,Alu元件在人类演化以及多种疾病的产生中均发挥重要的作用。
MICR-CUT RNA平台
本发明人建立了一种利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统。本系统包含2个部分:体外合成的编码Cas9核酸酶蛋白的mRNA;体外合成的pre-sgRNA。其中CRISPR-Cas9 mRNA在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构,同时内部含有5mC和pseudo U修饰。Cap1和polyA结构保证Cas9 mRNA在细胞中可以翻译产生具有核酸酶活性的Cas9蛋白,5mC和pseudo U修饰有助于提高Cas9 mRNA在细胞中的稳定性,并减少免疫反应的产生。Pre-sgRNA的5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构;Cap1和polyA结构使得pre-sgRNA在没有miRNA诱导的情况下保持无活性状态。
本研究将pre-sgRNA的spacer序列设计成可以靶向基因组高度重复的元件;当miRNA激活pre-sgRNA后,Cas9可以和sgRNA组成功能性复合物对基因组进行多位点切割,造成大量DNA双链断裂(DSB),从而引起细胞死亡。我们将这一系统命名为MICR-CUT RNA系统。
在本发明的一个具体实施方案中,所选择重复元件为人类细胞基因组中的Alu元件(Alu elements)。因此可设计靶向该重复元件中部分序列的sgRNA,并在该sgRNA序列的两端连接与目标miRNA或siRNA序列完全互补的RNA序列,这个就是所述的前体单链引导RNA(pre-sgRNA,在本发明中也表示为miRT-sgRNA-miRT,miRT表示与目标miRNA完全互补的序列),在pre-sgRNA的两端分别有5’帽子和3’PolyA,使得该pre-sgRNA处于无活性的状态。
将该平台导入靶细胞后,如果该靶细胞中没有目标miRNA或siRNA的表达,则整个系统处于未被激活的状态,Cas9蛋白不会切割基因组DNA。如果该靶细胞中表达目标miRNA或siRNA,则该目标miRNA或siRNA就会与pre-sgRNA两端的与其完全互补的RNA序列相结合,从而启动miRNA或siRNA介导的RNA切割机制而导致该完全互补RNA序列被切割。而该完全互补RNA序列的切割则导致sgRNA与其两端的5’帽子和3’PolyA相脱离从而具有引导活性。有活性的sgRNA就会将dCas9蛋白引导至基因组中Alu元件处,使得Cas9核酸酶蛋白切割此处的DNA,造成双链断裂。由于Alu元件在人类细胞基因组中存在数十万计的重复,因此Cas9可以多次切割DNA以破坏细胞基因组的完整性,从而杀死细胞。以上过程就是本发明的主要原理。
在本发明的具体实施方案中,所述重复元件可以是Alu序列,也可以是人体细胞基因组中其他高度重复的元件。
在本发明的具体实施方案中,与目标miRNA或siRNA完全互补的RNA序列存在所述sgRNA的两端。
在本发明的具体实施方案中,存在于所述sgRNA两端的与目标miRNA或siRNA完全互补的RNA序列是相同序列。
在本发明的具体实施方案中,所述前体合成引导RNA可以是单独一种或者是串联多种。
在本发明的具体实施方案中,所述以串联形式表达的多种前体合成引导RNA的序列两端含有的与目标miRNA或siRNA完全互补的序列可以是相同或不同的序列,即不同的前体合成引导RNA可以针对于相同或不同的miRNA或siRNA。
在本发明的具体实施方案中,所述以串联形式表达的前体合成引导RNA与细胞基因组中重复元件序列互补的部分可以是不同或相同的序列。
在本发明的具体实施方案中,所述系统的应用形式可以是裸露的mRNA和合成RNA,也可以是纳米脂质体包装的mRNA和合成RNA。
本发明提供的DNA靶向杀伤系统通过利用RNA干扰机制和CRISPR-Cas9系统相结合,将原本对基因表达起抑制作用的miRNA或siRNA转变为激活基因表达的信号,从而有效地诱导CRISPR/Cas9系统进行多位点切割基因组以破坏细胞基因组的完整性,可以用于靶向杀伤表达目标miRNA或siRNA的细胞。因此具有重大的实际意义和广泛的应用前景。
术语和缩写
在本说明书中使用了一些术语和缩写,其含义如下所述,未特别说明的术语和缩写具有本领域技术人员公知的含义。
RNAi:RNA干扰(RNA interference);
siRNA:小干扰RNA(small interfering RNA);
miRNA:微小RNA(microRNA)
miR:各种miRNA的缩写,通常后面跟有数字及字母编号以表示其命名,各种miR的编号及其序列在本领域中都是公知的。
miRT:表示与目标miRNA或siRNA完全互补的序列
sgRNA:合成引导RNA(synthetic guide RNA);
pre-sgRNA:前体合成引导RNA,含有与目标miRNA或siRNA完全互补的序列以及sgRNA的序列,亦可表示为miRT-sgRNA或者miRT-sgRNA-miRT;
CRISPR:周期间隔短回文重复序列簇(clustered regularly interspaced shortpalindromic repeats);
Cas9:周期间隔短回文重复序列簇相关蛋白9(CRISPR-associated protein9);
MICR-CUT RNA:可被miRNA或siRNA诱导CRISPR/Cas9系统进行多位点切割基因组以破坏细胞基因组的完整性,从而靶向杀伤细胞的实验平台系统(MICR cutting RNAsystem);
LNP:脂质纳米颗粒,Lipid-based nanoparticles;
通过下面的参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
