CN113817816A - Primer, kit and method for detecting EPAS1 gene mutation - Google Patents

Primer, kit and method for detecting EPAS1 gene mutation Download PDF

Info

Publication number
CN113817816A
CN113817816A CN202111172655.3A CN202111172655A CN113817816A CN 113817816 A CN113817816 A CN 113817816A CN 202111172655 A CN202111172655 A CN 202111172655A CN 113817816 A CN113817816 A CN 113817816A
Authority
CN
China
Prior art keywords
epas1
primer
artificial sequence
detecting
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111172655.3A
Other languages
Chinese (zh)
Inventor
刘赵玲
王淑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINAN ADICON CLINICAL LABORATORIES Inc
Original Assignee
JINAN ADICON CLINICAL LABORATORIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINAN ADICON CLINICAL LABORATORIES Inc filed Critical JINAN ADICON CLINICAL LABORATORIES Inc
Priority to CN202111172655.3A priority Critical patent/CN113817816A/en
Publication of CN113817816A publication Critical patent/CN113817816A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a primer, a kit and a method for detecting EPAS1 gene variation, which comprise a primer for amplifying EPAS1 gene full exons; sanger sequencing technology was used. The invention can quickly detect the variation of the EPAS1 gene full exon. The detection result completed by the invention is accurate, and the invention can assist in diagnosing familial polycythemia (ECYT4), and has important reference significance for diagnosis and treatment of diseases.

Description

Primer, kit and method for detecting EPAS1 gene mutation
Technical Field
The invention belongs to the field of molecular detection, and particularly relates to a kit and a method for detecting EPAS1 gene mutation.
Background
Familial Erythrocytosis (Familial Erythrocystosis) is a rare autosomal dominant hereditary hematological disorder that may be congenital (e.g., hereditary) or acquired, and can be divided into primary and secondary. The abnormal structure of the erythrocyte membrane is caused by the defect of the erythrocyte membrane protein of the disease, so that the spherical erythrocytes in the blood are increased. The primary function of these cells is to transport oxygen from the lungs to tissues and organs throughout the body.
Symptoms and signs of familial polycythemia include headache, dizziness, nosebleed, and shortness of breath. Excessive red blood cells also increase the risk of abnormal blood clots that may block arterial and venous blood flow. If these clots restrict blood flow to vital organs and tissues (particularly the heart, lungs or brain), life-threatening complications such as heart attack or stroke can result. However, many familial polycythemia patients have only mild signs and symptoms, or never have any problems associated with their redundant red blood cells.
EPAS1 is called hypoxia inducible factor 2 alpha (HIF-2 alpha), it belongs to oxygen metabolism regulator, and participates in many vital activities of organism, plays an important role in many aspects such as in vivo energy metabolism, angiogenesis, inflammation, etc., and the research at present shows that EPAS1 gene mutation is related to familial type 4 of erythrocytosis, and belongs to secondary pathogenesis. The gene is located on chromosome 2, 16 exons. Hypoxia Inducible Factor (HIF) is a heterodimeric transcription factor composed of two protein subunits, namely alpha and beta, in 1997, endothelial PAS protein 1 (endoghial PASprotein-1, EPAS1) which is hypoxia inducible factor 2(HIF2 alpha) is cloned by Tian and the like, is a member of basic helix-loop-helix-PAS (bHLH-PAS) transcription factor superfamily, and comprises a bHLH domain, a PAS domain, a trans-activation domain and a nuclear entry signal. HIF2 α has many structural similarities to HIF1 α, with approximately 48% amino acid sequence homology. HIF2 α mRNA is highly expressed in vascular rich organs such as heart, lung, placenta, but is rarely expressed in leukocytes. HIF1 mRNA is detectable in all tissues of humans, but is not expressed at high levels in highly vascularized organs. HIF2 alpha regulates downstream target gene through Hypoxia Response Element (HREs), there is a DNA sequence < 100bp on the promoter or enhancer of its target gene, namely hypoxia response element, its core is 5 '-TACGTGCT-3' sequence. HIF2a binds to target genes through the recognition sequences of HREs, inducing transcription of the target genes, and thereby mediating cellular responses to hypoxia. The EPAS1 gene is expressed differently in different tissue cells of human or mouse. Under normal pressure, EPAS1 mRNA is present in high amounts in tissues such as lungs, heart, placenta, etc., which are rich in blood vessels, but is rarely expressed in leukocytes.
Studies of Van Xiaowei et al found that the sites rs75591953 and rs75984373 are related to reducing Han nationality plateau erythrocytosis (HAPC). In addition, the spleen is a main organ for destroying red blood cells, so that the method for clinically treating familial polycythemia by removing the spleen has a good curative effect, red blood cell membrane defects and spherical red blood cells still exist after the spleen is removed, the service life of the red blood cells is prolonged due to the removal of a main production place, and anemia is corrected, so that the early diagnosis of familial polycythemia is important, and the detection of a gene mutation site can predict diseases at the early stage of the onset.
The EPAS1 mutation analysis has important significance for familial polycythemia genetic consultation and prenatal diagnosis, and the genetic mode of ECYT4 is autosomal dominant inheritance. Therefore, if the disease-causing gene is clear, parents decide that the pregnancy should be subjected to relevant genetic counseling in time, prenatal molecular diagnosis is performed in the early stage of the pregnancy, and once an abnormal result occurs, whether treatment can be performed or not, how the treatment can be performed after the treatment and the like need to be clear, and feasible diagnosis and treatment measures are taken. Minimizing the birth of abnormal fetus and improving the population quality of newborn.
Disclosure of Invention
The invention aims to provide a kit for detecting EPAS1 gene mutation, which can be used for rapidly detecting the EPAS1 gene mutation in a patient by adopting a PCR (polymerase chain reaction) technology.
The primers for detecting EPAS1 gene mutation comprise primers for amplifying EPAS1 gene, and the base sequences of the primers are as follows:
Figure BDA0003293976470000021
Figure BDA0003293976470000031
further, the primers also comprise a sequencing primer for detecting the EPAS1 gene, and the base sequence of the sequencing primer is as follows:
M13 F:TGTAAAACGACGGCCAGT
M13 R:AACAGCTATGACCATG
further, the primers amplify corresponding exons as:
Figure BDA0003293976470000032
the invention also provides a method for detecting EPAS1 gene mutation, which comprises the following steps:
(1) extracting tissue DNA in blood;
(2) amplifying the DNA extracted in the step 1 by using PCR; wherein the PCR amplification primers are:
EPAS1-1F TGTAAAACGACGGCCAGTGCCCAGACGACCTCATAAAC
EPAS1-1R AACAGCTATGACCATGTCTCAGCACTCTTCTCCCAA
EPAS1-2F TGTAAAACGACGGCCAGTGGTCCCAGGCATTGGTAGT
EPAS1-2R AACAGCTATGACCATGGCTGGTAAGGCTGGCATCT
EPAS1-3F TGTAAAACGACGGCCAGTCATCCCTGGCAAATGCCTAT
EPAS1-3R AACAGCTATGACCATGGCAGGGAGGAGACTGAATTG
EPAS1-4F TGTAAAACGACGGCCAGTGAAGGTGGCTCAGCTTACTC
EPAS1-4R AACAGCTATGACCATGCCTCTCAATGCCCCAATCTC
EPAS1-5-6F TGTAAAACGACGGCCAGTCACAGGTGCTAAGAGAGCAG
EPAS1-5-6R AACAGCTATGACCATGGGGCACTGATGCAATGAAAC
EPAS1-7F TGTAAAACGACGGCCAGTTTGATTTGCCTTCTGGGGTT
EPAS1-7R AACAGCTATGACCATGGGGCATAAGTCTTGTCTGCC
EPAS1-8F TGTAAAACGACGGCCAGTCCTGGTCCTCACTGTCGT
EPAS1-8R AACAGCTATGACCATGATCCCACTGTTCCAAGACATC
EPAS1-9F TGTAAAACGACGGCCAGTGGTTTCCATGCATCTAGGGG
EPAS1-9R AACAGCTATGACCATGGAGCGTGTGGTGTTCTTTTG
EPAS1-10F TGTAAAACGACGGCCAGTAGGGAGTCTCTACGTTGACT
EPAS1-10R AACAGCTATGACCATGGTTACTGCCCTGTATGGGGA
EPAS1-11F TGTAAAACGACGGCCAGTGAACCTTTGGGTCCAGGAAG
EPAS1-11R AACAGCTATGACCATGTACCCTGTACCCCTACCTCT
EPAS1-12F TGTAAAACGACGGCCAGTAGGGGATAAACATGGGGGAA
EPAS1-12R AACAGCTATGACCATGAGAGAAGGGCTAAATGGGGT
EPAS1-13-14F TGTAAAACGACGGCCAGTGAGACTCTGCCTTTTGGGTCT
EPAS1-13-14R AACAGCTATGACCATGGGTGAATGGAAGAACCAGGAT
EPAS1-15F TGTAAAACGACGGCCAGTTCCCACACACCCAACTTTTC
EPAS1-15R AACAGCTATGACCATGGAACTTGTGAGGAGGTTCCC
EPAS1-16F-1 TGTAAAACGACGGCCAGTATTGGTATCCCCCAGTCACA
EPAS1-16R-1 AACAGCTATGACCATGTTTAGGAAAAGCCACGCTGT
EPAS1-16F-2 TGTAAAACGACGGCCAGTGTGAAGGGTCAACTCCAACG
EPAS1-16R-2 AACAGCTATGACCATGGGACGGGGTCACTATACCAT
EPAS1-16F-3 TGTAAAACGACGGCCAGTCCATGAGATGGTTTAGACGGG
EPAS1-16R-3 AACAGCTATGACCATGACTTCACTTTACATTGGCATAGC
(3) sequencing the amplification product in the step 2; the sequencing primer base sequence is:
M13 F:TGTAAAACGACGGCCAGT
M13 R:AACAGCTATGACCATG;
(4) and judging the sequencing result to determine whether the EPAS1 gene has mutation.
The invention finally provides a kit for detecting EPAS1 gene mutation sites, which comprises:
(i) blood DNA extraction reagent;
(ii) detecting a system PCR amplification reaction solution; comprises a primer for amplifying an EPAS1 gene, and the base sequence of the primer is as follows:
EPAS1-1F TGTAAAACGACGGCCAGTGCCCAGACGACCTCATAAAC
EPAS1-1R AACAGCTATGACCATGTCTCAGCACTCTTCTCCCAA
EPAS1-2F TGTAAAACGACGGCCAGTGGTCCCAGGCATTGGTAGT
EPAS1-2R AACAGCTATGACCATGGCTGGTAAGGCTGGCATCT
EPAS1-3F TGTAAAACGACGGCCAGTCATCCCTGGCAAATGCCTAT
EPAS1-3R AACAGCTATGACCATGGCAGGGAGGAGACTGAATTG
EPAS1-4F TGTAAAACGACGGCCAGTGAAGGTGGCTCAGCTTACTC
EPAS1-4R AACAGCTATGACCATGCCTCTCAATGCCCCAATCTC
EPAS1-5-6F TGTAAAACGACGGCCAGTCACAGGTGCTAAGAGAGCAG
EPAS1-5-6R AACAGCTATGACCATGGGGCACTGATGCAATGAAAC
EPAS1-7F TGTAAAACGACGGCCAGTTTGATTTGCCTTCTGGGGTT
EPAS1-7R AACAGCTATGACCATGGGGCATAAGTCTTGTCTGCC
EPAS1-8F TGTAAAACGACGGCCAGTCCTGGTCCTCACTGTCGT
EPAS1-8R AACAGCTATGACCATGATCCCACTGTTCCAAGACATC
EPAS1-9F TGTAAAACGACGGCCAGTGGTTTCCATGCATCTAGGGG
EPAS1-9R AACAGCTATGACCATGGAGCGTGTGGTGTTCTTTTG
EPAS1-10F TGTAAAACGACGGCCAGTAGGGAGTCTCTACGTTGACT
EPAS1-10R AACAGCTATGACCATGGTTACTGCCCTGTATGGGGA
EPAS1-11F TGTAAAACGACGGCCAGTGAACCTTTGGGTCCAGGAAG
EPAS1-11R AACAGCTATGACCATGTACCCTGTACCCCTACCTCT
EPAS1-12F TGTAAAACGACGGCCAGTAGGGGATAAACATGGGGGAA
EPAS1-12R AACAGCTATGACCATGAGAGAAGGGCTAAATGGGGT
EPAS1-13-14F TGTAAAACGACGGCCAGTGAGACTCTGCCTTTTGGGTCT
EPAS1-13-14R AACAGCTATGACCATGGGTGAATGGAAGAACCAGGAT
EPAS1-15F TGTAAAACGACGGCCAGTTCCCACACACCCAACTTTTC
EPAS1-15R AACAGCTATGACCATGGAACTTGTGAGGAGGTTCCC
EPAS1-16F-1 TGTAAAACGACGGCCAGTATTGGTATCCCCCAGTCACA
EPAS1-16R-1 AACAGCTATGACCATGTTTAGGAAAAGCCACGCTGT
EPAS1-16F-2 TGTAAAACGACGGCCAGTGTGAAGGGTCAACTCCAACG
EPAS1-16R-2 AACAGCTATGACCATGGGACGGGGTCACTATACCAT
EPAS1-16F-3 TGTAAAACGACGGCCAGTCCATGAGATGGTTTAGACGGG
EPAS1-16R-3 AACAGCTATGACCATGACTTCACTTTACATTGGCATAGC
(iii) sequencing system reagents; comprises a sequencing primer for detecting EPAS1 gene, and the base sequence of the sequencing primer is as follows:
M13 F:TGTAAAACGACGGCCAGT
M13 R:AACAGCTATGACCATG。
has the advantages that: the invention designs a primer for amplifying EPAS1 exon sequences 1-16. The PCR products of each of the 16 pairs of primers can be sequenced with one sequencing primer by adding a linker. A stable amplification system is constructed by adopting a PCR technology. By adjusting the reaction conditions such as primer concentration and annealing temperature, the amplification efficiency can be optimized. The EPAS1 gene has various mutation types and is distributed throughout the whole gene, so the primer can amplify the EPAS1 exon sequences and ensure that the condition of omission does not occur no matter where the exons are mutated. Compared with a fluorescent quantitative PCR method, the method reduces the cost and difficulty of detection. The fluorescent quantitative PCR method needs to design a plurality of probes aiming at different mutation types, and has high cost and great detection difficulty.
Drawings
FIG. 1 is a map of the location of the EPAS1 gene on a chromosome.
FIG. 2 shows the electrophoresis of exon 1-16 primers, M is Marker DL 2000, and as shown, the primers are all amplified efficiently with bright bands.
Figure 3 is a representation of the sequencing of exon 2 of EPAS 1.
Figure 4 is a representation of the sequencing of exon 6 of EPAS 1.
Figure 5 is a representation of the sequencing of exon 16 of EPAS 1.
Detailed Description
The invention will be further elucidated with reference to the specific embodiments and the accompanying drawings. It should be noted that the conventional conditions and methods not described in the examples are generally employed by those skilled in the art according to the routine procedures: such as OsOb and Kingston, fourth edition, or following the manufacturer's suggested procedures and conditions.
Example 1
A primer for detecting EPAS1 gene mutation sites, which is designed to be an amplification primer designed aiming at EPAS1 exon and comprises the following components:
the primer for amplifying the full exon sequence of the EPAS1 gene has the base sequence as follows:
Figure BDA0003293976470000061
Figure BDA0003293976470000071
a kit for detecting mutations in EPAS1 gene, comprising:
(i) blood DNA extraction reagent;
(ii) detecting a system PCR reaction solution;
(iii) sequencing system reagents;
the tissue DNA extraction reagent can be purchased from commercial reagents such as Tiangen DNA extraction kit and the like.
The PCR amplification reaction solution of the detection system comprises: 2 times PCR Buffer; 2mM dNTPs; KOD FX DNA Polymerase (1U/. mu.l); the primer concentrations of the upstream primer and the downstream primer of the exon sequence of the EPAS1 gene are both 10. mu.M.
The sequencing system reagent comprises: sequencing purification solution (ExoI:0.6U, CIP:1.2U), EDTA (125mmol), absolute ethanol, 75% ethanol, HIDI (highly deionized formamide), sequencing primers: the upstream and downstream primers for detecting the exon sequences of EPAS1 gene were M13-F (3.2 μ M), M13-R (3.2 μ M), and Bigdye Terminator V3.1 (purchased from Applied Biosystems, USA), respectively.
Example 2
The operation flow of the blood/cell/tissue genome DNA extraction kit (Tiangen organism):
(1) extracting tissue DNA from blood: 1) mu.l of blood was taken and added to 900. mu.l of erythrocyte lysate, mixed by inversion, left at room temperature for 5 minutes, and mixed by inversion several times in the meantime. Centrifuge at 12,000 rpm for 1min, aspirate the supernatant, leave the leukocyte pellet, add 200. mu.l of buffer GA, and shake until thoroughly mixed. 2) Add 20. mu.l proteinase K solution and mix well. 3) Add 200. mu.l buffer GB, mix well by inversion, stand at 70 ℃ for 10 minutes, clear the solution, centrifuge briefly to remove beads on the inner wall of the tube cap. 4) Add 200. mu.l of absolute ethanol, mix well with shaking for 15 seconds, at which time a flocculent precipitate may appear, and centrifuge briefly to remove water droplets on the inner wall of the tube cover. 5) Adding the solution and flocculent precipitate obtained in the previous step into an adsorption column CB3 (the adsorption column is put into a collecting pipe), centrifuging at 12,000 rpm for 30 s, pouring off waste liquid, and putting the adsorption column CB3 back into the collecting pipe. 6) Add 500. mu.l buffer GD (check whether absolute ethanol has been added before use) to adsorption column CB3, centrifuge at 12,000 rpm for 30 seconds, dump the waste and place adsorption column CB3 in the collection tube. 7) To the adsorption column CB3, 700. mu.l of a rinsing solution PW (previously used, whether or not absolute ethyl alcohol has been added) was added, and the mixture was centrifuged at 12,000 rpm for 30 seconds, and the waste liquid was discarded, and the adsorption column CB3 was put into a collection tube. 8) To the adsorption column CB3, 500. mu.l of a rinsing solution PW was added, and the mixture was centrifuged at 12,000 rpm for 30 seconds, and then the waste liquid was discarded. 9) The adsorption column CB3 was returned to the collection tube, centrifuged at 12,000 rpm for 2 minutes, and the waste liquid was discarded. The adsorption column CB3 was left at room temperature for several minutes to completely dry the residual rinse solution in the adsorption material. 10) Transferring the adsorption column CB3 into a clean centrifuge tube, suspending and dripping 100 mu l of elution buffer TE into the middle part of the adsorption membrane, standing for 2-5 minutes at room temperature, centrifuging for 2 minutes at 12,000 rpm, and collecting the solution into the centrifuge tube.
(2) Reagent preparation: preparing X mul of PCR reaction liquid of a detection system according to the parts of detected people, and subpackaging 19 mul of PCR reaction liquid of each part of detected people:
19. mu.l reaction solution X (n parts specimen +1 part blank control)
And n is the number of detected samples.
(3) Sample adding: adding 1 mul DNA into the PCR reaction solution of the detection system; blank control was supplemented with 1. mu.l of physiological saline or nothing.
(4) Amplification: the detection is carried out on a conventional PCR instrument, and available instruments include ABI veriti (Applied Biosystems, USA) and the like. The reaction conditions were as follows:
Figure BDA0003293976470000081
Figure BDA0003293976470000091
the preparation method of the PCR amplification system reagent comprises the following steps:
Figure BDA0003293976470000092
wherein, the primer sequence is as follows:
Figure BDA0003293976470000093
(5) electrophoresis: electrophoresis on 1.5% agarose gel at 110V for 25min, and observation on a gel imaging system.
As shown in FIG. 2, the electrophoresis pattern of the product obtained after the blood sample is amplified by using EPAS1-1F \ R, EPAS1-2F \ R, EPAS1-3F \ R, EPAS1-5-6F \ R, EPAS1-7F \ R, EPAS1-8F \ R, EPAS1-9F \ R, EPAS1-10F \ R, EPAS1-11F \ R, EPAS1-12F \ R, EPAS1-13-14F \ R, EPAS1-15F \ R, EPAS1-16-1F \ R, EPAS1-16-2F \ R, EPAS1-16-3F \ R as the primer. The length of the amplified fragment is 915, 548, 570, 334, 744, 338, 473, 472, 645, 368, 843, 714, 530, 885, 691 and 893bp, and analysis of an electrophoretogram shows that the primers are amplified effectively and have single bands.
(6) Sanger sequencing:
take 9. mu.l of PCR product and 2. mu.l of purification system. Purification was performed according to the following procedure:
Figure BDA0003293976470000101
mu.l of the purified product was mixed with the upper and lower sequencing primers, respectively, according to the following system:
Figure BDA0003293976470000102
reaction procedure:
Figure BDA0003293976470000103
and (3) a precipitation link:
adding 2 mu l of 125mmol EDTA into the product after the sequencing reaction, and standing for 5 min; adding 15 mul of absolute ethyl alcohol, and mixing evenly by vortex; centrifuging at 3700rpm for 30 min; inverting, centrifuging for 15sec, adding 50 μ l 70% ethanol, and mixing by vortex; centrifuging at 3700rpm for 15 min; inverting and centrifuging for 15sec, and placing on a metal bath at 95 ℃; denaturation test was performed after adding 10. mu.l Hi-Di.
After the denaturation procedure was completed, sequencing was performed using a sequencer (ABI 3730).
(7) And (5) judging a result: the sequencing results were compared with the EPAS1 wild-type reference sequence, respectively
(Genbank: NG-016000.1) and the results are reported in terms of actual mutations.
Example 3
1 clinical sample was taken and genome extraction, reagent formulation, amplification and sequencing were performed according to the reagents and methods of examples 1 and 2. Mu.l of sample was added to each PCR reaction solution. The electrophoresis result is shown in FIG. 2, the band is single and bright, which indicates that the primers EPAS1-1F \ R, EPAS1-2F \ R, EPAS1-3F \ R, EPAS1-5-6F \ R, EPAS1-7F \ R, EPAS1-8F \ R, EPAS1-9F \ R, EPAS1-10F \ R, EPAS1-11F \ R, EPAS1-12F \ R, EPAS1-13-14F \ R, EPAS1-15F \ R, EPAS1-16-1F \ R, EPAS1-16-2F R, EPAS1-16-3F \ R are effective for blood sample amplification.
As can be seen from the analysis of the sequencing results (see FIGS. 3 and 4), the primers of the present invention have included all exons, can amplify the whole exons of the EPAS1 gene, and have accurate sequencing results.
Sequence listing
<110> Jinan Aidean medical testing center Limited
<120> primers, kit and method for detecting EPAS1 gene mutation
<160> 34
<170> SIPOSequenceListing 1.0
<210> 1
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
tgtaaaacga cggccagtgc ccagacgacc tcataaac 38
<210> 2
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
aacagctatg accatgtctc agcactcttc tcccaa 36
<210> 3
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
tgtaaaacga cggccagtgg tcccaggcat tggtagt 37
<210> 4
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
aacagctatg accatggctg gtaaggctgg catct 35
<210> 6
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
tgtaaaacga cggccagtca tccctggcaa atgcctat 38
<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
aacagctatg accatggcag ggaggagact gaattg 36
<210> 8
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
tgtaaaacga cggccagtga aggtggctca gcttactc 38
<210> 9
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
aacagctatg accatgcctc tcaatgcccc aatctc 36
<210> 10
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
tgtaaaacga cggccagtca caggtgctaa gagagcag 38
<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
aacagctatg accatggggc actgatgcaa tgaaac 36
<210> 12
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
tgtaaaacga cggccagttt gatttgcctt ctggggtt 38
<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
aacagctatg accatggggc ataagtcttg tctgcc 36
<210> 14
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
tgtaaaacga cggccagtcc tggtcctcac tgtcgt 36
<210> 15
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
aacagctatg accatgatcc cactgttcca agacatc 37
<210> 16
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
tgtaaaacga cggccagtgg tttccatgca tctagggg 38
<210> 17
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
aacagctatg accatggagc gtgtggtgtt cttttg 36
<210> 18
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
tgtaaaacga cggccagtag ggagtctcta cgttgact 38
<210> 19
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
aacagctatg accatggtta ctgccctgta tgggga 36
<210> 20
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
tgtaaaacga cggccagtga acctttgggt ccaggaag 38
<210> 21
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
aacagctatg accatgtacc ctgtacccct acctct 36
<210> 22
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
tgtaaaacga cggccagtag gggataaaca tgggggaa 38
<210> 23
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
aacagctatg accatgagag aagggctaaa tggggt 36
<210> 24
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
tgtaaaacga cggccagtga gactctgcct tttgggtct 39
<210> 25
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
aacagctatg accatgggtg aatggaagaa ccaggat 37
<210> 26
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
tgtaaaacga cggccagttc ccacacaccc aacttttc 38
<210> 27
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
aacagctatg accatggaac ttgtgaggag gttccc 36
<210> 28
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
tgtaaaacga cggccagtat tggtatcccc cagtcaca 38
<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
aacagctatg accatgttta ggaaaagcca cgctgt 36
<210> 30
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
tgtaaaacga cggccagtgt gaagggtcaa ctccaacg 38
<210> 31
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
aacagctatg accatgggac ggggtcacta taccat 36
<210> 32
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
tgtaaaacga cggccagtcc atgagatggt ttagacggg 39
<210> 33
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
aacagctatg accatgactt cactttacat tggcatagc 39
<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
tgtaaaacga cggccagt 18
<210> 34
<211> 16
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
aacagctatg accatg 16

Claims (4)

1. The primer for detecting EPAS1 gene variation is characterized by comprising a primer for amplifying the whole exon of EPAS1 gene, and the base sequence of the primer is as follows:
EPAS1-1F: TGTAAAACGACGGCCAGTGCCCAGACGACCTCATAAAC
EPAS1-1R: AACAGCTATGACCATGTCTCAGCACTCTTCTCCCAA
EPAS1-2F: TGTAAAACGACGGCCAGTGGTCCCAGGCATTGGTAGT
EPAS1-2R: AACAGCTATGACCATGGCTGGTAAGGCTGGCATCT
EPAS1-3F: TGTAAAACGACGGCCAGTCATCCCTGGCAAATGCCTAT
EPAS1-3R: AACAGCTATGACCATGGCAGGGAGGAGACTGAATTG
EPAS1-4F: TGTAAAACGACGGCCAGTGAAGGTGGCTCAGCTTACTC
EPAS1-4R: AACAGCTATGACCATGCCTCTCAATGCCCCAATCTC
EPAS1-5-6F: TGTAAAACGACGGCCAGTCACAGGTGCTAAGAGAGCAG
EPAS1-5-6R: AACAGCTATGACCATGGGGCACTGATGCAATGAAAC
EPAS1-7F: TGTAAAACGACGGCCAGTTTGATTTGCCTTCTGGGGTT
EPAS1-7R: AACAGCTATGACCATGGGGCATAAGTCTTGTCTGCC
EPAS1-8F: TGTAAAACGACGGCCAGTCCTGGTCCTCACTGTCGT
EPAS1-8R: AACAGCTATGACCATGATCCCACTGTTCCAAGACATC
EPAS1-9F: TGTAAAACGACGGCCAGTGGTTTCCATGCATCTAGGGG
EPAS1-9R: AACAGCTATGACCATGGAGCGTGTGGTGTTCTTTTG
EPAS1-10F: TGTAAAACGACGGCCAGTAGGGAGTCTCTACGTTGACT
EPAS1-10R: AACAGCTATGACCATGGTTACTGCCCTGTATGGGGA
EPAS1-11F: TGTAAAACGACGGCCAGTGAACCTTTGGGTCCAGGAAG
EPAS1-11R: AACAGCTATGACCATGTACCCTGTACCCCTACCTCT
EPAS1-12F: TGTAAAACGACGGCCAGTAGGGGATAAACATGGGGGAA
EPAS1-12R: AACAGCTATGACCATGAGAGAAGGGCTAAATGGGGT
EPAS1-13-14F: TGTAAAACGACGGCCAGTGAGACTCTGCCTTTTGGGTCT
EPAS1-13-14R: AACAGCTATGACCATGGGTGAATGGAAGAACCAGGAT
EPAS1-15F: TGTAAAACGACGGCCAGTTCCCACACACCCAACTTTTC
EPAS1-15R: AACAGCTATGACCATGGAACTTGTGAGGAGGTTCCC
EPAS1-16F-1: TGTAAAACGACGGCCAGTATTGGTATCCCCCAGTCACA
EPAS1-16R-1: AACAGCTATGACCATGTTTAGGAAAAGCCACGCTGT
EPAS1-16F-2: TGTAAAACGACGGCCAGTGTGAAGGGTCAACTCCAACG
EPAS1-16R-2: AACAGCTATGACCATGGGACGGGGTCACTATACCAT
EPAS1-16F-3: TGTAAAACGACGGCCAGTCCATGAGATGGTTTAGACGGG
EPAS1-16R-3: AACAGCTATGACCATGACTTCACTTTACATTGGCATAGC。
2. the primers as claimed in claim 1, further comprising a sequencing primer for detecting the EPAS1 gene, which has the base sequence:
M13 F:TGTAAAACGACGGCCAGT
M13 R:AACAGCTATGACCATG。
3. a method for detecting EPAS1 gene mutation, comprising the following steps:
(1) extracting genome DNA in blood;
(2) amplifying the DNA extracted in the step 1 by using PCR; wherein the PCR amplification primers are:
EPAS1-1F: TGTAAAACGACGGCCAGTGCCCAGACGACCTCATAAAC
EPAS1-1R: AACAGCTATGACCATGTCTCAGCACTCTTCTCCCAA
EPAS1-2F: TGTAAAACGACGGCCAGTGGTCCCAGGCATTGGTAGT
EPAS1-2R: AACAGCTATGACCATGGCTGGTAAGGCTGGCATCT
EPAS1-3F: TGTAAAACGACGGCCAGTCATCCCTGGCAAATGCCTAT
EPAS1-3R: AACAGCTATGACCATGGCAGGGAGGAGACTGAATTG
EPAS1-4F: TGTAAAACGACGGCCAGTGAAGGTGGCTCAGCTTACTC
EPAS1-4R: AACAGCTATGACCATGCCTCTCAATGCCCCAATCTC
EPAS1-5-6F: TGTAAAACGACGGCCAGTCACAGGTGCTAAGAGAGCAG
EPAS1-5-6R: AACAGCTATGACCATGGGGCACTGATGCAATGAAAC
EPAS1-7F: TGTAAAACGACGGCCAGTTTGATTTGCCTTCTGGGGTT
EPAS1-7R: AACAGCTATGACCATGGGGCATAAGTCTTGTCTGCC
EPAS1-8F: TGTAAAACGACGGCCAGTCCTGGTCCTCACTGTCGT
EPAS1-8R: AACAGCTATGACCATGATCCCACTGTTCCAAGACATC
EPAS1-9F: TGTAAAACGACGGCCAGTGGTTTCCATGCATCTAGGGG
EPAS1-9R: AACAGCTATGACCATGGAGCGTGTGGTGTTCTTTTG
EPAS1-10F: TGTAAAACGACGGCCAGTAGGGAGTCTCTACGTTGACT
EPAS1-10R: AACAGCTATGACCATGGTTACTGCCCTGTATGGGGA
EPAS1-11F: TGTAAAACGACGGCCAGTGAACCTTTGGGTCCAGGAAG
EPAS1-11R: AACAGCTATGACCATGTACCCTGTACCCCTACCTCT
EPAS1-12F: TGTAAAACGACGGCCAGTAGGGGATAAACATGGGGGAA
EPAS1-12R: AACAGCTATGACCATGAGAGAAGGGCTAAATGGGGT
EPAS1-13-14F: TGTAAAACGACGGCCAGTGAGACTCTGCCTTTTGGGTCT
EPAS1-13-14R: AACAGCTATGACCATGGGTGAATGGAAGAACCAGGAT
EPAS1-15F: TGTAAAACGACGGCCAGTTCCCACACACCCAACTTTTC
EPAS1-15R: AACAGCTATGACCATGGAACTTGTGAGGAGGTTCCC
EPAS1-16F-1: TGTAAAACGACGGCCAGTATTGGTATCCCCCAGTCACA
EPAS1-16R-1: AACAGCTATGACCATGTTTAGGAAAAGCCACGCTGT
EPAS1-16F-2: TGTAAAACGACGGCCAGTGTGAAGGGTCAACTCCAACG
EPAS1-16R-2: AACAGCTATGACCATGGGACGGGGTCACTATACCAT
EPAS1-16F-3: TGTAAAACGACGGCCAGTCCATGAGATGGTTTAGACGGG
EPAS 1-16R-3: AACAGCTATGACCATGACTTCACTTTACATTGGCATAGC (3) sequencing the amplification product of step 2; the sequencing primer base sequence is:
M13 F:TGTAAAACGACGGCCAGT
M13 R:AACAGCTATGACCATG;
(4) and comparing the sequencing result with the normal sequence to determine whether the EPAS1 gene has variation.
4. Kit for detecting EPAS1 gene mutation sites, which is characterized in that the kit comprises:
(i) blood DNA extraction reagent;
(ii) detecting a system PCR amplification reaction solution; comprises a primer for amplifying an EPAS1 gene, and the base sequence of the primer is as follows:
EPAS1-1F: TGTAAAACGACGGCCAGTGCCCAGACGACCTCATAAAC
EPAS1-1R: AACAGCTATGACCATGTCTCAGCACTCTTCTCCCAA
EPAS1-2F: TGTAAAACGACGGCCAGTGGTCCCAGGCATTGGTAGT
EPAS1-2R: AACAGCTATGACCATGGCTGGTAAGGCTGGCATCT
EPAS1-3F: TGTAAAACGACGGCCAGTCATCCCTGGCAAATGCCTAT
EPAS1-3R: AACAGCTATGACCATGGCAGGGAGGAGACTGAATTG
EPAS1-4F: TGTAAAACGACGGCCAGTGAAGGTGGCTCAGCTTACTC
EPAS1-4R: AACAGCTATGACCATGCCTCTCAATGCCCCAATCTC
EPAS1-5-6F: TGTAAAACGACGGCCAGTCACAGGTGCTAAGAGAGCAG
EPAS1-5-6R: AACAGCTATGACCATGGGGCACTGATGCAATGAAAC
EPAS1-7F: TGTAAAACGACGGCCAGTTTGATTTGCCTTCTGGGGTT
EPAS1-7R: AACAGCTATGACCATGGGGCATAAGTCTTGTCTGCC
EPAS1-8F: TGTAAAACGACGGCCAGTCCTGGTCCTCACTGTCGT
EPAS1-8R: AACAGCTATGACCATGATCCCACTGTTCCAAGACATC
EPAS1-9F: TGTAAAACGACGGCCAGTGGTTTCCATGCATCTAGGGG
EPAS1-9R: AACAGCTATGACCATGGAGCGTGTGGTGTTCTTTTG
EPAS1-10F: TGTAAAACGACGGCCAGTAGGGAGTCTCTACGTTGACT
EPAS1-10R: AACAGCTATGACCATGGTTACTGCCCTGTATGGGGA
EPAS1-11F: TGTAAAACGACGGCCAGTGAACCTTTGGGTCCAGGAAG
EPAS1-11R: AACAGCTATGACCATGTACCCTGTACCCCTACCTCT
EPAS1-12F: TGTAAAACGACGGCCAGTAGGGGATAAACATGGGGGAA
EPAS1-12R: AACAGCTATGACCATGAGAGAAGGGCTAAATGGGGT
EPAS1-13-14F: TGTAAAACGACGGCCAGTGAGACTCTGCCTTTTGGGTCT
EPAS1-13-14R: AACAGCTATGACCATGGGTGAATGGAAGAACCAGGAT
EPAS1-15F: TGTAAAACGACGGCCAGTTCCCACACACCCAACTTTTC
EPAS1-15R: AACAGCTATGACCATGGAACTTGTGAGGAGGTTCCC
EPAS1-16F-1: TGTAAAACGACGGCCAGTATTGGTATCCCCCAGTCACA
EPAS1-16R-1: AACAGCTATGACCATGTTTAGGAAAAGCCACGCTGT
EPAS1-16F-2: TGTAAAACGACGGCCAGTGTGAAGGGTCAACTCCAACG
EPAS1-16R-2: AACAGCTATGACCATGGGACGGGGTCACTATACCAT
EPAS1-16F-3: TGTAAAACGACGGCCAGTCCATGAGATGGTTTAGACGGG
EPAS1-16R-3: AACAGCTATGACCATGACTTCACTTTACATTGGCATAGC
(iii) sequencing system reagents; comprises a sequencing primer for detecting EPAS1 gene, and the base sequence of the sequencing primer is as follows:
M13 F:TGTAAAACGACGGCCAGT
M13 R:AACAGCTATGACCATG。
CN202111172655.3A 2021-10-08 2021-10-08 Primer, kit and method for detecting EPAS1 gene mutation Pending CN113817816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111172655.3A CN113817816A (en) 2021-10-08 2021-10-08 Primer, kit and method for detecting EPAS1 gene mutation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111172655.3A CN113817816A (en) 2021-10-08 2021-10-08 Primer, kit and method for detecting EPAS1 gene mutation

Publications (1)

Publication Number Publication Date
CN113817816A true CN113817816A (en) 2021-12-21

Family

ID=78916200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111172655.3A Pending CN113817816A (en) 2021-10-08 2021-10-08 Primer, kit and method for detecting EPAS1 gene mutation

Country Status (1)

Country Link
CN (1) CN113817816A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695963A (en) * 1997-01-17 1997-12-09 Board Of Regents, The University Of Texas System Endothelial PAS domain protein
US20110171633A1 (en) * 2010-01-11 2011-07-14 Wayne Cowens Method to use gene expression to determine likelihood of clinical outcome of renal cancer
CN103911380A (en) * 2013-02-06 2014-07-09 深圳华大基因科技有限公司 EPAS1 gene mutant and application thereof
WO2015126557A1 (en) * 2014-02-24 2015-08-27 Vanderbilt University Identification of cattle at risk of high altitude pulmonary hypertension
CN109593841A (en) * 2018-12-08 2019-04-09 南京艾迪康医学检验所有限公司 Detect method, kit, oligonucleotides and its application of F13A1 gene mutation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695963A (en) * 1997-01-17 1997-12-09 Board Of Regents, The University Of Texas System Endothelial PAS domain protein
US20110171633A1 (en) * 2010-01-11 2011-07-14 Wayne Cowens Method to use gene expression to determine likelihood of clinical outcome of renal cancer
CN103911380A (en) * 2013-02-06 2014-07-09 深圳华大基因科技有限公司 EPAS1 gene mutant and application thereof
WO2015126557A1 (en) * 2014-02-24 2015-08-27 Vanderbilt University Identification of cattle at risk of high altitude pulmonary hypertension
CN109593841A (en) * 2018-12-08 2019-04-09 南京艾迪康医学检验所有限公司 Detect method, kit, oligonucleotides and its application of F13A1 gene mutation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALTMETRIC LISTEN RESEARCH PAPER LINE-1 AND EPAS1 DNA METHYLATION ASSOCIATIONS WITH HIGH-ALTITUDE EXPOSURE AINASH CHILDEBAYEVA等: "LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure", EPIGENETICS, vol. 14, no. 1, pages 1 - 15 *
GKOTINAKOU IM等: "Homo sapiens endothelial PAS domain protein 1 (EPAS1), mRNA", GENBANK DATABASE, pages 001430 *
杨应忠等: "高原肺水肿患者EPAS1基因外显子测序研究", 青海医学院学报, no. 4, pages 220 - 228 *

Similar Documents

Publication Publication Date Title
Roux et al. Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment
Mailaparambil et al. Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia
CN111909997B (en) Application of miRNA marker in preparation of product for evaluating curative effect of olanzapine on schizophrenia treatment and kit
CN106987642A (en) Detect the kit and method of the full extron of MPL genes
CN106520967A (en) Method and primer for detecting hereditary blood coagulation factor XI(F11) genes
CN114703278A (en) Amyotrophic lateral sclerosis pathogenic gene, detection kit and primer group
CN111004849B (en) Primer, method and kit for detecting multiple site mutations of CDH1 gene
CN113817816A (en) Primer, kit and method for detecting EPAS1 gene mutation
CN110804658A (en) Method, primer and kit for detecting PTPN11 gene mutation
CN115927356A (en) SLC45A2 pathogenic mutant gene, pathogenic mutant and application in preparing eye skin albinism IV type diagnostic kit
JP2018157786A (en) Method for detecting hereditary risk of cerebrovascular disorder
US5882868A (en) Method of diagnosing spinal muscular atrophy
CN114032303A (en) Oligonucleotide and method for detecting new mutation of gene ABCB11
Lam et al. Ethnic-specific splicing mutation of the carnitine-acylcarnitine translocase gene in a Chinese neonate presenting with sudden unexpected death
CN112626203A (en) Primer and method for detecting mutations of C.55C &gt; G and C.238C &gt; T sites of ATP8B1 gene
CN110904216A (en) Primers and method for detecting mutation of c.1670-98 and c.2375+49 sites of CHD7 gene
CN106399564A (en) Application of ERCC8 (excision repair cross complementary group 8) gene to congenital cataract combined keratoconus detection
Chau et al. Prenatal genetic diagnosis of retinoblastoma in two Vietnamese families
CN111057758A (en) Primer and method for detecting PSEN1 gene mutation and application thereof
CA2400543C (en) The involvement of the bdnf gene in mood disorders
Elhalawany et al. Association of 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene polymorphism with Type 2 Diabetes Mellitus in a sample Egyptian Population
CN113913529A (en) Method, primer and kit for detecting c-195G &gt; A site mutation of VHL gene
CN115927358B (en) ABCB11 mutant gene, protein and reagent for causing progressive familial intrahepatic cholestasis II and application of ABCB11 mutant gene, protein and reagent
CN110791559B (en) Double-row eyelash screening kit
CN112501279A (en) Primer, kit and method for detecting PIEZO1 gene mutation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination