CN113829358A - 一种基于深度强化学习的机器人抓取多目标物的训练方法 - Google Patents
一种基于深度强化学习的机器人抓取多目标物的训练方法 Download PDFInfo
- Publication number
- CN113829358A CN113829358A CN202111281821.3A CN202111281821A CN113829358A CN 113829358 A CN113829358 A CN 113829358A CN 202111281821 A CN202111281821 A CN 202111281821A CN 113829358 A CN113829358 A CN 113829358A
- Authority
- CN
- China
- Prior art keywords
- grabbing
- mechanical arm
- target
- network
- deep reinforcement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000002787 reinforcement Effects 0.000 title claims abstract description 58
- 238000012549 training Methods 0.000 title claims abstract description 33
- 238000013140 knowledge distillation Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 37
- 238000003860 storage Methods 0.000 claims description 20
- 238000012795 verification Methods 0.000 claims description 20
- 210000000707 wrist Anatomy 0.000 claims description 20
- 230000006399 behavior Effects 0.000 claims description 18
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000011478 gradient descent method Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000004088 simulation Methods 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Manipulator (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111281821.3A CN113829358B (zh) | 2021-11-01 | 2021-11-01 | 一种基于深度强化学习的机器人抓取多目标物的训练方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111281821.3A CN113829358B (zh) | 2021-11-01 | 2021-11-01 | 一种基于深度强化学习的机器人抓取多目标物的训练方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113829358A true CN113829358A (zh) | 2021-12-24 |
CN113829358B CN113829358B (zh) | 2022-12-27 |
Family
ID=78966660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111281821.3A Active CN113829358B (zh) | 2021-11-01 | 2021-11-01 | 一种基于深度强化学习的机器人抓取多目标物的训练方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113829358B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119077755A (zh) * | 2024-11-07 | 2024-12-06 | 江苏靖宁智能制造有限公司 | 基于深度学习的机器人智能编程方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102163047A (zh) * | 2010-02-19 | 2011-08-24 | 发那科株式会社 | 学习控制机器人 |
CN105718884A (zh) * | 2016-01-20 | 2016-06-29 | 浙江大学 | 一种基于多指机械手触感信息特征提取的物件分类方法 |
JP2019155561A (ja) * | 2018-03-15 | 2019-09-19 | オムロン株式会社 | ロボットの動作制御装置 |
CN111079561A (zh) * | 2019-11-26 | 2020-04-28 | 华南理工大学 | 一种基于虚拟训练的机器人智能抓取方法 |
CN112102405A (zh) * | 2020-08-26 | 2020-12-18 | 东南大学 | 基于深度强化学习的机器人搅动-抓取组合方法 |
CN113344307A (zh) * | 2021-08-09 | 2021-09-03 | 常州唯实智能物联创新中心有限公司 | 基于深度强化学习的无序抓取多目标优化方法及系统 |
-
2021
- 2021-11-01 CN CN202111281821.3A patent/CN113829358B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102163047A (zh) * | 2010-02-19 | 2011-08-24 | 发那科株式会社 | 学习控制机器人 |
CN105718884A (zh) * | 2016-01-20 | 2016-06-29 | 浙江大学 | 一种基于多指机械手触感信息特征提取的物件分类方法 |
JP2019155561A (ja) * | 2018-03-15 | 2019-09-19 | オムロン株式会社 | ロボットの動作制御装置 |
CN111079561A (zh) * | 2019-11-26 | 2020-04-28 | 华南理工大学 | 一种基于虚拟训练的机器人智能抓取方法 |
CN112102405A (zh) * | 2020-08-26 | 2020-12-18 | 东南大学 | 基于深度强化学习的机器人搅动-抓取组合方法 |
CN113344307A (zh) * | 2021-08-09 | 2021-09-03 | 常州唯实智能物联创新中心有限公司 | 基于深度强化学习的无序抓取多目标优化方法及系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119077755A (zh) * | 2024-11-07 | 2024-12-06 | 江苏靖宁智能制造有限公司 | 基于深度学习的机器人智能编程方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113829358B (zh) | 2022-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ni et al. | Pointnet++ grasping: Learning an end-to-end spatial grasp generation algorithm from sparse point clouds | |
CN110450153B (zh) | 一种基于深度强化学习的机械臂物品主动拾取方法 | |
Danielczuk et al. | Linear push policies to increase grasp access for robot bin picking | |
CN111251295B (zh) | 一种应用于参数化零件的视觉机械臂抓取方法及装置 | |
CN112297013B (zh) | 一种基于数字孪生和深度神经网络的机器人智能抓取方法 | |
Sutanto et al. | Learning latent space dynamics for tactile servoing | |
CN110238840B (zh) | 一种基于视觉的机械臂自主抓取方法 | |
CN113500017B (zh) | 一种面向非结构化场景下物料分拣的智能系统和方法 | |
Jiang et al. | Learning hardware agnostic grasps for a universal jamming gripper | |
JP2022187984A (ja) | モジュール化ニューラルネットワークを用いた把持学習 | |
CN110216671A (zh) | 一种基于计算机仿真的机械抓手训练方法及系统 | |
JP2020082322A (ja) | 機械学習装置、機械学習システム、データ処理システム及び機械学習方法 | |
CN114211490B (zh) | 一种基于Transformer模型的机械臂抓手位姿预测方法 | |
JP2022187983A (ja) | 高次元のロボット作業を学習するためのネットワークモジュール化 | |
CN113752255A (zh) | 一种基于深度强化学习的机械臂六自由度实时抓取方法 | |
CN111152227A (zh) | 一种基于引导式dqn控制的机械臂控制方法 | |
CN113829358B (zh) | 一种基于深度强化学习的机器人抓取多目标物的训练方法 | |
Chen et al. | Towards generalization and data efficient learning of deep robotic grasping | |
Liang et al. | Learning preconditions of hybrid force-velocity controllers for contact-rich manipulation | |
Ni et al. | Learning an end-to-end spatial grasp generation and refinement algorithm from simulation | |
Hossain et al. | Object recognition and robot grasping: A deep learning based approach | |
CN113436293B (zh) | 一种基于条件生成式对抗网络的智能抓取图像生成方法 | |
Zhao et al. | Implementation and Optimization of Grasping Learning with Dual-modal Soft Gripper | |
CN108724187A (zh) | 一种机器人抓取飞行物体的运动规划方法及系统 | |
CN114820802A (zh) | 高自由度灵巧手抓取规划方法、装置和计算机设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211224 Assignee: YANCHENG CITY YUBO AUTO PARTS Co.,Ltd. Assignor: JIANGSU YUBO AUTOMATION EQUIPMENT Co.,Ltd. Contract record no.: X2024980021052 Denomination of invention: A training method for robots to grasp multiple targets based on deep reinforcement learning Granted publication date: 20221227 License type: Common License Record date: 20241028 Application publication date: 20211224 Assignee: Yancheng Yingfu Intelligent Equipment Co.,Ltd. Assignor: JIANGSU YUBO AUTOMATION EQUIPMENT Co.,Ltd. Contract record no.: X2024980021050 Denomination of invention: A training method for robots to grasp multiple targets based on deep reinforcement learning Granted publication date: 20221227 License type: Common License Record date: 20241028 |