实施例1
材料和方法
mRNA,pre-RNA合成以及LNP包装
mRNA,pre-sgRNA以及LNP包装委托上海伟寰生物科技有限公司完成。其中CRISPR-Cas9 mRNA在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构,同时内部含有5mC和pseudo U修饰。pre-sgRNA为两种pre-sgRNA串联形式,分别靶向基因组中Alu重复元件的不同位点,且在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构。LNP包装时,Cas9 mRNA与pre-sgRNA按照4:1(质量比)进行混合包装。
细胞培养,RNA转染
1)细胞培养
Hela和Huh-7细胞培养在高糖培养基中(DMEM+10%FBS+P/S)。在细胞生长到70%-80%汇合度时进行传代培养。传代时,将旧培养基吸除,用1×PBS清洗一遍后,加入0.1%Trypsin,于37℃消化3-5分钟;加入适量新鲜培养基终止消化后,用1ml无菌枪头轻轻吹打10-15次后,按照1:3比例进行接种,轻轻摇匀后置于37℃,5%CO2条件下进行培养。一般2天传代1次。
2)细胞转染
本研究中,mRNA和pre-RNA转染使用Lipofectamine MessengerMAXTM完成;miRNA和siRNA转染使用DharmaFECT完成。转染操作按照说明书进行。LNP转染细胞按照产品说明进行。
利用裸露RNA形式的MICR-CUT RNA系统杀伤Hela或Huh-7细胞:在转染前16-20小时,将3.0x104个Hela或者Huh-7细胞接种到48孔板中;使用DharmaFECT分别转染NC和miR-294mimics,终浓度为20nM;转染后6小时使用Lipofectamine MessengerMAXTM试剂进行mRNA转染,每孔转染200ng Cas9和50ng pre-sgRNAmRNA;转染后24小时,将细胞按照1:3比例重新接种到48孔板中;16-20小时后,使用Lipofectamine MessengerMAXTM试剂进行第二次mRNA转染,每孔转染200ng Cas9和50ng pre-sgRNA mRNA;转染后24小时,将细胞按照1:1比例重新接种到24孔板中继续培养2-3天后,进行成像和细胞计数。
利用LNP包装RNA形式的MICR-CUT RNA系统杀伤Huh-7细胞:在转染前16-20小时,将5.0x104个Huh-7细胞接种到24孔板中;使用DharmaFECT分别转染NC和miR-294mimics,终浓度为20nM;转染后6小时,每孔分别加入750ng LNP-Cas9/21T或者LNP-Cas9/294T,转染6-8小时后换液。转染8天后进行成像和细胞计数,期间每2-3天传代培养。
统计学分析
除非另有说明,数据以平均值±SD表示。我们进行双尾不成对Student’st检验以确定统计学显著性。P值<0.05被认为是具有统计学显著性。
实施例2
MICR-CUT RNA系统特异性杀死Hela细胞。
本研究体外合成了Cas9 mRNA以及包含5’Cap和3’polyA修饰的pre-sgRNA(简称为21T-Alu1-Alu2 RNA;294T-Alu1-Alu2 RNA)。接下来本研究首先在Hela细胞中进行实验。实验结果见图2,表明当转染Cas9 mRNA和21T-Alu1-Alu2 RNA后,Hela细胞数目显著减少;而转染Cas9 mRNA和294T-Alu1-Alu2 RNA对Hela细胞生长没有显著影响,但在此基础上再外源转染miR-294后可以显著减少Hela细胞数目。该结果表明MICR-CUT RNA系统可以通过RNA递送的方式特异性地杀死Hela细胞。
实施例3
MICR-CUT RNA系统特异性杀死Huh-7细胞。
为了进一步证明利用RNA形式递送表达的MICR-CUT系统进行细胞杀伤的适用性,本研究选择肝癌细胞Huh-7进行实验。本研究选择了Huh-7细胞中特异高表达的miR-122和不表达的miR-294,并合成了包含5’Cap和3’polyA修饰的pre-sgRNA(简称为122T-Alu1-Alu2 RNA;294T-Alu1-Alu2RNA)。实验结果见图3,表明当转染Cas9和122T-Alu1-Alu2 RNA后,Huh-7细胞数目显著减少,而转染Cas9和294T-Alu1-Alu2 RNA对Huh-7细胞没有显著的杀伤作用,但在此基础上再外源转染miR-294后可以显著减少Huh-7细胞数目。该结果进一步证明MICR-CUT系统可以通过RNA递送的方式特异性地杀死Huh-7细胞。
实施例4
利用LNP包装的MICR-CUT RNA系统特异性杀死Huh-7细胞。
为了进一步证明MICR-CUT RNA系统是否可以利用LNP进行包装后用于靶向杀伤细胞,本研究选择肝癌细胞Huh-7进行实验。本研究选择了Huh-7细胞中特异高表达的miR-122和不表达的miR-294,合成了包含5’Cap和3’polyA修饰的pre-sgRNA,并将Cas9 mRNA和pre-sgRNA包装到LNP中(简称为LNP-Cas9/21T;LNP-Cas9/294T)。将LNP加入到培养的细胞中,实验结果见图4,表明当转染LNP-Cas9/21T后,Huh-7细胞数目显著减少,而转染LNP-Cas9/294T对Huh-7细胞没有显著的杀伤作用,但在此基础上再外源转染miR-294后可以显著减少Huh-7细胞数目。该结果进一步证明MICR-CUT系统可以通过以LNP包装的递送方式特异性地杀死Huh-7细胞。
通过公开的上述实施例,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明书中的具体描述仅被认为是示例性的,本发明的真正范围和主旨均由本发明的权利要求书所限定。

Claims (10)

1.一种利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,所述细胞杀伤系统包括以下几个部分:
1)编码核酸酶CRISPR-Cas9蛋白的mRNA;
2)前体单链引导RNA的合成RNA,所述前体合成引导RNA的含有与目标miRNA或siRNA完全互补的序列以及合成引导RNA(sgRNA)的序列;
所述杀伤系统用于利用细胞特异性表达的miRNA或siRNA诱导CRISPR/Cas9多位点切割基因组,从而实现细胞的靶向杀伤。
2.根据权利要求1所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述核酸酶CRISPR-Cas9mRNA可以在细胞内翻译产生具有核酸酶活性的Cas9蛋白。
3.根据权利要求1所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述核酸酶CRISPR-Cas9mRNA在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构,同时内部含有5mC和pseudo U修饰。
4.根据权利要求1所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述前体合成引导RNA在合成引导RNA的序列两端均含有与目标miRNA或siRNA完全互补的序列。
5.根据权利要求5所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述前体合成引导RNA在合成引导RNA的序列两端含有的与目标miRNA或siRNA完全互补的序列是相同的序列。
6.根据权利要求5所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述前体合成引导RNA可以是单独一种,且在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构。
7.根据权利要求5所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述前体合成引导RNA可以是串联多种,且在5’端含有Cap1结构,3’端含有多聚腺苷酸(polyA)结构。
8.根据权利要求1所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述合成引导RNA的序列与细胞基因组中重复元件的部分序列互补,以使得所述sgRNA可以将所述核酸酶CRISPR-Cas9蛋白引导至重复元件上产生多次切割。
9.根据权利要求1所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其中所述重复元件为人类细胞基因组中的高度重复元件。
10.根据权利要求1所述的利用RNA干扰机制诱导多位点切割基因组实现选择性杀死细胞的RNA系统,其应用形式是裸露的mRNA和合成RNA,或者是经过脂质纳米颗粒包装的mRNA和合成RNA。
CN202110884617.4A 2021-08-03 2021-08-03 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统 Pending CN113832152A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110884617.4A CN113832152A (zh) 2021-08-03 2021-08-03 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110884617.4A CN113832152A (zh) 2021-08-03 2021-08-03 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统

Publications (1)

Publication Number Publication Date
CN113832152A true CN113832152A (zh) 2021-12-24

Family

ID=78963220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110884617.4A Pending CN113832152A (zh) 2021-08-03 2021-08-03 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统

Country Status (1)

Country Link
CN (1) CN113832152A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753836A (zh) * 2018-06-04 2018-11-06 北京大学 一种利用rna干扰机制的基因调控或编辑系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753836A (zh) * 2018-06-04 2018-11-06 北京大学 一种利用rna干扰机制的基因调控或编辑系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OSCAR CASTANON ET AL.: "CRISPR-mediated biocontainment", 《BIORXIV》, pages 1 - 2 *
汪阳明: "Reporting and harnessing microRNA activity by CRISPR-Cas9", 《2019年全国学术会议暨学会成立四十周年论文集》 *

Similar Documents

Publication Publication Date Title
CN108753836B (zh) 一种利用rna干扰机制的基因调控或编辑系统
CN110352244B (zh) 化学修饰的编辑rna的单链寡核苷酸
US20230060518A1 (en) Leaper technology based method for treating mps ih and composition
EP3358014B1 (en) Method for stabilizing functional nucleic acids
TW202204621A (zh) 治療赫勒氏綜合症的方法和藥物
US10695362B2 (en) Stabilization method of functional nucleic acid
WO2019070762A1 (en) RNA GUIDE CPF1 MODIFIED
US11959082B2 (en) Dual activity super toxic RNAi active dsRNAs
Wu et al. Mir-434-5p mediates skin whitening and lightening
CN102191246B (zh) 多靶标干扰核酸分子及其应用
TWI382849B (zh) 產生藉由基因靜默效應以用於皮膚維護之化妝品的方法以及編碼基因靜默效應物之基因重組核苷酸
EP3914714A2 (en) Systems and methods for modulating crispr activity
CN108841864B (zh) 一种利用rna干扰机制的分子传感器
CN108431227A (zh) 使用微核醣核酸前驱物作为诱导cd34阳性成体干细胞增殖的药物
US8796238B2 (en) Short RNA mimetics
US20220298507A1 (en) Compositions and methods for rna interference
CN113832152A (zh) 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的rna系统
CN113897386A (zh) 一种利用rna干扰机制诱导多位点切割基因组实现选择性杀死细胞的dna系统
KR20220119084A (ko) 폴리뉴클레오티드를 엑소솜에 전달하기 위한 핵산 구축물
CN113897385A (zh) 一种利用rna干扰机制诱导毒素基因表达实现选择性杀死细胞的dna系统
US11312958B2 (en) Components and methods for producing toxic RNAs in eukaryotic cells
CN114144202A (zh) 用于载体的多重shRNA
WO2024059824A2 (en) Immune cells with combination gene perturbations
JP2023508121A (ja) パルボウイルスベクターならびにその作製および使用方法
EP3636760A1 (en) System for dna editing and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination