CN113821863B - Method for predicting vertical ultimate bearing capacity of pile foundation - Google Patents
Method for predicting vertical ultimate bearing capacity of pile foundation Download PDFInfo
- Publication number
- CN113821863B CN113821863B CN202111381622.XA CN202111381622A CN113821863B CN 113821863 B CN113821863 B CN 113821863B CN 202111381622 A CN202111381622 A CN 202111381622A CN 113821863 B CN113821863 B CN 113821863B
- Authority
- CN
- China
- Prior art keywords
- fitness
- value
- generation
- neural network
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000003062 neural network model Methods 0.000 claims abstract description 44
- 238000012360 testing method Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 230000003068 static effect Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种桩基竖向极限承载力预测方法,包括步骤S1、建立初始种群;步骤S2、采用改进径向移动算法的适应度函数计算初始种群中各个个体的适应度值,通过对个体的适应度值进行逐个比较来确定当代最优位置,并将其定义为初始中心位置;步骤S3、采用更新条件在第k代中心位置的±0.5(x jmax‑x jmin)w k 范围内生成新的预位置点,并计算适应度值,更新位置信息;步骤S4、确定全局最优位置,并计算全局最优位置的适应度值;步骤S5、将全局最优位置的权值和阈值赋值给BP神经网络模型,对BP神经网络模型进行训练和仿真得到最优的桩基竖向极限承载力预测值。本发明便于确保预测值更加接近真实值。
The invention provides a method for predicting the vertical ultimate bearing capacity of a pile foundation, which includes step S1, establishing an initial population; step S2, calculating the fitness value of each individual in the initial population by using the fitness function of the improved radial movement algorithm, The fitness values of the individuals are compared one by one to determine the contemporary optimal position and define it as the initial center position; step S3, adopt the update condition at ±0.5 ( x j max ‑ x j min ) w k of the center position of the kth generation Generate a new pre-position point within the range, calculate the fitness value, and update the position information; step S4, determine the global optimal position, and calculate the fitness value of the global optimal position; step S5, calculate the weight of the global optimal position And the threshold is assigned to the BP neural network model, and the BP neural network model is trained and simulated to obtain the optimal prediction value of the vertical ultimate bearing capacity of the pile foundation. The present invention facilitates ensuring that the predicted value is closer to the true value.
Description
技术领域technical field
本发明涉及桩基承载力预测技术领域,具体涉及一种桩基竖向极限承载力预测方法。The invention relates to the technical field of pile foundation bearing capacity prediction, in particular to a method for predicting the vertical ultimate bearing capacity of a pile foundation.
背景技术Background technique
桩基是一种承载能力高、使用范围广且历史久远的基础形式。随着社会经济的不断发展,桩基被广泛应用于高层建筑、港口和桥梁工程中。在应用时,桩基竖向极限承载力是衡量桩基质量的一个重要指标。桩基竖向极限承载力与桩身强度、桩周土的性质以及施工工艺等诸多因素有关,还未有能全面考虑所有因素的理论公式和数值计算方法。静载试验是测量桩基承载力最直接、最可靠的方法。但由于耗时长、花费大,静载试验一般用于重要的工程中,无法被普遍使用。此外,有些桩基的荷载-沉降曲线呈缓慢型,静载试验时难以达到极限状态,无法测得桩基的极限承载力。而动测法测试原理与桩基的荷载传递机理不一致,若采用动测法测量桩基承载力,则会产生一定的测量误差。Pile foundation is a foundation form with high bearing capacity, wide application range and long history. With the continuous development of social economy, pile foundations are widely used in high-rise buildings, ports and bridge projects. In application, the vertical ultimate bearing capacity of pile foundation is an important index to measure the quality of pile foundation. The vertical ultimate bearing capacity of the pile foundation is related to many factors such as the strength of the pile body, the properties of the soil surrounding the pile and the construction technology. There is no theoretical formula and numerical calculation method that can fully consider all factors. Static load test is the most direct and reliable method to measure the bearing capacity of pile foundation. However, due to the long time and high cost, static load tests are generally used in important projects and cannot be widely used. In addition, the load-settlement curve of some pile foundations is slow, and it is difficult to reach the limit state during the static load test, and the ultimate bearing capacity of the pile foundation cannot be measured. However, the test principle of the dynamic test method is inconsistent with the load transfer mechanism of the pile foundation. If the dynamic test method is used to measure the bearing capacity of the pile foundation, certain measurement errors will occur.
人工神经网络是最早基于实测数据的桩基承载力预测方法。BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。它具有很强的非线性映射能力,在理论上可逼近任意函数,且灵活性很强,可依据不同情况对参数进行调整。但其在预测时易陷入局部极小值,对于多峰值函数不能有效的搜索,收敛速度慢且搜索结果稳定性差。Artificial neural network is the earliest method for predicting the bearing capacity of pile foundations based on measured data. BP (BackPropagation) algorithm, also known as error back propagation algorithm, is a supervised learning algorithm in artificial neural network. It has strong nonlinear mapping ability, can approximate any function in theory, and is very flexible, and the parameters can be adjusted according to different situations. However, it is easy to fall into local minima during prediction, and cannot effectively search for multi-peak functions, with slow convergence speed and poor stability of search results.
综上所述,需要一种桩基竖向极限承载力预测方法以解决现有技术中存在的BP神经网络易陷入局部极小值、收敛速度慢且搜索结果不稳定的问题。To sum up, a method for predicting the vertical ultimate bearing capacity of pile foundation is needed to solve the problems that the BP neural network in the prior art is easy to fall into a local minimum value, the convergence speed is slow, and the search results are unstable.
发明内容SUMMARY OF THE INVENTION
本发明目的在于提供一种桩基竖向极限承载力预测方法,具体技术方案如下:The purpose of the present invention is to provide a method for predicting the vertical ultimate bearing capacity of a pile foundation, and the specific technical scheme is as follows:
一种桩基竖向极限承载力预测方法,包括以下步骤:A method for predicting the vertical ultimate bearing capacity of a pile foundation, comprising the following steps:
步骤S1、将BP神经网络模型的权值和阈值作为改进径向移动算法的位置点信息,建立初始种群;Step S1, using the weights and thresholds of the BP neural network model as the position point information of the improved radial movement algorithm, and establishing an initial population;
步骤S2、采用改进径向移动算法的适应度函数计算初始种群中各个个体的适应度值,通过对个体的适应度值进行逐个比较来确定当代最优位置,并将其定义为初始中心位置;所述适应度函数为BP神经网络模型的性能函数,具体为:In step S2, the fitness function of the improved radial movement algorithm is used to calculate the fitness value of each individual in the initial population, and the contemporary optimal position is determined by comparing the fitness value of the individual one by one, and it is defined as the initial center position; The fitness function is the performance function of the BP neural network model, specifically:
式(1), Formula 1),
其中,N为BP神经网络模型测试样本的个数;t i 为BP神经网络模型第i个测试样本输出变量的预测值;y i 为BP神经网络模型第i个测试样本输出变量的真实值;Wherein, N is the number of test samples of the BP neural network model; t i is the predicted value of the output variable of the ith test sample of the BP neural network model; y i is the true value of the output variable of the ith test sample of the BP neural network model;
步骤S3、采用更新条件在第k代中心位置的±0.5(x jmax - x jmin)w k 范围内生成新的预位置点,并计算适应度值,更新位置信息;其中,k是指当前迭代次数;x jmin为第j个权值或阈值的最小值;x jmax为第j个权值或阈值的最大值,w k 为惯性权值;Step S3, using the update condition to generate a new pre-position point within the range of ±0.5 ( x j max - x j min ) w k of the center position of the kth generation, and calculate the fitness value, and update the position information; wherein, k refers to The current number of iterations; x j min is the minimum value of the j -th weight or threshold; x j max is the maximum value of the j -th weight or threshold, and w k is the inertia weight;
步骤S4、由步骤S3更新的位置信息,确定全局最优位置,并计算全局最优位置的适应度值;若迭代次数达到上限或全局最优位置的适应度值小于0.001,则更新结束;反之,则重复步骤S3-S4直至更新结束;Step S4: Determine the global optimal position from the position information updated in step S3, and calculate the fitness value of the global optimal position; if the number of iterations reaches the upper limit or the fitness value of the global optimal position is less than 0.001, the update ends; otherwise , then repeat steps S3-S4 until the update ends;
步骤S5、将全局最优位置的权值和阈值赋值给BP神经网络模型,对BP神经网络模型进行训练和仿真得到最优的桩基竖向极限承载力预测值,算法结束。Step S5, assign the weight and threshold of the global optimal position to the BP neural network model, train and simulate the BP neural network model to obtain the optimal prediction value of the vertical ultimate bearing capacity of the pile foundation, and the algorithm ends.
优选的,所述步骤S1包括以下步骤:Preferably, the step S1 includes the following steps:
步骤S1.1、计算BP神经网络模型的权值和阈值的总个数,具体通过以下计算式得出:Step S1.1, calculate the total number of weights and thresholds of the BP neural network model, which is specifically obtained by the following formula:
nod=w 1+w 2+w 3 式(2) nod = w 1 + w 2 + w 3 Equation (2)
w 1=n 1 × n 2 式(3) w 1 = n 1 × n 2 Equation (3)
w 2=n 2 × n 3 式(4) w 2 = n 2 × n 3 Equation (4)
w 3=n 2 + n 3 式(5) w 3 = n 2 + n 3 Equation (5)
其中,nod为权值和阈值的总个数;w 1为输入层到隐含层的权值个数;w 2为隐含层到输出层的权值个数;w 3为阈值总个数;n 1为输入层个数;n 2为隐含层个数;n 3为输出层个数;Among them, nod is the total number of weights and thresholds; w1 is the number of weights from the input layer to the hidden layer ; w2 is the number of weights from the hidden layer to the output layer; w3 is the total number of thresholds ; n 1 is the number of input layers; n 2 is the number of hidden layers; n 3 is the number of output layers;
步骤S1.2、确定权值和阈值的取值范围x jmax和x jmin,其中,1 ≤ j ≤ nod;Step S1.2, determine the value ranges x j max and x j min of the weights and thresholds, where 1 ≤ j ≤ nod ;
步骤S1.3、在步骤S1.2的取值范围内随机生成nop个初始位置点,由nop个初始位置点建立初始种群,所述初始位置点的数值信息通过计算式(6)得出;Step S1.3, randomly generate nop initial position points within the value range of step S1.2, establish an initial population from the nop initial position points, and the numerical information of the initial position points is obtained by calculating formula (6);
所述计算式(6)为X i,j =x jmin + rand(0,1)(x jmax - x jmin)The calculation formula (6) is X i,j = x j min + rand (0, 1) ( x j max - x j min )
其中,X i,j 为生成的第i个初始位置点的第j个权值或阈值;rand(0,1)为在0到1之间的随机数。Among them, X i,j is the j -th weight or threshold of the generated i -th initial position point; rand (0, 1) is a random number between 0 and 1.
优选的,所述步骤S3包括以下步骤:Preferably, the step S3 includes the following steps:
步骤S3.1、确定生成新的预位置点的更新条件,具体的,Step S3.1, determine the update condition for generating a new pre-position point, specifically,
, ,
, ,
其中,是指第k代新生成的第i个位置点的第j个权值或阈值;Centre j k 是指第k代中心位置的第j个权值或阈值;G是指最大迭代次数;in, refers to the jth weight or threshold of the i -th position point newly generated in the kth generation; Centre j k refers to the jth weight or threshold of the center position of the kth generation; G refers to the maximum number of iterations;
步骤S3.2、采用更新条件生成新的预位置点Y i k ,并通过计算式(1)适应度函数计算出各预位置点Y i k 对应的适应度值;Step S3.2, using the update condition to generate a new pre-position point Y i k , and calculating the fitness value corresponding to each pre-position point Y i k by calculating the fitness function of formula (1);
步骤S3.3、更新位置信息,具体的,将第k代预位置点的适应度值fitness(Y i k )与第k-1代位置点的适应度值fitness(X i k-1)进行比较,若fitness(Y i k )<fitness(X i k-1),则需要更新位置点信息,令fitness(X i k )=fitness(Y i k ),X i k =Y i k ;否则,令fitness(X i k )=fitness(X i k-1),X i k =X i k-1;其中,X i k 为第k代第i个位置点;X i k-1为第k-1代第i个位置点;Y i k 为第k代生成的第i个预位置点。Step S3.3, update the position information, specifically, compare the fitness value fitness ( Y i k ) of the k -th generation pre-position point with the fitness value ( X i k -1 ) of the k -1 generation position point. For comparison, if fitness ( Y i k ) < fitness ( X i k -1 ), the location point information needs to be updated, let fitness ( X i k ) = fitness ( Y i k ), X i k = Y i k ; otherwise , let fitness ( X i k ) = fitness ( X i k -1 ), X i k = X i k -1 ; where X i k is the i -th position point of the k -th generation; X i k -1 is the ith position k - the i -th position point of the generation; Y i k is the i -th pre-position point generated by the k -th generation.
优选的,所述步骤S4包括以下步骤:Preferably, the step S4 includes the following steps:
步骤S4.1、确定当代最优位置Rbestx k 和全局最优位置Gbestx k ,具体的,将更新后的第k代中的fitness(X i k )中的最小值的位置点作为当代最优位置Rbestx k ;当k=1时,当代最优位置Rbestx 1为第一代的全局最优位置Gbestx 1;Step S4.1, determine the contemporary optimal position Rbestx k and the global optimal position Gbestx k , specifically, take the position point of the minimum value in the fitness ( X i k ) in the updated k -th generation as the contemporary optimal position Rbestx k ; when k = 1, the contemporary optimal position Rbestx 1 is the global optimal position Gbestx 1 of the first generation;
步骤S4.2、当k=2时,更新全局最优位置,具体的,比较当代最优位置的Rbestx k 的适应度值fitness(Rbestx k )与全局最优位置Gbestx k-1的适应度值fitness(Gbestx k-1);若fitness(Rbestx k )<fitness(Gbestx k-1),则需要更新全局最优位置,令fitness(Gbestx k )=fitness(Rbestx k ),Gbestx k =Rbestx k ;否则,令fitness(Gbestx k )=fitness(Gbestx k-1),Gbestx k =Gbestx k-1。Step S4.2, when k = 2, update the global optimal position, specifically, compare the fitness value fitness ( Rbestx k ) of the contemporary optimal position Rbestx k with the fitness value of the global optimal position Gbestx k -1 fitness ( Gbestx k -1 ); if fitness ( Rbestx k ) < fitness ( Gbestx k -1 ), you need to update the global optimal position, let fitness ( Gbestx k ) = fitness ( Rbestx k ), Gbestx k = Rbestx k ; Otherwise, let fitness ( Gbestx k ) = fitness ( Gbestx k -1 ), Gbestx k = Gbestx k -1 .
优选的,在步骤S3中,中心位置随着当代最优位置的Rbestx k 和全局最优位置Gbestx k 的移动而移动,具体的,Preferably, in step S3, the center position moves with the movement of the contemporary optimal position Rbestx k and the global optimal position Gbestx k . Specifically,
Centre k+1=Centre k +0.4(Gbestx k -Centre k )+0.5(Rbestx k -Centre k ), Centre k +1 = Centre k +0.4( Gbestx k - Centre k )+0.5( Rbestx k - Centre k ),
其中,Centre k 为第k代的中心位置;Centre k+1为第k-1代的中心位置。Among them, Centre k is the center position of the k -th generation; Centre k +1 is the center position of the k -1th generation.
应用本发明的技术方案,至少具有以下有益效果:Apply the technical scheme of the present invention, at least have the following beneficial effects:
本发明采用BP神经网络模型与改进径向移动算法结合使用,具体的,将BP神经网络模型的性能函数作为改进径向移动算法的适应度函数,并将由径向移动算法获得的全局最优位置的权值和阈值赋值给BP神经网络模型,对BP神经网络模型进行训练和仿真得到最优的桩基竖向极限承载力预测值,既可以改善BP神经网络模型易陷入局部极小值、收敛速度慢且搜索结果不稳定的缺点,也便于确保预测值更加接近真实值。The present invention uses the BP neural network model in combination with the improved radial movement algorithm. Specifically, the performance function of the BP neural network model is used as the fitness function of the improved radial movement algorithm. , and assign the weights and thresholds of the global optimal position obtained by the radial movement algorithm to the BP neural network model, and train and simulate the BP neural network model to obtain the optimal prediction value of the vertical ultimate bearing capacity of the pile foundation, which can be either To improve the shortcomings of the BP neural network model, which is easy to fall into local minimum value, slow convergence speed and unstable search results, it is also convenient to ensure that the predicted value is closer to the real value.
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。In addition to the objects, features and advantages described above, the present invention has other objects, features and advantages. The present invention will be described in further detail below with reference to the drawings.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of the present application are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1是本发明实施例1中的一种桩基竖向极限承载力预测方法的流程示意图;1 is a schematic flowchart of a method for predicting the vertical ultimate bearing capacity of a pile foundation in
图2是测试样本的真实值和预测值的对比图。Figure 2 is a comparison chart of the actual value and the predicted value of the test sample.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments in the present invention, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of the present invention.
实施例1:Example 1:
参见图1,一种桩基竖向极限承载力预测方法,包括以下步骤:Referring to Figure 1, a method for predicting the vertical ultimate bearing capacity of a pile foundation includes the following steps:
步骤S1、将BP神经网络模型的权值和阈值作为改进径向移动算法的位置点信息,建立初始种群;Step S1, using the weights and thresholds of the BP neural network model as the position point information of the improved radial movement algorithm, and establishing an initial population;
步骤S2、采用改进径向移动算法的适应度函数计算初始种群中各个个体的适应度值,通过对个体的适应度值进行逐个比较来确定当代最优位置,并将其定义为初始中心位置;所述适应度函数为BP神经网络模型的性能函数,具体为:In step S2, the fitness function of the improved radial movement algorithm is used to calculate the fitness value of each individual in the initial population, and the contemporary optimal position is determined by comparing the fitness value of the individual one by one, and it is defined as the initial center position; The fitness function is the performance function of the BP neural network model, specifically:
式(1), Formula 1),
其中,N为BP神经网络模型测试样本的个数;t i 为BP神经网络模型第i个测试样本输出变量的预测值,具体的,t i 为将BP神经网络模型第i个测试样本中个体的权值和阈值赋值给BP神经网络模型经运行后得到的预测值;y i 为BP神经网络模型第i个测试样本输出变量的真实值;Among them, N is the number of test samples of the BP neural network model; t i is the predicted value of the output variable of the ith test sample of the BP neural network model, specifically, t i is the individual in the ith test sample of the BP neural network model The weights and thresholds are assigned to the predicted value obtained by the BP neural network model after running; y i is the true value of the output variable of the ith test sample of the BP neural network model;
步骤S3、采用更新条件在第k代中心位置的±0.5(x jmax - x jmin)w k 范围内生成新的预位置点,并计算适应度值,更新位置信息;其中,k是指当前迭代次数;x jmin为第j个权值或阈值的最小值;x jmax为第j个权值或阈值的最大值,w k 为惯性权值;Step S3, using the update condition to generate a new pre-position point within the range of ±0.5 ( x j max - x j min ) w k of the center position of the kth generation, and calculate the fitness value, and update the position information; wherein, k refers to The current number of iterations; x j min is the minimum value of the j -th weight or threshold; x j max is the maximum value of the j -th weight or threshold, and w k is the inertia weight;
步骤S4、由步骤S3更新的位置信息,确定全局最优位置,并计算全局最优位置的适应度值;若迭代次数达到上限或全局最优位置的适应度值小于0.001,则更新结束;反之,则重复步骤S3-S4直至更新结束;Step S4: Determine the global optimal position from the position information updated in step S3, and calculate the fitness value of the global optimal position; if the number of iterations reaches the upper limit or the fitness value of the global optimal position is less than 0.001, the update ends; otherwise , then repeat steps S3-S4 until the update ends;
步骤S5、将全局最优位置的权值和阈值赋值给BP神经网络模型,对BP神经网络模型进行训练和仿真得到最优的桩基竖向极限承载力预测值,算法结束。Step S5, assign the weight and threshold of the global optimal position to the BP neural network model, train and simulate the BP neural network model to obtain the optimal prediction value of the vertical ultimate bearing capacity of the pile foundation, and the algorithm ends.
所述步骤S1包括以下步骤:The step S1 includes the following steps:
步骤S1.1、计算BP神经网络模型的权值和阈值的总个数,具体通过以下计算式得出:Step S1.1, calculate the total number of weights and thresholds of the BP neural network model, which is specifically obtained by the following formula:
nod=w 1+w 2+w 3 式(2) nod = w 1 + w 2 + w 3 Equation (2)
w 1=n 1 × n 2 式(3) w 1 = n 1 × n 2 Equation (3)
w 2=n 2 × n 3 式(4) w 2 = n 2 × n 3 Equation (4)
w 3=n 2 + n 3 式(5) w 3 = n 2 + n 3 Equation (5)
其中,nod为权值和阈值的总个数;w 1为输入层到隐含层的权值个数;w 2为隐含层到输出层的权值个数;w 3为阈值总个数;n 1为输入层个数;n 2为隐含层个数;n 3为输出层个数;Among them, nod is the total number of weights and thresholds; w1 is the number of weights from the input layer to the hidden layer ; w2 is the number of weights from the hidden layer to the output layer; w3 is the total number of thresholds ; n 1 is the number of input layers; n 2 is the number of hidden layers; n 3 is the number of output layers;
步骤S1.2、确定权值和阈值的取值范围x jmax和x jmin,其中,1 ≤ j ≤ nod;Step S1.2, determine the value ranges x j max and x j min of the weights and thresholds, where 1 ≤ j ≤ nod ;
步骤S1.3、在步骤S1.2的取值范围内随机生成nop个初始位置点,由nop个初始位置点建立初始种群,所述初始位置点的数值信息通过计算式(6)得出;Step S1.3, randomly generate nop initial position points within the value range of step S1.2, establish an initial population from the nop initial position points, and the numerical information of the initial position points is obtained by calculating formula (6);
所述计算式(6)为X i,j =x jmin + rand(0,1)(x jmax - x jmin)The calculation formula (6) is X i,j = x j min + rand (0, 1) ( x j max - x j min )
其中,X i,j 为生成的第i个初始位置点的第j个权值或阈值; rand(0,1)为在0到1之间的随机数。Among them, X i,j is the j -th weight or threshold of the generated i -th initial position point; rand (0, 1) is a random number between 0 and 1.
所述步骤S3包括以下步骤:The step S3 includes the following steps:
步骤S3.1、确定生成新的预位置点的更新条件,具体的,Step S3.1, determine the update condition for generating a new pre-position point, specifically,
, ,
, ,
其中,是指第k代新生成的第i个位置点的第j个权值或阈值;Centre j k 是指第k代中心位置的第j个权值或阈值;w k 为惯性权值,随迭代次数递减,用于决定算法的收敛速度;in, is the j -th weight or threshold of the i -th position point newly generated in the k -th generation; Centre j k refers to the j -th weight or threshold of the center position of the k -th generation; w k is the inertia weight, which changes with the iteration The number of times decreases, which is used to determine the convergence speed of the algorithm;
步骤S3.2、采用更新条件生成新的预位置点Y i k ,并通过计算式(1)适应度函数计算出各预位置点Y i k 对应的适应度值;Step S3.2, using the update condition to generate a new pre-position point Y i k , and calculating the fitness value corresponding to each pre-position point Y i k by calculating the fitness function of formula (1);
步骤S3.3、更新位置信息,具体的,将第k代预位置点的适应度值fitness(Y i k )与第k-1代位置点的适应度值fitness(X i k-1)进行比较,若fitness(Y i k )<fitness(X i k-1),则需要更新位置点信息,令fitness(X i k )=fitness(Y i k ),X i k =Y i k;否则,令fitness(X i k )=fitness(X i k-1),X i k =X i k-1;其中,X i k 为第k代第i个位置点;X i k-1为第k-1代第i个位置点;Y i k 为第k代生成的第i个预位置点。Step S3.3, update the position information, specifically, compare the fitness value fitness ( Y i k ) of the k -th generation pre-position point with the fitness value ( X i k -1 ) of the k-1 generation position point. For comparison, if fitness ( Y i k ) < fitness ( X i k -1 ), the location point information needs to be updated, let fitness ( X i k ) = fitness ( Y i k ), X i k = Y i k ; otherwise , let fitness ( X i k ) = fitness ( X i k -1 ), X i k = X i k -1 ; where X i k is the i -th position point of the k -th generation; X i k -1 is the ith position k - the i -th position point of the generation; Y i k is the i -th pre-position point generated by the k -th generation.
所述步骤S4包括以下步骤:The step S4 includes the following steps:
步骤S4.1、确定当代最优位置Rbestx k 和全局最优位置Gbestx k ,具体的,将更新后的第k代中的fitness(X i k )中的最小值的位置点作为当代最优位置Rbestx k ;当k=1时,当代最优位置Rbestx 1为第一代的全局最优位置Gbestx 1;Step S4.1, determine the contemporary optimal position Rbestx k and the global optimal position Gbestx k , specifically, take the position point of the minimum value in the fitness ( X i k ) in the updated k -th generation as the contemporary optimal position Rbestx k ; when k = 1, the contemporary optimal position Rbestx 1 is the global optimal position Gbestx 1 of the first generation;
步骤S4.2、当k=2时,更新全局最优位置,具体的,比较当代最优位置的Rbestx k 的适应度值fitness(Rbestx k )与全局最优位置Gbestx k-1的适应度值fitness(Gbestx k-1);若fitness(Rbestx k )<fitness(Gbestx k-1),则需要更新全局最优位置,令fitness(Gbestx k )=fitness(Rbestx k ),Gbestx k =Rbestx k ;否则,令fitness(Gbestx k )=fitness(Gbestx k-1),Gbestx k =Gbestx k-1 Step S4.2, when k = 2, update the global optimal position, specifically, compare the fitness value fitness ( Rbestx k ) of the contemporary optimal position Rbestx k with the fitness value of the global optimal position Gbestx k -1 fitness ( Gbestx k -1 ); if fitness ( Rbestx k ) < fitness ( Gbestx k -1 ), you need to update the global optimal position, let fitness ( Gbestx k ) = fitness ( Rbestx k ), Gbestx k = Rbestx k ; Otherwise, let fitness ( Gbestx k ) = fitness ( Gbestx k -1 ), Gbestx k = Gbestx k -1
在步骤S3中,中心位置随着当代最优位置的Rbestx k 和全局最优位置Gbestx k 的移动而移动,具体的,In step S3, the center position moves with the movement of the contemporary optimal position Rbestx k and the global optimal position Gbestx k . Specifically,
Centre k+1=Centre k +0.4(Gbestx k -Centre k )+0.5(Rbestx k -Centre k ), Centre k +1 = Centre k +0.4( Gbestx k - Centre k )+0.5( Rbestx k - Centre k ),
其中,Centre k 为第k代的中心位置;Centre k+1为第k-1代的中心位置。Among them, Centre k is the center position of the k -th generation; Centre k +1 is the center position of the k -1th generation.
所述步骤S5中BP神经网络模型采用的参数包括预测精度、最大迭代次数和学习率,所述预测精度为10-6,所述最大迭代次数为1000,所述学习率为0.01。The parameters adopted by the BP neural network model in the step S5 include prediction accuracy, maximum number of iterations and learning rate, the prediction accuracy is 10 −6 , the maximum number of iterations is 1000, and the learning rate is 0.01.
实施例1采用的BP神经网络模型的拓扑结构为4-10-1,其隐含层节点数根据试算法确定的最优值为10。实施例1中参数nod为61、nop为50、G为100。The topology structure of the BP neural network model adopted in Example 1 is 4-10-1, and the optimal value of the number of hidden layer nodes is 10 determined according to the trial algorithm. In Example 1, the parameters nod was 61, nop was 50, and G was 100.
对比例1:Comparative Example 1:
仅采用BP神经网络模型对桩基竖向极限承载力进行预测。Only the BP neural network model is used to predict the vertical ultimate bearing capacity of the pile foundation.
对比例2:Comparative Example 2:
仅采用遗传算法优化BP神经网络模型对桩基竖向极限承载力进行预测。Only the genetic algorithm is used to optimize the BP neural network model to predict the vertical ultimate bearing capacity of the pile foundation.
对桩基竖向极限承载力共收集了32组静载试验数据,其中27组数据作为训练集,5组数据作为测试集。采用实施例1和对比例1-2中的预测方法对静载试验数据分别运行10次,分析结果详见表1。A total of 32 sets of static load test data were collected for the vertical ultimate bearing capacity of the pile foundation, of which 27 sets of data were used as training sets and 5 sets of data were used as test sets. The static load test data were run 10 times respectively using the prediction methods in Example 1 and Comparative Examples 1-2, and the analysis results are shown in Table 1.
表1Table 1
从表1中可以看出,由对比例1采用的BP神经网络模型测试样本预测值与真实值之间的相对误差为25.86%~0.42%,MSE为0.0049,其预测结果具有很大的不稳定性,相对偏离真实值。由对比例2采用的遗传算法优化BP神经网络模型测试样本预测值与真实值之间的相对误差为8.55%~0.48%,MSE为0.0036,其预测结果具有较好的稳定性,比较接近真实值。由实施例1采用的桩基竖向极限承载力预测方法得到的测试样本预测值与真实值之间的相对误差为0.01%~2.42%,MSE为1.12×10-7,最大相对误差在3%以下,其预测结果极为接近真实值。可见,实施例1采用的桩基竖向极限承载力预测方法具有良好的预测性。同时,由图2可以看出测试样本(即指测试集的5组数据)的10次预测值和真实值相差不大,且10次预测的结果几乎相同,因此,实施例1采用的桩基竖向极限承载力预测方法具有良好的稳定性。As can be seen from Table 1, the relative error between the predicted value of the BP neural network model used in Comparative Example 1 and the actual value of the test sample is 25.86%~0.42%, and the MSE is 0.0049, and the prediction result is very unstable. , the relative deviation from the true value. The relative error between the predicted value of the test sample and the actual value of the BP neural network model optimized by the genetic algorithm adopted in Comparative Example 2 is 8.55%~0.48%, and the MSE is 0.0036. The predicted result has good stability and is relatively close to the actual value. . The relative error between the predicted value of the test sample and the actual value obtained by the method for predicting the vertical ultimate bearing capacity of the pile foundation adopted in Example 1 is 0.01%~2.42%, the MSE is 1.12×10 -7 , and the maximum relative error is 3%. Below, the predicted result is very close to the true value. It can be seen that the method for predicting the vertical ultimate bearing capacity of the pile foundation adopted in Example 1 has good predictability. At the same time, it can be seen from Figure 2 that the 10-time predicted value of the test sample (that is, the 5 sets of data in the test set) is not much different from the real value, and the results of the 10-time prediction are almost the same. Therefore, the pile foundation used in Example 1 The vertical ultimate bearing capacity prediction method has good stability.
综上分析,本发明采用BP神经网络模型与改进径向移动算法结合使用,具体的,将BP神经网络模型的性能函数作为改进径向移动算法的适应度函数,并将由径向移动算法获得的全局最优位置的权值和阈值赋值给BP神经网络模型,对BP神经网络模型进行训练和仿真得到最优的桩基竖向极限承载力预测值,既可以改善BP神经网络模型易陷入局部极小值、收敛速度慢且搜索结果不稳定的缺点,也便于确保预测值更加接近真实值。In summary, the present invention uses the BP neural network model in combination with the improved radial movement algorithm. Specifically, the performance function of the BP neural network model is used as the fitness function of the improved radial movement algorithm. , and assign the weights and thresholds of the global optimal position obtained by the radial movement algorithm to the BP neural network model, and train and simulate the BP neural network model to obtain the optimal prediction value of the vertical ultimate bearing capacity of the pile foundation, which can be either To improve the shortcomings of the BP neural network model, which is easy to fall into local minimum value, slow convergence speed and unstable search results, it is also convenient to ensure that the predicted value is closer to the real value.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111381622.XA CN113821863B (en) | 2021-11-22 | 2021-11-22 | Method for predicting vertical ultimate bearing capacity of pile foundation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111381622.XA CN113821863B (en) | 2021-11-22 | 2021-11-22 | Method for predicting vertical ultimate bearing capacity of pile foundation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113821863A CN113821863A (en) | 2021-12-21 |
CN113821863B true CN113821863B (en) | 2022-03-01 |
Family
ID=78919393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111381622.XA Active CN113821863B (en) | 2021-11-22 | 2021-11-22 | Method for predicting vertical ultimate bearing capacity of pile foundation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113821863B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116822328A (en) * | 2023-05-11 | 2023-09-29 | 中南大学 | A method for determining the predicted parameters of surface subsidence in mine goaf areas |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108304674A (en) * | 2018-02-09 | 2018-07-20 | 陕西铁路工程职业技术学院 | A kind of railway prediction of soft roadbed settlement method based on BP neural network |
CN111209708A (en) * | 2020-04-22 | 2020-05-29 | 西南交通大学 | Machine learning-based pile-soil interaction prediction analysis method |
CN112926117A (en) * | 2021-03-01 | 2021-06-08 | 郑州大学 | BAS-BP-based pile foundation horizontal bearing capacity prediction method |
CN113051775A (en) * | 2021-04-13 | 2021-06-29 | 中南大学 | Horizontal directional drilling track optimization method based on improved radial movement algorithm |
-
2021
- 2021-11-22 CN CN202111381622.XA patent/CN113821863B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108304674A (en) * | 2018-02-09 | 2018-07-20 | 陕西铁路工程职业技术学院 | A kind of railway prediction of soft roadbed settlement method based on BP neural network |
CN111209708A (en) * | 2020-04-22 | 2020-05-29 | 西南交通大学 | Machine learning-based pile-soil interaction prediction analysis method |
CN112926117A (en) * | 2021-03-01 | 2021-06-08 | 郑州大学 | BAS-BP-based pile foundation horizontal bearing capacity prediction method |
CN113051775A (en) * | 2021-04-13 | 2021-06-29 | 中南大学 | Horizontal directional drilling track optimization method based on improved radial movement algorithm |
Non-Patent Citations (4)
Title |
---|
《Application of improved radial movement optimization for calculating the upper bound of ultimate bearing capacity of shallow foundation on unsaturated soil》;Liangxing Jin等;《Computers and Geotechnics》;20190129;第82-88页 * |
《The use of improved radial movement optimization to calculate the ultimate bearing capacity of a nonhomogeneous clay foundation adjacent to slopes》;Liangxing Jin等;《Computers and Geotechnics》;20191114;第1-8页 * |
《基于RMO-BP算法的感应电动机转子断条故障诊断》;崔京华等;《电气传动》;20191031;第96-101页 * |
《条形基础地基极限承载力的改进径向移动算法研究》;金亮星等;《铁道科学与工程学报》;20170228;第233-240页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113821863A (en) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109145464B (en) | Structural damage identification method integrating multi-target ant lion optimization and trace sparse regularization | |
CN111461457A (en) | A Particle Swarm Optimization BP Neural Network Based Displacement Prediction Method for Foundation Pit | |
CN104316341A (en) | Underground structure damage identification method based on BP neural network | |
CN109409614A (en) | A kind of Methods of electric load forecasting based on BR neural network | |
CN108460462A (en) | A kind of Interval neural networks learning method based on interval parameter optimization | |
CN108182500A (en) | Ammunition Storage Reliability Forecasting Methodology based on accelerated life test | |
CN112364994B (en) | Model migration learning source domain selection method based on MMD and TSP frequency domain load identification | |
CN113177675B (en) | Air conditioner cooling load prediction method based on longicorn group algorithm optimization neural network | |
CN108204944A (en) | The Buried Pipeline rate prediction method of LSSVM based on APSO optimizations | |
CN112686481A (en) | Runoff forecasting method and processor | |
CN112990500A (en) | Transformer area line loss analysis method and system based on improved weighted gray correlation analysis | |
CN112307536A (en) | Dam seepage parameter inversion method | |
CN112035941A (en) | Prediction method for surface subsidence of deep foundation pit excavation based on BAS-BP model | |
CN113821863B (en) | Method for predicting vertical ultimate bearing capacity of pile foundation | |
CN117012315A (en) | Concrete strength prediction method for optimizing RBF neural network | |
CN114548680A (en) | Method and system for automatically calibrating parameters of urban storm flood management model | |
CN108694417A (en) | A kind of sliding bearing-rotor system amount of unbalance recognition methods | |
CN112329349A (en) | Slope reliability assessment method | |
CN105404780A (en) | Multi-parameter integrated analysis transformer overload capability evaluating method | |
CN115907304A (en) | Evaluation index weight optimization method based on inter-zone analytic method | |
CN108959721B (en) | Method for calculating reliability of long-span bridge member under action of windmill load | |
CN114971090A (en) | Electric heating load prediction method, system, equipment and medium | |
CN107396375B (en) | Optimal target coverage method for heterogeneous sensor networks based on quantum brainstorming | |
CN113283183A (en) | Waste slag dam deformation prediction method based on DPSO-ANFIS | |
CN109190749A (en) | A kind of prediction technique and device for the intelligent electric meter service life |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |