CN113808106A - 一种基于深度学习的超低剂量pet图像重建系统及方法 - Google Patents
一种基于深度学习的超低剂量pet图像重建系统及方法 Download PDFInfo
- Publication number
- CN113808106A CN113808106A CN202111091767.6A CN202111091767A CN113808106A CN 113808106 A CN113808106 A CN 113808106A CN 202111091767 A CN202111091767 A CN 202111091767A CN 113808106 A CN113808106 A CN 113808106A
- Authority
- CN
- China
- Prior art keywords
- image
- slice
- module
- pet
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000013135 deep learning Methods 0.000 title claims abstract description 20
- 210000004556 brain Anatomy 0.000 claims abstract description 39
- 238000006073 displacement reaction Methods 0.000 claims abstract description 37
- 230000008569 process Effects 0.000 claims abstract description 30
- 230000004927 fusion Effects 0.000 claims abstract description 27
- 230000002902 bimodal effect Effects 0.000 claims abstract description 12
- 230000002503 metabolic effect Effects 0.000 claims abstract description 11
- 230000006870 function Effects 0.000 claims description 28
- 230000007246 mechanism Effects 0.000 claims description 25
- 238000010606 normalization Methods 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 239000000700 radioactive tracer Substances 0.000 claims description 11
- 230000008447 perception Effects 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 8
- 230000000877 morphologic effect Effects 0.000 claims description 7
- 238000005728 strengthening Methods 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 abstract description 4
- 238000004220 aggregation Methods 0.000 abstract description 4
- 230000003044 adaptive effect Effects 0.000 abstract description 2
- 230000002787 reinforcement Effects 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 238000002600 positron emission tomography Methods 0.000 description 187
- 238000002595 magnetic resonance imaging Methods 0.000 description 52
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 238000011160 research Methods 0.000 description 9
- 206010073306 Exposure to radiation Diseases 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000002591 computed tomography Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 208000010877 cognitive disease Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 208000027061 mild cognitive impairment Diseases 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001037 epileptic effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010827 pathological analysis Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111091767.6A CN113808106B (zh) | 2021-09-17 | 2021-09-17 | 一种基于深度学习的超低剂量pet图像重建系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111091767.6A CN113808106B (zh) | 2021-09-17 | 2021-09-17 | 一种基于深度学习的超低剂量pet图像重建系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113808106A true CN113808106A (zh) | 2021-12-17 |
CN113808106B CN113808106B (zh) | 2023-05-30 |
Family
ID=78939479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111091767.6A Active CN113808106B (zh) | 2021-09-17 | 2021-09-17 | 一种基于深度学习的超低剂量pet图像重建系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113808106B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114862774A (zh) * | 2022-04-21 | 2022-08-05 | 浙江大学滨江研究院 | 一种基于深度学习的pet图像跨模态重构方法及装置 |
CN115423893A (zh) * | 2022-11-03 | 2022-12-02 | 南京应用数学中心 | 基于多模态结构相似度神经网络的低剂量pet-ct重建方法 |
CN115511703A (zh) * | 2022-10-31 | 2022-12-23 | 北京安德医智科技有限公司 | 二维心脏超声切面图像的生成方法及装置、设备、介质 |
CN115588153A (zh) * | 2022-10-10 | 2023-01-10 | 山东财经大学 | 一种基于3D-DoubleU-Net的视频帧生成方法 |
CN116129235A (zh) * | 2023-04-14 | 2023-05-16 | 英瑞云医疗科技(烟台)有限公司 | 一种脑梗ct到mri常规序列的医学图像跨模态合成方法 |
CN116977466A (zh) * | 2023-07-21 | 2023-10-31 | 北京大学第三医院(北京大学第三临床医学院) | 一种增强ct图像生成模型的训练方法和存储介质 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109615674A (zh) * | 2018-11-28 | 2019-04-12 | 浙江大学 | 基于混合损失函数3d cnn的动态双示踪pet重建方法 |
CN110753935A (zh) * | 2017-04-25 | 2020-02-04 | 小利兰·斯坦福大学托管委员会 | 用于医学成像的使用深度卷积神经网络的剂量减少 |
CN111260583A (zh) * | 2020-01-17 | 2020-06-09 | 南京邮电大学 | 基于多判别器的多重解析网络缺失ct投影数据估计方法 |
CN111784788A (zh) * | 2020-06-04 | 2020-10-16 | 深圳深透医疗科技有限公司 | 一种基于深度学习的pet快速成像方法和系统 |
CN112037299A (zh) * | 2020-08-20 | 2020-12-04 | 上海壁仞智能科技有限公司 | 一种影像重建的方法及装置、电子设备和存储介质 |
CN112053412A (zh) * | 2020-08-31 | 2020-12-08 | 浙江大学 | 基于教师-学生生成器的低剂量Sinogram去噪与PET图像重建方法 |
US20210074036A1 (en) * | 2018-03-23 | 2021-03-11 | Memorial Sloan Kettering Cancer Center | Deep encoder-decoder models for reconstructing biomedical images |
CN112489158A (zh) * | 2021-01-13 | 2021-03-12 | 河北大学 | 基于cGAN的自适应网络用于低剂量PET图像的增强方法 |
CN112508775A (zh) * | 2020-12-10 | 2021-03-16 | 深圳先进技术研究院 | 基于循环生成对抗网络的mri-pet图像模态转换方法及系统 |
CN112801875A (zh) * | 2021-02-05 | 2021-05-14 | 深圳技术大学 | 超分辨率重建方法、装置、计算机设备和存储介质 |
US20210150671A1 (en) * | 2019-08-23 | 2021-05-20 | The Trustees Of Columbia University In The City Of New York | System, method and computer-accessible medium for the reduction of the dosage of gd-based contrast agent in magnetic resonance imaging |
CN113053496A (zh) * | 2021-03-19 | 2021-06-29 | 深圳高性能医疗器械国家研究院有限公司 | 一种用于医学图像低剂量估计的深度学习方法 |
CN113160347A (zh) * | 2021-04-14 | 2021-07-23 | 浙江大学 | 一种基于注意力机制的低剂量双示踪剂pet重建方法 |
CN115409850A (zh) * | 2022-04-19 | 2022-11-29 | 苏州大学 | 一种跨模态注意力网络的多模态图像分割方法及装置 |
-
2021
- 2021-09-17 CN CN202111091767.6A patent/CN113808106B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110753935A (zh) * | 2017-04-25 | 2020-02-04 | 小利兰·斯坦福大学托管委员会 | 用于医学成像的使用深度卷积神经网络的剂量减少 |
US20210074036A1 (en) * | 2018-03-23 | 2021-03-11 | Memorial Sloan Kettering Cancer Center | Deep encoder-decoder models for reconstructing biomedical images |
CN109615674A (zh) * | 2018-11-28 | 2019-04-12 | 浙江大学 | 基于混合损失函数3d cnn的动态双示踪pet重建方法 |
US20210150671A1 (en) * | 2019-08-23 | 2021-05-20 | The Trustees Of Columbia University In The City Of New York | System, method and computer-accessible medium for the reduction of the dosage of gd-based contrast agent in magnetic resonance imaging |
CN111260583A (zh) * | 2020-01-17 | 2020-06-09 | 南京邮电大学 | 基于多判别器的多重解析网络缺失ct投影数据估计方法 |
CN111784788A (zh) * | 2020-06-04 | 2020-10-16 | 深圳深透医疗科技有限公司 | 一种基于深度学习的pet快速成像方法和系统 |
CN112037299A (zh) * | 2020-08-20 | 2020-12-04 | 上海壁仞智能科技有限公司 | 一种影像重建的方法及装置、电子设备和存储介质 |
CN112053412A (zh) * | 2020-08-31 | 2020-12-08 | 浙江大学 | 基于教师-学生生成器的低剂量Sinogram去噪与PET图像重建方法 |
CN112508775A (zh) * | 2020-12-10 | 2021-03-16 | 深圳先进技术研究院 | 基于循环生成对抗网络的mri-pet图像模态转换方法及系统 |
CN112489158A (zh) * | 2021-01-13 | 2021-03-12 | 河北大学 | 基于cGAN的自适应网络用于低剂量PET图像的增强方法 |
CN112801875A (zh) * | 2021-02-05 | 2021-05-14 | 深圳技术大学 | 超分辨率重建方法、装置、计算机设备和存储介质 |
CN113053496A (zh) * | 2021-03-19 | 2021-06-29 | 深圳高性能医疗器械国家研究院有限公司 | 一种用于医学图像低剂量估计的深度学习方法 |
CN113160347A (zh) * | 2021-04-14 | 2021-07-23 | 浙江大学 | 一种基于注意力机制的低剂量双示踪剂pet重建方法 |
CN115409850A (zh) * | 2022-04-19 | 2022-11-29 | 苏州大学 | 一种跨模态注意力网络的多模态图像分割方法及装置 |
Non-Patent Citations (1)
Title |
---|
杨晓莉等: "一种注意力机制的多波段图像特征级融合方法", 《西安电子科技大学学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114862774A (zh) * | 2022-04-21 | 2022-08-05 | 浙江大学滨江研究院 | 一种基于深度学习的pet图像跨模态重构方法及装置 |
CN115588153A (zh) * | 2022-10-10 | 2023-01-10 | 山东财经大学 | 一种基于3D-DoubleU-Net的视频帧生成方法 |
CN115588153B (zh) * | 2022-10-10 | 2024-02-02 | 山东财经大学 | 一种基于3D-DoubleU-Net的视频帧生成方法 |
CN115511703A (zh) * | 2022-10-31 | 2022-12-23 | 北京安德医智科技有限公司 | 二维心脏超声切面图像的生成方法及装置、设备、介质 |
CN115423893A (zh) * | 2022-11-03 | 2022-12-02 | 南京应用数学中心 | 基于多模态结构相似度神经网络的低剂量pet-ct重建方法 |
CN116129235A (zh) * | 2023-04-14 | 2023-05-16 | 英瑞云医疗科技(烟台)有限公司 | 一种脑梗ct到mri常规序列的医学图像跨模态合成方法 |
CN116129235B (zh) * | 2023-04-14 | 2023-06-23 | 英瑞云医疗科技(烟台)有限公司 | 一种脑梗ct到mri常规序列的医学图像跨模态合成方法 |
CN116977466A (zh) * | 2023-07-21 | 2023-10-31 | 北京大学第三医院(北京大学第三临床医学院) | 一种增强ct图像生成模型的训练方法和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113808106B (zh) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113808106B (zh) | 一种基于深度学习的超低剂量pet图像重建系统及方法 | |
Ying et al. | X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks | |
Liu et al. | Multimodal MR image synthesis using gradient prior and adversarial learning | |
CN112785632B (zh) | 基于epid的图像引导放疗中dr和drr影像跨模态自动配准方法 | |
CN112819914B (zh) | 一种pet图像处理方法 | |
CN111436958B (zh) | 一种用于pet图像衰减校正的ct图像生成方法 | |
WO2022257959A1 (en) | Multi-modality and multi-scale feature aggregation for synthesizing spect image from fast spect scan and ct image | |
CN112489158B (zh) | 基于cGAN的自适应网络用于低剂量PET图像的增强方法 | |
CN116152235A (zh) | 一种肺癌ct到pet的医学图像跨模态合成方法 | |
CN115908449A (zh) | 一种基于改进UNet模型的2.5D医学CT影像分割方法及装置 | |
Sun et al. | High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning | |
CN108596995A (zh) | 一种pet-mri最大后验联合重建方法 | |
CN117769722A (zh) | 用于断层成像的基于生成对抗网络的无损图像压缩模型 | |
Xia et al. | Deep residual neural network based image enhancement algorithm for low dose CT images | |
WO2023000244A1 (zh) | 一种图像处理方法、系统及其应用 | |
CN117523204A (zh) | 面向医疗场景的肝脏肿瘤图像分割方法、装置和可读存储介质 | |
Xue et al. | PET Synthesis via Self-supervised Adaptive Residual Estimation Generative Adversarial Network | |
Lin | Synthesizing missing data using 3D reversible GAN for alzheimer's disease | |
CN115375560B (zh) | 一种3d-dsa图像的重建方法及系统 | |
CN113902912B (zh) | Cbct影像的处理方法、神经网络系统的创建方法、以及装置 | |
Wang et al. | TPG-rayGAN: CT reconstruction based on transformer and generative adversarial networks | |
CN116245969A (zh) | 一种基于深度神经网络的低剂量pet图像重建方法 | |
Cheng et al. | Sdct-gan: reconstructing CT from biplanar x-rays with self-driven generative adversarial networks | |
CN115908610A (zh) | 一种基于单模态pet图像获取衰减校正系数图像的方法 | |
WO2022120731A1 (zh) | 基于循环生成对抗网络的mri-pet图像模态转换方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Tian Mei Inventor after: Zhuo Cheng Inventor after: Fu Yu Inventor after: Zhang Hong Inventor after: Liao Yi Inventor after: Xue Le Inventor after: Dong Shunjie Inventor before: Zhuo Cheng Inventor before: Fu Yu Inventor before: Tian Mei Inventor before: Zhang Hong Inventor before: Liao Yi Inventor before: Xue Le Inventor before: Dong Shunjie |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |