CN113808784A - High-flexibility towline cable - Google Patents

High-flexibility towline cable Download PDF

Info

Publication number
CN113808784A
CN113808784A CN202111169598.3A CN202111169598A CN113808784A CN 113808784 A CN113808784 A CN 113808784A CN 202111169598 A CN202111169598 A CN 202111169598A CN 113808784 A CN113808784 A CN 113808784A
Authority
CN
China
Prior art keywords
layer
conductor
braided
core
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111169598.3A
Other languages
Chinese (zh)
Inventor
陈锦梅
李明
梁萍
杨建�
苏俊
梁兆荣
杨永平
李昆鹏
张向荣
杨浩
邰向群
徐莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baosheng Science and Technology Innovation Co Ltd
Original Assignee
Baosheng Science and Technology Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baosheng Science and Technology Innovation Co Ltd filed Critical Baosheng Science and Technology Innovation Co Ltd
Priority to CN202111169598.3A priority Critical patent/CN113808784A/en
Publication of CN113808784A publication Critical patent/CN113808784A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1865Sheaths comprising braided non-metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/187Sheaths comprising extruded non-metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/221Longitudinally placed metal wires or tapes
    • H01B7/223Longitudinally placed metal wires or tapes forming part of a high tensile strength core

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)

Abstract

The invention relates to a high-flexibility towline cable, which sequentially comprises the following structures from inside to outside: the cable comprises an insulating wire core, an inner protection layer (6), a shielding layer (7) and an outer protection layer (8); the insulation wire cores sequentially comprise a conductor layer and an insulation layer (4) from inside to outside, at least two insulation wire cores are provided, and a plurality of insulation wire cores are stranded bodies; the conductor layer is composed of a plurality of regularly twisted braided conductors and an isolation belt layer (3) wrapped outside the braided conductors, and each braided conductor is composed of a middle reinforcing core (1) and a conductor braided layer (2) braided outside the middle reinforcing core (1). The towline cable provided by the invention has a high-flexibility, bending-resistant and tensile core, can reduce the problem of core breakage to a great extent, and meets high comprehensive requirements of high flexibility, tensile strength, high-strength load, excellent electrical performance (data transmission) and the like of the towline cable.

Description

High-flexibility towline cable
Technical Field
The invention relates to the technical field of cables, in particular to a high-flexibility towline cable.
Background
With the continuous promotion of industry 4.0 and the wide-range application of industrial robots in recent years, the towline cable industry also meets with wider market prospect and unprecedented new opportunities. The towline cable is an important component of high-end equipment manufacturing industry, has the characteristics of high technical content, strict use conditions, high added value and the like, and is widely applied to the industries such as ports, mining, steel, chemical industry, automobiles, logistics, petrifaction, packaging and the like. The cable is used as a connecting cable of a reel system in various underground mining mobile equipment, large-scale hoisting equipment, gantry cranes, portal type, cantilever type, bridge type and rocker arm type hoisting equipment, marine grab buckets, garbage grab buckets, conveying and transporting equipment, cable collecting machines, overhead cranes, mobile traveling cranes and other equipment. Related reel series need frequently receive cable and release cable, and the tow chain cable laid therein is in the continuous dynamic state of coiling frequently reciprocal constantly, and under the condition of tens of thousands of reciprocity and friction, the cable easily takes place the problem such as conductor core breaking, sheath fracture. With the innovation of the technology, the need for developing a towline cable with a high-strength tensile conductor is urgent.
The invention aims to provide a towline cable with high flexibility, bending resistance and tensile strength, which aims to solve the problem of core breakage frequently occurring in the use of the existing mobile bending flexible cable and realize high comprehensive requirements of the cable such as high flexibility, tensile strength, high strength load, excellent electrical performance (data transmission) and the like.
Disclosure of Invention
In order to solve the problem of core breakage frequently occurring in the towline cable, a high-flexibility towline cable is provided. The towline cable provided by the invention has a high-flexibility, bending-resistant and tensile core, can reduce the problem of core breakage to a great extent, and meets high comprehensive requirements of high flexibility, tensile strength, high-strength load, excellent electrical performance (data transmission) and the like of the towline cable.
In order to achieve the above purpose, the invention is realized by the following technical scheme:
the utility model provides a high flexibility tow chain cable, includes by interior structure outside to in proper order: the cable comprises an insulating wire core, an inner protection layer, a shielding layer and an outer protection layer;
the insulation wire cores sequentially comprise a conductor layer and an insulation layer from inside to outside, at least two insulation wire cores are provided, and a plurality of insulation wire cores are stranded bodies;
the conductor layer is composed of a plurality of regularly twisted braided conductors and isolation belt layers wrapped outside the braided conductors, and each braided conductor is composed of a middle reinforcing core and a conductor braided layer braided outside the middle reinforcing core.
Further, middle reinforced core is the steel material, the conductor weaving layer is the copper product.
Still further, the middle reinforcing core is a steel wire with the diameter of 0.1-0.2 mm. Because the cable is required to have enough strength when bearing more than 1000 ten thousand drag chain tests, the raw materials for forming the cable are required to have enough mechanical strength, and the insulating wire core needs to be designed to have better mechanical strength in integral insulation. According to the invention, the thin steel wire reinforced core is designed in the middle of the braided conductor, the fiber reinforced layer braided by glass fiber is designed outside each core, and the bulletproof wire braiding is designed in the middle of the double-layer extrusion sheath of the integral cable, so that the single and integral tensile strength of the cable is improved, the core slipping is avoided, and the possibility that the cable is pulled apart is reduced because the middle wire core is the part of the cable core which needs to bear the tensile force most in the drag chain process.
Still further, the preparation method of the conductor layer comprises the following steps:
firstly, adopting braiding equipment, fixing the steel wire as a middle reinforcing core and a lead, equally dividing a plurality of copper wires into two strands, introducing the two strands into the braiding equipment, and braiding the two strands in a crossed sinusoidal motion at the periphery of the steel wire to obtain a conductor braided layer so as to form a braided conductor;
and secondly, after obtaining a plurality of braided conductors, twisting the braided conductors according to the required number, performing multiple over-mold pressing in the twisting process, then covering and tightening by using a wrapping tape to form an isolation tape layer, and finally obtaining a conductor layer. The middle of the braided conductor is provided with a middle reinforcing core, in order to prevent the central gap of the strand from being in a free state during production, a steel wire is used as a middle core material of the braided conductor in the braiding process to play roles of reinforcement and tensile resistance, and the middle reinforcing core can effectively ensure that two parts of strands are braided and attached to the outer layer of the middle reinforcing core; after a plurality of braided conductors are manufactured, the braided conductors are regularly twisted into a compound twisted body by adopting 25-35 times of customized pitch, then the compound twisted body is wrapped and fastened by an isolation belt, the compound twisted body is compressed by over-mold during twisting, the compactness of the conductor layer is ensured after compression, and a high-strength tensile conductor is formed; the conductor can be effectively prevented from being stressed unevenly when being moved and bent, force can be well transferred, decomposed and released, the mechanical properties of the conductor such as high radial resistance, longitudinal tensile force and the like are greatly improved, the high flexibility and stability of the conductor under the condition of meeting the requirements of tensile strength and elongation are ensured, and the cable has the remarkable advantages of providing for special torsion and bending tests of cables.
Furthermore, each insulated wire core also comprises a fiber reinforced layer, and the fiber reinforced layer is woven outside the insulated wire core by adopting glass fiber. The fiber reinforced layer has a protective effect, the strength of the conductor layer is enhanced, and the service environment of the drag chain is met.
Furthermore, the insulating layer, the inner protection layer and the outer protection layer are all made of elastomer materials and are coated in an extrusion coating mode. The elastomer material can be POE, SEBS, TPE, TPO, TPV and other materials.
Further, the isolation belt layer is of a polyester belt structure. The stranded braided conductor has a binding and isolating effect.
Furthermore, the shielding layer is a copper foil wire woven structure, the copper foil wire structure is composed of a band-shaped copper foil and a bulletproof wire, and the band-shaped copper foil is uniformly wrapped on the periphery of the bulletproof wire. The bulletproof wires are softer and have higher strength, and contribute to high flexibility of the towline cable. The shielding layer of the structure plays a role in protecting the internal structure and can also play a role in shielding and resisting interference of the cable; with the three-layer structure of weaving outside conductor, insulating, can satisfy the requirement of high anti radial and longitudinal tension with the cable under special environment, also can satisfy elasticity, compliance and bending strength that the cable required in the removal process simultaneously, greatly improved cable reciprocating motion's life.
The beneficial technical effects are as follows:
the invention adopts braided conductors with middle reinforced cores to be stranded again and then the braided conductors are tightly bound by the belt to form a conductor layer, an insulating layer and a fiber reinforced layer are extruded outside the conductor layer to form an insulating wire core, a plurality of insulating wire cores are stranded again and then are extruded to form a cable by an inner protective layer, and then a drag chain cable is formed by a shielding layer and an outer protective layer. The doubly-twisted conductor layer and the doubly-twisted insulated wire core can effectively avoid the condition that the cable is stressed unevenly when moving and bending, can well transfer, decompose and release stress, greatly improves the high flexibility and the stability of the cable, and enables the cable conductor to operate without fault for a long time under the use condition of small bending radius, thereby ensuring the stable work of a system.
Drawings
Fig. 1 is a schematic cross-sectional structure diagram of a towline cable according to embodiment 1.
Wherein, 1-middle reinforced core, 2-conductor braid layer, 3-isolation band layer, 4-insulating layer, 5-fiber reinforced layer, 6-inner protective layer, 7-shielding layer and 8-outer protective layer.
FIG. 2 is a schematic view of a conventional twisted wire core and the wire core of the present invention after bending.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention and the accompanying drawings, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Unless specifically stated otherwise, the numerical values set forth in these examples do not limit the scope of the invention. Techniques, methods known to those of ordinary skill in the relevant art may not be discussed in detail, but are intended to be part of the specification where appropriate. In all examples shown and discussed herein, any particular value should be construed as merely illustrative, and not limiting. Thus, other examples of the exemplary embodiments may have different values.
The conventional cable adopts flexible 5-class and 6-class conductors for complex twisting to ensure the flexibility of the conductors. The thinner the conductor monofilament, the better the flexibility of the cable, but the too thin conductor monofilament is prone to wire breakage, and such conductors have drawbacks in applications such as high strength drag chains, movement, bending, and the like. In order to increase the flexibility and the curveability of the cable, the cable core with a larger cross section is formed by twisting a plurality of wires with smaller diameters, and the twisted wire cores of the plurality of wires are relatively soft and good, and the curveability is larger. And the requirement on the curvature of the wire core is different along with different cable application occasions. The special mobile towline cable is always in a continuous and frequent reciprocating dynamic winding state, and has the highest requirement on the flexibility of a wire core under the laying environment of thousands of reciprocating motions and back-and-forth friction.
Example 1
A highly flexible towline cable is structurally shown in figure 1 from inside to outside and sequentially comprises: the cable comprises an insulated wire core, an inner protection layer 6, a shielding layer 7 and an outer protection layer 8;
the insulated wire cores sequentially comprise a conductor layer, an insulating layer 4 and a fiber reinforced layer 5 from inside to outside, the number of the insulated wire cores can be 3 conventional cores as shown in figure 1, and can also be more than 10 conventional cores, and the most appropriate number of the conventional insulated wire cores can be designed according to actual needs; a plurality of the insulated wire cores are stranded;
the conductor layer is composed of a plurality of regularly twisted braided conductors and an isolation belt layer 3 wrapped outside the braided conductors, and the braided conductors are composed of a middle reinforcing core 1 and a conductor braided layer 2 braided outside the middle reinforcing core 1.
The middle reinforcing core 1 is a steel wire with the diameter of 0.1-0.2 mm, and the conductor braided layer 2 is made of copper; the preparation method of the conductor layer comprises the following steps:
(1) fixing the steel wire as a lead by using 8-spindle braiding equipment, introducing 3 fine copper wires (with the diameter of a single wire being 0.05mm) as one spindle strand (in some embodiments, more fine copper wires can be used as one spindle strand), dividing the number of the upper 4-spindle strands into the number of the upper 4-spindle strands and the number of the lower 4-spindle strands into the braiding equipment, setting braiding angles to be 30 degrees and 150 degrees, and braiding the two strands at the periphery of the steel wire in a crossed sinusoidal motion to obtain the conductor braided layer 2 to form a braided conductor;
(2) after obtaining a plurality of braided conductors, twisting 7 braided conductors according to a required number (in some embodiments, 19 or 37 braided conductors may also be used, and the performance of the cable is designed according to actual needs), wherein in this embodiment, 30 times of twisting pitch is adopted, multiple over-mold pressing is performed in the twisting process to achieve the purposes of doubling, forming and pressing, and then a polyester wrapping tape is adopted to wrap and tighten the twisted plurality of braided conductors to form a conductor layer.
The fiber reinforced layer 5 is made by weaving glass fibers outside the insulated wire core. The fiber reinforced layer has a protective effect and an insulating effect, so that the strength of the conductor layer is enhanced, and the service environment of the drag chain is met.
The insulating layer 4, the inner protection layer 6 and the outer protection layer 8 are all made of elastomer materials and are wrapped in an extrusion manner, in this embodiment, the insulating layer 4 is made of TPO elastomer materials, and the inner protection layer 6 and the outer protection layer 8 are made of TPU elastomer material extrusion sheaths.
The shielding layer 7 is made of copper foil wires, the structure of the copper foil wires is composed of band-shaped copper foils and bulletproof wires, the band-shaped copper foils are uniformly wrapped on the peripheries of the bulletproof wires, and compared with the copper foil wires obtained by wrapping general fibers, the bulletproof wires have the characteristics of being softer and higher in strength, and contribute to high flexibility of the drag chain cable.
In order to prevent the central gap of the strand from being free during production, a steel wire is used as a central core material of the braided conductor in the braiding process to play roles of reinforcement and tensile resistance, and the central reinforcing core can effectively ensure that two parts of strands are braided and attached to the outer layer of the central reinforcing core; after a plurality of braided conductors are manufactured, the braided conductors are regularly twisted into a compound twisted body by adopting a customized pitch, then the compound twisted body is wrapped and fastened by an isolation belt, the compound twisted body is pressed by passing a die during twisting, the compactness of the conductor layer is ensured after pressing, and a high-strength tensile conductor is formed; the conductor can be effectively prevented from being stressed unevenly when being moved and bent, force can be well transferred, decomposed and released, the mechanical properties of the conductor such as high radial resistance, longitudinal tensile force and the like are greatly improved, the high flexibility and stability of the conductor under the condition of meeting the requirements of tensile strength and elongation are ensured, and the cable has the remarkable advantages of providing for special torsion and bending tests of cables.
Examples 2 to 7
The towline cable of embodiments 2-7 has the same structure as embodiment 1, except for the diameter of the copper wire and the number of braided strands of the conductor braid 2, which are specifically shown in table 1. Examples 1-3 were woven using 8-spindle weaving equipment; examples 4-7 were braided using a 16-pig braiding apparatus.
Table 1 differences in braided conductors of examples 1-7
Figure BDA0003292325750000051
Comparative example 1
The cable structure of this comparative example was the same as that of example 1 except that the intermediate reinforcing core 1 was not provided and the braided conductor was braided directly with a copper wire.
Comparative example 2
The cable structure of this comparative example was the same as that of example 1, except that a braided conductor was not used, and a conventional category 6 conductor was used for multiple twisting to form an insulated wire core.
Comparative example 3
The cable construction of this comparative example is the same as example 1, except that the shield 7 is a conventional braided shield of copper wire.
Comparative example 4
The cable construction of this comparative example is the same as example 1, except that the fiber reinforcement layer 5 is not present.
The cable properties of examples 1-2 and comparative examples 1-4 above are shown in table 2. The tests in table 2 were performed according to the current national standards of the cable industry.
TABLE 2 Cable Properties of examples 1-2 and comparative examples 1-4
Figure BDA0003292325750000061
As can be seen from Table 1, the central gaps of the strands can be prevented from being in a free state during production by adding the middle reinforcing core into the braided conductor, the steel wire is used as the middle core material of the braided conductor during the braiding process to play roles of reinforcement and tensile resistance, and the middle reinforcing core can effectively ensure that the two strands are braided and attached to the outer layer of the middle reinforcing core; after a plurality of braided conductors are manufactured, the braided conductors are twisted regularly to manufacture a compound twisted body with customized pitches, then the compound twisted body is wrapped and tightened by an isolation belt, the compound twisted body is pressed through a die during twisting, the compactness of the conductor layer is guaranteed after pressing, and a tensile insulating wire core with high strength is formed. In order to further enhance the strength of the conductor and meet the use requirement of a drag chain environment, a fiber reinforced layer braided by glass fiber is coated outside each insulated wire core; the inner and outer protective materials are extruded, and the shielding layer wrapped with the bulletproof wires by the strip-shaped copper foil is arranged between the inner and outer protective layers, so that the cable can meet the requirements of high radial and longitudinal tensile force resistance in a special environment, meanwhile, the required elasticity, flexibility and bending strength of the cable in the moving process can be met, and the service life of the cable in reciprocating motion is greatly prolonged. The torsion resistance of the cable can reach more than 1000 ten thousand times (plus or minus 180 degrees) of torsion, and the cable has higher strength; the flexibility can be more than 3 ten thousand times of reciprocating and the curvature can be more than 300 ten thousand times (plus or minus 90 degrees) of bending.
The towline cable can effectively avoid uneven stress of the conductor during moving and bending, can well transfer, decompose and release force, greatly improves the mechanical properties of the conductor such as high radial and longitudinal tensile force resistance and the like, ensures high flexibility and stability of the conductor under the condition of meeting the requirements of tensile strength and elongation, and provides remarkable advantages for special torsion and bending tests of the cable.
Generally, when a metal wire is bent along a certain radius, the round outer part of the center line of the stranded conductor needs to be extended, and the round inner part needs to be shortened, for example, a wire core is formed by stranding a plurality of wires in a certain direction, and the wires can slide, so that the stranded conductor is more labor-saving than the same bending of a single wire with the same section. Fig. 2 (a) shows a group of wires in which a plurality of wires are twisted in a certain direction (the cross section of an insulated wire core formed by twisting 6 types of conductors in comparative example 2 is shown in fig. 2 (a)), the wires are bent to be shown in fig. 2 (b), the bent thick wires are straightened as shown in fig. 2 (c), and when the conventional twisted wires are completely straightened, protrusions are generated on the surface of the wire core due to the plastic deformation of the wires, so that the electric field distribution in the cable insulating layer is distorted, the cable insulating property is damaged to reduce the stability of the cable, and the phenomenon of core breakage frequently occurs in the use of the conductor wire core of the cable under the conditions of drag chain, bending and the like is more likely to occur.
In order to maintain the stability of the structural shape of the wire core and reduce the deformation of each wire when the wire core is bent, the braided conductor with the middle reinforcing core is twisted repeatedly and then is bundled by the belt to form a conductor layer, and the insulating layer and the fiber reinforcing layer are extruded outside the conductor layer to form the insulating wire core. In addition, the wire core can be smoothly distributed on a section of wire core when being bent, and the cable insulation is not easy to damage when being bent. Therefore, the towline cable with the wire core has the advantages of high curvature, good flexibility and high stability.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art should be considered to be within the technical scope of the present invention, and the technical solutions and the inventive concepts thereof according to the present invention should be equivalent or changed within the scope of the present invention.

Claims (8)

1. The utility model provides a high flexibility tow chain cable which characterized in that, by interior structure outside to include in proper order: the cable comprises an insulating wire core, an inner protection layer (6), a shielding layer (7) and an outer protection layer (8);
the insulation wire cores sequentially comprise a conductor layer and an insulation layer (4) from inside to outside, at least two insulation wire cores are provided, and a plurality of insulation wire cores are of a twisted body structure;
the conductor layer sequentially comprises a plurality of braided conductors and an isolation belt layer (3) from inside to outside, a twisted structure is arranged among the braided conductors, and each braided conductor sequentially comprises a middle reinforcing core (1) and a conductor braided layer (2) from inside to outside.
2. A highly flexible towline cable according to claim 1, wherein the material of said central core (1) is steel and the material of said conductor braid (2) is copper.
3. A highly flexible towline cable according to claim 2, wherein said intermediate strength core (1) is a steel wire with a diameter of 0.1-0.2 mm.
4. The highly flexible towline cable of claim 3, wherein the conductor layer is prepared by a method comprising:
firstly, adopting braiding equipment, fixing the steel wire as a middle reinforcing core (1) and a lead, equally dividing a plurality of copper wires into two strands, introducing the two strands into the braiding equipment, and braiding the two strands in a crossed sinusoidal motion at the periphery of the steel wire to obtain a conductor braided layer (2) so as to form a braided conductor;
secondly, after a plurality of braided conductors are obtained, twisting the braided conductors according to the required number, performing multiple times of over-mold pressing in the twisting process, then wrapping and tightening by using a wrapping tape to form an isolation tape layer (3), and finally obtaining a conductor layer.
5. A highly flexible towline cable according to any one of claims 1-4, wherein each of said insulated wire cores further comprises a fiber reinforcement layer (5), said fiber reinforcement layer (5) being woven from glass fibers over said insulated wire core.
6. A highly flexible towline cable according to any one of claims 1-4, characterized in that the materials of said insulating layer (4), said inner sheath (6) and said outer sheath (8) are all elastomeric materials, and are wrapped by extrusion.
7. A highly flexible towline cable according to any one of claims 1-4, wherein said release tape layer (3) is polyester tape.
8. The highly flexible towline cable according to any one of claims 1-4, wherein the shielding layer (7) is a copper foil wire woven structure, the copper foil wire structure is composed of a band-shaped copper foil and a bulletproof wire, and the band-shaped copper foil is uniformly wrapped on the periphery of the bulletproof wire.
CN202111169598.3A 2021-10-08 2021-10-08 High-flexibility towline cable Pending CN113808784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111169598.3A CN113808784A (en) 2021-10-08 2021-10-08 High-flexibility towline cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111169598.3A CN113808784A (en) 2021-10-08 2021-10-08 High-flexibility towline cable

Publications (1)

Publication Number Publication Date
CN113808784A true CN113808784A (en) 2021-12-17

Family

ID=78939255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111169598.3A Pending CN113808784A (en) 2021-10-08 2021-10-08 High-flexibility towline cable

Country Status (1)

Country Link
CN (1) CN113808784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117133507A (en) * 2023-10-25 2023-11-28 锐洋集团东北电缆有限公司 Overhead insulated cable and production equipment thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204215764U (en) * 2014-06-12 2015-03-18 上海源锋电缆有限公司 High-strength flexible drag chain cable
CN209591586U (en) * 2019-05-27 2019-11-05 安徽华宇电缆集团有限公司 A kind of high flexibility drag chain cable
CN112786243A (en) * 2021-01-12 2021-05-11 远东电缆有限公司 Intelligent tensile composite cable
CN216053917U (en) * 2021-10-08 2022-03-15 宝胜科技创新股份有限公司 High-flexibility towline cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204215764U (en) * 2014-06-12 2015-03-18 上海源锋电缆有限公司 High-strength flexible drag chain cable
CN209591586U (en) * 2019-05-27 2019-11-05 安徽华宇电缆集团有限公司 A kind of high flexibility drag chain cable
CN112786243A (en) * 2021-01-12 2021-05-11 远东电缆有限公司 Intelligent tensile composite cable
CN216053917U (en) * 2021-10-08 2022-03-15 宝胜科技创新股份有限公司 High-flexibility towline cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117133507A (en) * 2023-10-25 2023-11-28 锐洋集团东北电缆有限公司 Overhead insulated cable and production equipment thereof
CN117133507B (en) * 2023-10-25 2024-01-02 锐洋集团东北电缆有限公司 Overhead insulated cable and production equipment thereof

Similar Documents

Publication Publication Date Title
CN201532802U (en) Screening-type anti-twisting cable for robots
CN202332349U (en) Wear-resistant and anti-torsion drag-chain cable
CN205376173U (en) High antitorque signal cable of robot
CN216053917U (en) High-flexibility towline cable
CN113808784A (en) High-flexibility towline cable
CN202694877U (en) Flat and soft cable for reinforced hoisting machinery and transportation equipment
CN203250551U (en) Rubber flat cable used for reel
CN214796803U (en) Butyronitrile compound insulation shielding removes flexible cable
CN205810417U (en) A kind of flexible dynamic control of tension is combined reel flat cable
CN215265695U (en) Long-life robot cable
CN103093878A (en) Towline cable
CN212342310U (en) Reinforced shielding cable for movement
CN213459161U (en) Torsion-resistant, high-strength and strong-wear-resistant cable for shielding type robot
CN210777955U (en) Multi-core control wire for robot
CN201336163Y (en) Anti-torsion environment-resisting reinforced type soft cable used for engineering and machinery
CN109935396B (en) Special flexible cable for shield machine and manufacturing method thereof
CN110120283B (en) Towline cable and cable preparation method
CN201918197U (en) High-strength flexible cable for electric hoist of crane
CN111584133A (en) High-strength cable core structure and production process thereof
CN217426390U (en) Low-temperature-resistant flexible towline cable
CN215730923U (en) Flexible high-bending-resistance tensile towline cable
CN211294664U (en) Movable flexible cable
CN217008725U (en) Tensile core-breaking-preventing reel cable
CN219392987U (en) Cable for robot end effector
CN214847803U (en) High-speed towline cable with wear-resisting sliding property

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination