CN113821870A - 一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法 - Google Patents

一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法 Download PDF

Info

Publication number
CN113821870A
CN113821870A CN202111000460.0A CN202111000460A CN113821870A CN 113821870 A CN113821870 A CN 113821870A CN 202111000460 A CN202111000460 A CN 202111000460A CN 113821870 A CN113821870 A CN 113821870A
Authority
CN
China
Prior art keywords
truegrid
battery rack
underwater vehicle
model
dyna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111000460.0A
Other languages
English (en)
Other versions
CN113821870B (zh
Inventor
卢丞一
王雪飞
田文龙
毛昭勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202111000460.0A priority Critical patent/CN113821870B/zh
Publication of CN113821870A publication Critical patent/CN113821870A/zh
Application granted granted Critical
Publication of CN113821870B publication Critical patent/CN113821870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明提供一种基于LS‑DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,针对水下航行器电池架,通过LS‑DYNA仿真分析找出其结构中不合理之处,通过TrueGrid参数化有限元模型反复对其进行优化设计,以达到改善电池架力学性能、提高设计的效率和降低设计成本的目标。

Description

一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架 结构优化方法
技术领域
本发明涉及水下锂电池技术领域,具体涉及一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法。
背景技术
电动力水下航行器在军民等领域均有广泛应用,其中,水下航行器在入水冲击初期的瞬间过程中会遭受巨大的冲击载荷,可能对壳体结构以及携带的仪器设备造成很大的危害。水下航行器在运输的时候也会受到随机振动,可能对其内部精密仪器和动力电池造成影响;同时,当水下航行器工作时,动力电池处于以下特定环境:电池处于大电流工作状态,内部发热较为严重;电池处于密封环境工作,散热规格受限,导致电池外界环境温度较高;根据电池舱的密封情况,电池可能处于湿度较高的环境。
由此可见,水下航行器电池舱所处环境相对较为苛刻,对电池架结构的力学性能与散热性能有着更为严格的要求,并且需要进行大量的结构设计工作,然而目前,对水下航行器电池架结构优化的研究较少,仍处于初期阶段。因此,此时就需要一种具有较强针对性的方法,来提高设计的效率,降低设计成本。
发明内容
本发明的目的在于解决现有技术所存在的不足之处,而提供一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法。
为实现上述目的,本发明所提供的技术解决方案是:
本发明提供了一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,包括以下步骤:
S1.根据水下航行器电池架的结构参数建立三维几何模型;此处结构参数指电池架的长宽高,电池槽尺寸,加强筋的厚度,热桥的厚薄等几何尺寸;
S2.利用S1建立的三维几何模型,建立所述电池架的TrueGrid参数化有限元模型;
S3.将S2建立的TrueGrid参数化有限元模型导入LS-DYNA中,仿真得到所述电池架的应力云图;
S4.根据S3得到的应力云图,确定所述电池架的优化部位及优化方案;优化部位指的是电池架需要优化的结构部位,优化方案是指如何进行优化来减少应力集中等问题
S5.通过修改TrueGrid参数化命令流,得到优化后电池架的TrueGrid参数化有限元模型;
S6.将S5得到的TrueGrid参数化有限元模型导入LS-DYNA中,仿真得到优化后电池架的应力云图;
S7.将S6得到的应力云图与目标应力云图进行对比:
若力学性能达到目标力学性能,则执行S8;
若力学性能未达到目标力学性能,则根据对比结果,调整所述电池架的优化部位及优化方案,返回S5;
目标力学性能与水下航行器的规格、工况及作业环境有关,可根据实际情况对目标力学性能进行调整。
S8.选取达到目标力学性能的结构方案作为所述水下航行器电池架结构的优化方案。
进一步地,S2具体为:
S21.根据S1建立的三维几何模型,确定建立有限元模型所需的全部结构参数;此处结构参数包括几何尺寸、网格尺寸以及网格分区方式等;
S22.编写水下航行器电池架的TrueGrid参数化命令流,对模型进行全参数化设计;
S23.将步骤S22中编写的命令流导入TrueGrid中,生成水下航行器电池架的有限元模型。
进一步地,S22中,对模型进行全参数化设计步骤如下:
S221.对模型结构尺寸进行参数化设计;
S222.对与模型结构尺寸相匹配的模型网格密度进行参数化设计。
进一步地,S3和S6中,得到应力云图需对电池架进行静态特性、随机振动和冲击振动仿真分析。
进一步地,S221.对模型结构尺寸进行参数化设计,通过parameter命令将模型所有的结构尺寸用参数定义,并在编写模型命令流时使用[%a]调用;当需要修改模型结构尺寸的时候,只需对参数进行修改即可,将其导入TrueGrid后,模型会根据修改后的参数自动调节尺寸。
进一步地,S222.对模型网格密度进行参数化设计,使用nint命令对结构尺寸数据进行取整,来确定对应的网格数量;
如果建模的单位制采用mm、网格密度选用1mm,在编写网格数量的命令流时使用[nint(%a)]调用;如果建模的单位制采用cm、网格密度选用0.1cm,在编写网格数量的命令流时使用[nint(10*%a)]调用,并以此类推。当需要修改模型尺寸的时候,网格密度将保持不变,不会随结构尺寸的增大而拉伸,也不会随结构尺寸的减小而压缩。
本发明的优点是:
1.本发明提供了一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,针对水下航行器电池架,通过LS-DYNA仿真分析找出其结构中不合理之处,通过TrueGrid参数化有限元模型反复对其进行优化设计,以达到改善电池架力学性能的目标,相比于现有的电池架结构优化方法具有更高的设计效率与更低的设计成本,对于需要大量结构设计的工作有着较强的针对性。LS-DYNA作为非线性显示动力学有限元仿真软件,是进行冲击变形等有限元分析的黄金标准,TrueGrid作为一款能够对有限元网格模型高度参数化的建模软件,两者的结合可以明显提高有限元网格模型的设计效率。
2.本发明根据LS-DYNA仿真结果,确定电池架优化部位及优化方案,并结合TrueGrid参数化有限元模型,对水下航行器电池架结构进行快速的优化设计,以改善电池架力学性能与散热性能,提高设计效率,降低设计成本。
附图说明
图1为本发明基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法的流程示意图。
图2为本发明基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法步骤S2的具体流程示意图。
图3为本发明基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法步骤S22的具体流程示意图。
具体实施方式
以下结合附图和具体实施例对本发明的内容作进一步的详细描述:
如图1-图3所示,一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,包括以下步骤:
S1.根据现有的或设定的水下航行器电池架的结构参数建立三维几何模型;
S2.建立电池架的TrueGrid参数化有限元模型;具体如下:
S21.根据S1建立的三维几何模型,确定建立有限元模型所需的全部结构参数;
S22.编写水下航行器电池架的TrueGrid参数化命令流,对模型结构尺寸与网格密度进行全参数化设计;
S221.对模型结构尺寸进行参数化设计,通过parameter命令将模型所有的结构尺寸用参数定义(例如a),并在编写模型命令流时使用[%a]调用。当需要修改模型结构尺寸的时候,只需对参数进行修改即可,将其导入TrueGrid后,模型会根据修改后的参数自动调节尺寸;
S222.对模型网格密度进行参数化设计,使用nint命令对结构尺寸数据进行取整,来确定对应的网格数量;如果建模的单位制采用mm、网格密度选用1mm,在编写网格数量的命令流时使用[nint(%a)]调用;如果建模的单位制采用cm、网格密度选用0.1cm,在编写网格数量的命令流时使用[nint(10*%a)]调用,并以此类推。当需要修改模型尺寸的时候,网格密度将保持不变,不会随结构尺寸的增大而拉伸,也不会随结构尺寸的减小而压缩;
S23.将步骤S22中编写的命令流导入TrueGrid中,生成水下航行器电池架的有限元模型。
S3.将S2建立的TrueGrid参数化有限元模型导入LS-DYNA中,对电池架进行静态特性、随机振动和冲击振动仿真分析,得到所述电池架的应力云图;
S4.根据S3得到的应力云图,确定所述电池架的优化部位及优化方案;
S5.通过修改TrueGrid参数化命令流,得到优化后电池架的TrueGrid参数化有限元模型;
S6.将S5得到的TrueGrid参数化有限元模型导入LS-DYNA中,对所述优化后电池架进行静态特性、随机振动和冲击振动仿真分析,得到优化后电池架的应力云图;
S7.将S6得到的应力云图与目标应力云图进行对比:
若力学性能达到目标力学性能,则执行S8;
若力学性能未达到目标力学性能,则根据对比结果,调整所述电池架的优化部位及优化方案,返回S5;
S8.选取达到目标力学性能的结构方案作为所述水下航行器电池架结构的优化方案。
上述仅为本发明的具体实施方式,但本发明保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明公开的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,其特征在于,包括以下步骤:
S1.根据水下航行器电池架的结构参数建立三维几何模型;
S2.利用S1建立的三维几何模型,建立所述电池架的TrueGrid参数化有限元模型;
S3.将S2建立的TrueGrid参数化有限元模型导入LS-DYNA中,仿真得到所述电池架的应力云图;
S4.根据S3得到的应力云图,确定所述电池架的优化部位及优化方案;
S5.通过修改TrueGrid参数化命令流,得到优化后电池架的TrueGrid参数化有限元模型;
S6.将S5得到的TrueGrid参数化有限元模型导入LS-DYNA中,仿真得到优化后电池架的应力云图;
S7.将S6得到的应力云图与目标应力云图进行对比:
若力学性能达到目标力学性能,则执行S8;
若力学性能未达到目标力学性能,则根据对比结果,调整所述电池架的优化部位及优化方案,返回S5;
S8.选取达到目标力学性能的结构方案作为所述水下航行器电池架结构的优化方案。
2.根据权利要求1所述基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,其特征在于,S2具体为:
S21.根据S1建立的三维几何模型,确定建立有限元模型所需的全部结构参数;
S22.编写水下航行器电池架的TrueGrid参数化命令流,对有限元模型进行全参数化设计;
S23.将步骤S22中编写的命令流导入TrueGrid中,生成水下航行器电池架的有限元模型。
3.根据权利要求2所述基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,其特征在于,S22中,对模型进行全参数化设计步骤如下:
S221.对模型结构尺寸进行参数化设计;
S222.对模型网格密度进行参数化设计。
4.根据权利要求1-3任一所述基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,其特征在于:
S3和S6中,得到应力云图需对电池架进行静态特性、随机振动和冲击振动仿真分析。
5.根据权利要求3所述基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,其特征在于:
S221.对模型结构尺寸进行参数化设计,通过parameter命令将模型所有的结构尺寸用参数定义,并在编写模型命令流时使用[%a]调用。
6.根据权利要求4所述基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法,其特征在于:
S222.对模型网格密度进行参数化设计,使用nint命令对结构尺寸数据进行取整,来确定对应的网格数量;如果建模的单位制采用mm、网格密度选用1mm,在编写网格数量的命令流时使用[nint(%a)]调用;如果建模的单位制采用cm、网格密度选用0.1cm,在编写网格数量的命令流时使用[nint(10*%a)]调用,并以此类推。
CN202111000460.0A 2021-08-28 2021-08-28 一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法 Active CN113821870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111000460.0A CN113821870B (zh) 2021-08-28 2021-08-28 一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111000460.0A CN113821870B (zh) 2021-08-28 2021-08-28 一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法

Publications (2)

Publication Number Publication Date
CN113821870A true CN113821870A (zh) 2021-12-21
CN113821870B CN113821870B (zh) 2022-09-13

Family

ID=78923458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111000460.0A Active CN113821870B (zh) 2021-08-28 2021-08-28 一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法

Country Status (1)

Country Link
CN (1) CN113821870B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063389A (zh) * 2018-09-28 2018-12-21 重庆长安汽车股份有限公司 一种基于多性能约束的汽车结构轻量化正向设计方法及系统
CN109583058A (zh) * 2018-11-16 2019-04-05 湖南大学 基于有限元方法的汽车电池箱结构设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063389A (zh) * 2018-09-28 2018-12-21 重庆长安汽车股份有限公司 一种基于多性能约束的汽车结构轻量化正向设计方法及系统
CN109583058A (zh) * 2018-11-16 2019-04-05 湖南大学 基于有限元方法的汽车电池箱结构设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李?等: "基于SolidWorks-MATLAB-ANSYS集成框架的结构设计优化", 《计算机应用与软件》 *

Also Published As

Publication number Publication date
CN113821870B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN110941923B (zh) 一种空气弹簧结构敏感参数的确定方法
CN112231945B (zh) 一种基于star CCM+与Amesim的动力电池系统热扩散联合仿真方法
CN112182678A (zh) 一种固化质量与固化成本协同设计的热压罐成型方法
CN109800456A (zh) 一种基于Ogden本构模型的排气系统包络面分析方法
CN104484511A (zh) 一种基于仿真分析的机器人结构动态特性设计方法
CN112613120A (zh) 汽车前副车架轻量化优化设计方法及系统
CN113821870B (zh) 一种基于LS-DYNA与TrueGrid联合仿真的水下航行器电池架结构优化方法
CN112380719A (zh) 一种快堆边界下的裂变气体释放的数值确定方法
CN112541289B (zh) 一种轨道车辆车体铝型材结构的声振等效建模方法
CN115659756A (zh) 一种输电杆塔防风性能分析方法
CN109388833B (zh) 一种基于疲劳寿命的弹性元件结构优化设计方法
CN116738707B (zh) 部分周期性换热器通道的等效力学性能预测方法及系统
CN116562075B (zh) 电池包结构设计方法、装置、终端和存储介质
CN117235926A (zh) 减速机壳体合箱多螺栓仿真分析建模方法
CN116542177A (zh) 一种基于启停工况分析评判的水轮机寿命评估方法及系统
CN116679212A (zh) 一种电池快充的仿真方法、系统、设备及介质
CN110633533A (zh) 一种针对箱体类零件的模态分析有限元网格密度优选方法及系统
CN114912329A (zh) 电池包模型的建模方法、装置、电子设备及存储介质
CN107729699B (zh) 一种基于matlab的增压器涡轮叶轮设计优化方法
CN116361930A (zh) 压缩机支架总成模型的生成方法、装置、设备及储存介质
Hu et al. Numerical Analysis and Structure Design for the Airborne Pod Bracket Based on UG and ANSYS workbench
CN115995277B (zh) 一种材料动力学特性评估方法、装置、设备及介质
CN115062456B (zh) 一种基于拉伸断裂评价的激光焊接接头强度仿真分析方法
CN114722678A (zh) 一种用于泡棉类部件在有限元数值模拟中的优化实现方法
CN116451511B (zh) 基于roms模型的海冰数值仿真方法、装置及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant