CN113828797A - 基于送粉速度优化的激光增材制造工艺 - Google Patents

基于送粉速度优化的激光增材制造工艺 Download PDF

Info

Publication number
CN113828797A
CN113828797A CN202111278634.XA CN202111278634A CN113828797A CN 113828797 A CN113828797 A CN 113828797A CN 202111278634 A CN202111278634 A CN 202111278634A CN 113828797 A CN113828797 A CN 113828797A
Authority
CN
China
Prior art keywords
layer
thickness
powder feeding
feeding speed
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111278634.XA
Other languages
English (en)
Inventor
张国瑜
唱丽丽
蒋士春
周文超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Zhongke Raycham Laser Technology Co Ltd
Original Assignee
Nanjing Zhongke Raycham Laser Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Zhongke Raycham Laser Technology Co Ltd filed Critical Nanjing Zhongke Raycham Laser Technology Co Ltd
Priority to CN202111278634.XA priority Critical patent/CN113828797A/zh
Publication of CN113828797A publication Critical patent/CN113828797A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/31Calibration of process steps or apparatus settings, e.g. before or during manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种基于送粉速度优化的激光增材制造工艺,基于送粉增材制造打印的每一层沉积层的厚度的误差判断,并在此基础上选择相邻误差的残差平方和最小的组合,进行速度的修正,使得后续的打印过程中以修正的送粉速度进行送粉打印,减少每一层之间的误差。

Description

基于送粉速度优化的激光增材制造工艺
技术领域
本发明涉及增材制造技术领域,尤其是钛合金、铝合金等金属材料的增材制造打印技术,具体而言涉及一种基于送粉速度优化的激光增材制造工艺。
背景技术
激光增材制造是近年来获得广泛研究和应用的先进制造技术,通过在基材表面送粉或者送粉的方式输送金属材料,并利用高能密度的激光束使之与基材表面的薄层一起形成熔池,形成冶金结合的熔覆层,通过逐层生长沉积的方式,将三维零部件的制造过程转换为二维的堆积过程,可克服现有的铸造系统对复杂结构零件加工的难度和加工精度问题,在金属材料成型、高分子材料成型以及复合材料成型加工领域具有重要的应用前景。
目前,制约激光熔覆增材制造大规模推广的突出问题是熔覆效率和熔覆层的质量,为此现有技术中在效率和质量进行非常多的研究,例如宽带激光熔覆技术、双光束/多光束熔覆技术、加工头高度修正技术等。
现有技术中,尽管以精确的方式送粉并且以高精度可控的激光加工头进行熔覆加工,但获得的熔覆层的高度和质量很难做到非常好的一致性,因此,例如CN111360367A提出一种高度自动跟随的电弧增材制造打印方法,在单层打印完成后,通过测距传感器检测与打印层的距离,并根据距离检测值与设定值的差值确定焊枪高度修正数据,控制多轴机器人基于焊枪高度修正数据调整焊枪的打印高度,以及基于累积修正数据控制机器人执行运动程序跳转,在所述跳转目标程序中,多轴机器人控制所述焊枪对打印完成的最后一层进行二次打印。在打印序列中,累积每层打印的焊枪高度修正数据,并且在累积的焊枪高度修正数据达到设定的阈值时,控制机器人执行运动程序跳转;响应于机器人执行运动程序跳转而中断焊枪高度修正数据的累积,从跳转目标程序恢复到打印序列后的第一层打印开始重新累积焊枪高度修正数据。
其旨在通过高度修正的累积误差来实现规划打印程序的中断,进行一次修正,插入新的一层打印,来消除累积的误差,使得高度的修正得以恢复到原始状态,避免累积误差的持续。但在工艺应用的实际过程中,中断程序带来的影响在较小的零件中(需要累积沉积的沉积层在10-20层)获得较好的结果验证,但对大型复杂零部件的加工过程中,例如30层或者30层以上的沉积层,尚不能确定。
附图说明
图1-2是以设定的3个RSS的滑动窗口进行估算求和的示意图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
本发明的实施例提出一种基于送粉速度优化的激光增材制造工艺,包括:
采用同轴送粉方式,以预设的激光增材制造工艺参数进行逐层沉积,其中的激光增材制造工艺参数包括激光工作参数和送粉工艺参数,激光工作参数包括扫描间距、扫描速度、激光功率,送粉工艺参数包括送粉速度、搭接率;
在每一层沉积完成后,通过高精度测距传感器检测加工头与打印层的距离,并基于基板与加工头的初始距离,计算出每一层沉积层的厚度;
在送粉速度相同情况下,对应获得的沉积层厚度如下:
第1层,厚度T1;第2层,厚度T2;第3层,厚度T3;第4层,厚度T4;…;第n层,厚度Tn;
其中,我们希望每一层的厚度都是相同的,但在实际打印过程中很难做到完全相同,因此在每一层沉积完成后,从第2层开始,均进行误差估计:
第2层的层厚残差平方和RSS2=(T2-T1)2,即以T2为厚度真实值,而以T1作为期望的估计值;希望T2=T1,但实际上难以达到;
第3层的层厚残差平方和RSS3=(T3-T2)2,即以T3为厚度真实值,而以T2作为期望的估计值;
第4层的层厚残差平方和RSS4=(T4-T3)2,即以T4为厚度真实值,而以T3作为期望的估计值;
第i层的层厚残差平方和RSSi=(Ti-Ti-1)2,即以Ti为厚度真实值,而以Ti-1作为期望的估计值;
以设定的窗口N为基准,N大于等于3,从前K层沉积层结果中,K大于等于10,对前述层厚残差平方和进行估算求和,取其中求和结果最小的输出,选择该最小的层数组合,计算出其平均的厚度值T’以及截至该最小层数组合的所有沉积层的平均厚度值T”,再根据平均的厚度值T’与T”修正送粉速度:
修正后的送粉速度为:送粉速度*(T’/T”)
则,最小的层数组合接下来往后的每一层的打印过程中,以修正后的送粉速度进行打印,以每一层的打印厚度之间的差异足够小为期望,从而实现每一层的厚度误差最小,甚至为0,从而实现整个打印过程的优化。
以钛合金为例,我们将在更佳具体的示例以及微观结构表征中,对打印结果与现有的打印结果进行对比,可见通过本发明的优化打印方法获得钛合金成型件的内部组织更好,打印质量高。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (1)

1.一种基于送粉速度优化的激光增材制造工艺,其特征在于,包括:
采用同轴送粉方式,以预设的激光增材制造工艺参数进行逐层沉积,其中的激光增材制造工艺参数包括激光工作参数和送粉工艺参数,激光工作参数包括扫描间距、扫描速度、激光功率,送粉工艺参数包括送粉速度、搭接率;
在每一层沉积完成后,通过高精度测距传感器检测加工头与打印层的距离,并基于基板与加工头的初始距离,计算出每一层沉积层的厚度;
在送粉速度相同情况下,对应获得的沉积层厚度如下:
第1层,厚度T1;第2层,厚度T2;第3层,厚度T3;第4层,厚度T4;…;第n层,厚度Tn;
其中,我们希望每一层的厚度都是相同的,但在实际打印过程中很难做到完全相同,因此在每一层沉积完成后,从第2层开始,均进行误差估计:
第2层的层厚残差平方和RSS2=(T2-T1)2,即以T2为厚度真实值,而以T1作为期望的估计值;希望T2=T1,但实际上难以达到;
第3层的层厚残差平方和RSS3=(T3-T2)2,即以T3为厚度真实值,而以T2作为期望的估计值;
第4层的层厚残差平方和RSS4=(T4-T3)2,即以T4为厚度真实值,而以T3作为期望的估计值;
第i层的层厚残差平方和RSSi=(Ti-Ti-1)2,即以Ti为厚度真实值,而以Ti-1作为期望的估计值;
以设定的窗口N为基准,N大于等于3,从前K层沉积层结果中,K大于等于10,对前述层厚残差平方和进行估算求和,取其中求和结果最小的输出,选择该最小的层数组合,计算出其平均的厚度值T’以及截至该最小层数组合的所有沉积层的平均厚度值T”,再根据平均的厚度值T’与T”修正送粉速度:
修正后的送粉速度为:送粉速度*(T’/T”)
则,最小的层数组合接下来往后的每一层的打印过程中,以修正后的送粉速度进行打印,以每一层的打印厚度之间的差异足够小为期望,从而实现每一层的厚度误差最小,甚至为0,从而实现整个打印过程的优化。
CN202111278634.XA 2021-10-31 2021-10-31 基于送粉速度优化的激光增材制造工艺 Pending CN113828797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111278634.XA CN113828797A (zh) 2021-10-31 2021-10-31 基于送粉速度优化的激光增材制造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111278634.XA CN113828797A (zh) 2021-10-31 2021-10-31 基于送粉速度优化的激光增材制造工艺

Publications (1)

Publication Number Publication Date
CN113828797A true CN113828797A (zh) 2021-12-24

Family

ID=78966799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111278634.XA Pending CN113828797A (zh) 2021-10-31 2021-10-31 基于送粉速度优化的激光增材制造工艺

Country Status (1)

Country Link
CN (1) CN113828797A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114714628A (zh) * 2022-04-18 2022-07-08 中国人民解放军32181部队 激光定向能沉积形状精度控制方法
CN116540955A (zh) * 2023-04-21 2023-08-04 成都飞机工业(集团)有限责任公司 一种增材制造打印中断故障处理方法、介质和设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114714628A (zh) * 2022-04-18 2022-07-08 中国人民解放军32181部队 激光定向能沉积形状精度控制方法
CN114714628B (zh) * 2022-04-18 2023-05-16 中国人民解放军32181部队 激光定向能沉积形状精度控制方法
CN116540955A (zh) * 2023-04-21 2023-08-04 成都飞机工业(集团)有限责任公司 一种增材制造打印中断故障处理方法、介质和设备

Similar Documents

Publication Publication Date Title
CN113828797A (zh) 基于送粉速度优化的激光增材制造工艺
EP1549454B1 (en) Multi-layer dmd process with part-geometry independant real time closed loop weld pool temperature control system
Youheng et al. Optimization of surface appearance for wire and arc additive manufacturing of Bainite steel
CN109778182B (zh) 一种激光熔覆增材成形高度在线监测装置及闭环控制方法
Hagqvist et al. Resistance based iterative learning control of additive manufacturing with wire
US9925724B2 (en) Additive manufacturing system and method of additive manufacture utilizing layer-by-layer thermo-mechanical analysis
CN105171289B (zh) 变坡口宽度的中厚板多层多道焊接轨迹规划方法
Chabot et al. Towards a multi-sensor monitoring methodology for AM metallic processes
CN109262110B (zh) 一种金属电弧增材制造方法
EP3587005A1 (en) Control method for layerwise additive manufacturing, computer program product and control apparatus
WO2021068465A1 (zh) 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法
EP4349508A1 (en) Method for machining part using a laser melting forming apparatus
Reisgen et al. Study on workpiece and welding torch height control for polydirectional WAAM by means of image processing
CN112828311B (zh) 一种基于实时三维检测的金属增材制造在线轨迹调整方法
CN113263243A (zh) 一种电弧增材制造变截面构件平面度实时测量与反馈的装置及方法
WO2017180116A1 (en) System and method of additive manufacturing
WO2019096105A1 (zh) 一种3d打印装置和打印方法
Ding et al. A shape control strategy for wire arc additive manufacturing of thin-walled aluminium structures with sharp corners
CN111060026A (zh) 基于激光位移传感器同轴送粉设备检测熔覆质量的方法
Yu et al. The strategy for fabricating Wire-Structure parts using robotic skeleton arc additive manufacturing
CN115647391A (zh) 基于增减材复合打印的轮廓扫描路径规划方法
Ramiro et al. Geometrical model and strategy in single and multilayer structures deposited by powder-fed Directed Energy Deposition
Behlau et al. Layer thickness controlling in Direct Energy Deposition process by adjusting the powder flow rate
CN110814467A (zh) 一种消除电弧增材制造构件边缘塌陷的路径修正方法
CN112388107A (zh) 一种增材制造成形几何在线监控与校正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication