CN113807348A - A kind of high-voltage cable target identification and positioning method and device - Google Patents
A kind of high-voltage cable target identification and positioning method and device Download PDFInfo
- Publication number
- CN113807348A CN113807348A CN202110973073.9A CN202110973073A CN113807348A CN 113807348 A CN113807348 A CN 113807348A CN 202110973073 A CN202110973073 A CN 202110973073A CN 113807348 A CN113807348 A CN 113807348A
- Authority
- CN
- China
- Prior art keywords
- target
- voltage cable
- image
- identification
- positioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000003062 neural network model Methods 0.000 claims abstract description 29
- 238000009826 distribution Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 12
- 239000000284 extract Substances 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 230000000877 morphologic effect Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims 2
- 238000002372 labelling Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000000605 extraction Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及一种高压线缆目标识别定位方法及装置,对Yolo v4深度神经网络模型进行优化并利用其提取目标的ROI区域;然后,结合HSV色彩追踪技术,提取ROI区域内线缆目标最小外接矩形;最后,结合深度相机的参数信息求得线缆目标上多个等分点的三维坐标信息,从而实现了对高压线缆目标三维坐标的提取,进而为带电作业机器人的机械臂动作提供更加准确的目标空间信息。本发明提供的定位识别方法,在对高压电缆的识别上的识别速度更快,识别准确率提高,并具有更高的可靠性,解决了现有技术中目标识别在不同背景下存在识别定位不准确的问题。
The invention relates to a high-voltage cable target identification and positioning method and device. The Yolo v4 deep neural network model is optimized and the ROI area of the target is extracted by using it; then, combined with the HSV color tracking technology, the minimum external connection of the cable target in the ROI area is extracted. Finally, combined with the parameter information of the depth camera, the three-dimensional coordinate information of multiple equal points on the cable target is obtained, so as to realize the extraction of the three-dimensional coordinates of the high-voltage cable target, and then provide more information for the action of the mechanical arm of the live working robot. Accurate target space information. The positioning and identification method provided by the present invention has faster identification speed in identification of high-voltage cables, improved identification accuracy, and higher reliability, and solves the problem of inconsistencies in identification and positioning of target identification in the prior art under different backgrounds. exact question.
Description
技术领域technical field
本发明涉及电网设备检测技术领域,尤其涉及一种高压线缆目标识别定位方法及装置。The invention relates to the technical field of power grid equipment detection, and in particular, to a method and device for identifying and locating a high-voltage cable target.
背景技术Background technique
近年来,随着国家智能电网建设的稳步推进和对供电稳定性的要求提高,传统配电网维护手段因存在工作强度大、安全风险高、作业效率低等缺点越来越难以满足实际需求。为遵循配网检修作业“能带不停”的原则,各地供电企业单位正在不断加强配网不停电能力建设,不停电作业已成为设备检修维护的重要手段。In recent years, with the steady progress of the national smart grid construction and the increasing requirements for power supply stability, traditional distribution network maintenance methods have become more and more difficult to meet actual needs due to the shortcomings of high work intensity, high safety risks, and low operation efficiency. In order to follow the principle of "unstoppable operation" in the maintenance work of the distribution network, power supply enterprises in various regions are constantly strengthening the construction of the uninterrupted power supply of the distribution network, and the uninterrupted operation has become an important means of equipment maintenance.
带电作业机器人系统依托机械臂控制技术、人工智能算法、视觉传感器等已成为一种较常见的电力维护运维手段,已成为替换人工作业的一种重要作业方式。现有技术中,发展半自主、全自主的带电作业机器人已逐渐成为电力场景检修和维护的必然趋势。然而带电作业机器人在实际应用中还存在各种各样的问题,尤其是对于目标定位识别的准确性,有待进一步提高。Relying on robotic arm control technology, artificial intelligence algorithms, visual sensors, etc., the live working robot system has become a relatively common means of power maintenance, operation and maintenance, and has become an important operation method to replace manual operations. In the prior art, the development of semi-autonomous and fully autonomous live working robots has gradually become an inevitable trend in the overhaul and maintenance of power scenarios. However, there are still various problems in the practical application of live working robots, especially the accuracy of target positioning and recognition, which needs to be further improved.
发明内容SUMMARY OF THE INVENTION
基于现有技术的上述情况,本发明的目的在于提供一种高压线缆目标识别定位方法及装置,利用优化后的Yolo v4目标检测技术和色彩追踪技术,结合深度相机,实现对高压线缆目标三维坐标的提取。从而解决了现有技术中目标识别在不同背景下存在识别定位不准确的问题。Based on the above situation of the prior art, the purpose of the present invention is to provide a high-voltage cable target identification and positioning method and device, using the optimized Yolo v4 target detection technology and color tracking technology, combined with a depth camera, to achieve high-voltage cable target detection Extraction of 3D coordinates. Thus, the problem of inaccurate identification and positioning in the prior art of target identification under different backgrounds is solved.
为达到上述目的,根据本发明的一个方面,提供了一种高压线缆目标识别定位方法,包括步骤:In order to achieve the above object, according to one aspect of the present invention, a method for identifying and locating a target of a high-voltage cable is provided, comprising the steps of:
采集高压线缆图像,并进行预处理;Collect high-voltage cable images and perform preprocessing;
优化YOLO v4深度神经网络模型,简化其骨干网络中的残差单元个数,并减少通道数量;Optimize the YOLO v4 deep neural network model, simplify the number of residual units in its backbone network, and reduce the number of channels;
采用训练后的深度神经网络模型识别图像中的高压线缆目标并提取该目标的ROI区域;Use the trained deep neural network model to identify the high-voltage cable target in the image and extract the ROI area of the target;
根据该高压线缆目标的固有属性和深度信息,在ROI区域中提取该目标的最小外接矩形;According to the intrinsic properties and depth information of the high-voltage cable target, extract the minimum circumscribed rectangle of the target in the ROI area;
根据该最小外接矩形将线缆目标在长度上进行N等分,求得等分点的三维坐标;Divide the cable target into N equal parts in length according to the minimum circumscribed rectangle, and obtain the three-dimensional coordinates of the divided points;
利用所述三维坐标进行定位。Positioning is performed using the three-dimensional coordinates.
进一步的,所述采集高压线缆目标图像,并进行预处理,包括:Further, the collecting and preprocessing of the high-voltage cable target image includes:
采用深度相机采集高压线缆图像;Use a depth camera to collect high-voltage cable images;
对所采集的图像进行标注。Annotate the acquired images.
进一步的,所述采用训练后的深度神经网络模型识别图像中的高压线缆目标并提取该目标的ROI区域,包括:Further, using the trained deep neural network model to identify the high-voltage cable target in the image and extract the ROI area of the target, including:
采用训练后的深度神经网络模型对该图像进行目标检测;Use the trained deep neural network model to perform target detection on the image;
判断该图像中是否包含高压线缆目标,若包含,则进行下一步;若不包含,则返回采集高压线缆图像的步骤;Determine whether the image contains a high-voltage cable target, and if so, proceed to the next step; if not, return to the step of collecting the high-voltage cable image;
根据检测结果输出的位置信息在所采集的图像上对线缆目标的ROI区域做掩模处理。The ROI area of the cable target is masked on the collected image according to the position information output from the detection result.
进一步的,所述根据该高压线缆目标的固有属性和深度信息,在ROI区域中提取该目标的最小外接矩形,包括:Further, according to the intrinsic properties and depth information of the high-voltage cable target, extracting the minimum circumscribed rectangle of the target in the ROI area, including:
对所述ROI区域进行HSV特征变换,并统计其分布特征;Perform HSV feature transformation on the ROI area, and count its distribution features;
根据所统计的HSV分布特征以及该高压线缆目标的固有属性和深度信息,选择阈值以进行二值化处理;According to the statistics of HSV distribution characteristics and the inherent properties and depth information of the high-voltage cable target, a threshold is selected for binarization;
对该二值化处理后的图像利用形态学处理进行滤波;The binarized image is filtered by morphological processing;
利用图像的矩求得线缆目标的最小外接矩形。The minimum circumscribed rectangle of the cable target is obtained by using the moments of the image.
进一步的,还包括步骤:Further, it also includes steps:
在求得线缆目标的最小外接矩形后,判断该矩形内是否包含目标,若包含,则进行下一步;若不包含,则返回采集高压线缆图像的步骤。After the minimum circumscribed rectangle of the cable target is obtained, it is judged whether the rectangle contains the target, if so, proceed to the next step; if not, return to the step of collecting high-voltage cables.
进一步的,所述将线缆目标在长度上进行N等分,求得等分点的三维坐标,包括:Further, the cable target is divided into N equal parts in length, and the three-dimensional coordinates of the divided points are obtained, including:
根据最小外接矩形的位置信息以及旋转角度在该矩形的长边上进行N等分;所述旋转角度在求得线缆目标的最小外接矩形的过程中获得;According to the position information of the minimum circumscribed rectangle and the rotation angle, the long side of the rectangle is divided into N equal parts; the rotation angle is obtained in the process of obtaining the minimum circumscribed rectangle of the cable target;
根据相机深度信息及参数信息求得等分点的三维坐标值。According to the camera depth information and parameter information, the three-dimensional coordinate value of the equally divided point is obtained.
根据本发明的第二个方面,提供了一种带电作业机器人的机械臂引导方法,该方法利用高压线缆目标识别定位方法获得的三维坐标,引导带电作业机器人的机械臂进行作业,高压线缆目标识别定位方法包括如本发明第一个方面所述的方法。According to a second aspect of the present invention, a method for guiding a robotic arm of a live working robot is provided. The method utilizes three-dimensional coordinates obtained by a high-voltage cable target recognition and positioning method to guide the robotic arm of the live working robot to perform operations. The target identification and positioning method includes the method described in the first aspect of the present invention.
根据本发明的第三个方面,提供了一种高压线缆目标识别定位装置,包括图像采集模块、神经网络模型优化模块、图像识别模块、坐标获取模块、以及定位模块;其中,According to a third aspect of the present invention, a high-voltage cable target identification and positioning device is provided, including an image acquisition module, a neural network model optimization module, an image identification module, a coordinate acquisition module, and a positioning module; wherein,
所述图像采集模块用于采集高压线缆图像,并进行预处理;The image acquisition module is used to acquire high-voltage cable images and perform preprocessing;
所述神经网络模型优化模块用于优化YOLO v4深度神经网络模型,简化其骨干网络中的残差单元个数,并减少通道数量;The neural network model optimization module is used to optimize the YOLO v4 deep neural network model, simplify the number of residual units in its backbone network, and reduce the number of channels;
所述图像识别模块采用训练后的深度神经网络模型识别图像中的高压线缆目标并提取该目标的ROI区域;The image recognition module uses the trained deep neural network model to recognize the high-voltage cable target in the image and extract the ROI area of the target;
所述坐标获取模块用于根据该高压线缆目标的固有属性和深度信息,在ROI区域中提取该目标的最小外接矩形;并根据该最小外接矩形将线缆目标在长度上进行N等分,求得等分点的三维坐标;The coordinate acquisition module is used to extract the minimum circumscribed rectangle of the target in the ROI area according to the inherent properties and depth information of the high-voltage cable target; and divide the cable target into N equal parts in length according to the minimum circumscribed rectangle, Find the three-dimensional coordinates of the equal points;
所述定位模块利用所述三维坐标进行定位。The positioning module performs positioning using the three-dimensional coordinates.
进一步的,所述坐标获取模块根据该高压线缆目标的固有属性和深度信息,在ROI区域中提取该目标的最小外接矩形,包括:Further, the coordinate acquisition module extracts the minimum circumscribed rectangle of the target in the ROI area according to the inherent attributes and depth information of the high-voltage cable target, including:
对所述ROI区域进行HSV特征变换,并统计其分布特征;Perform HSV feature transformation on the ROI area, and count its distribution features;
根据所统计的HSV分布特征以及该高压线缆目标的固有属性和深度信息,选择阈值以进行二值化处理;According to the statistics of HSV distribution characteristics and the inherent properties and depth information of the high-voltage cable target, a threshold is selected for binarization;
对该二值化处理后的图像利用形态学处理进行滤波;The binarized image is filtered by morphological processing;
利用图像的矩求得线缆目标的最小外接矩形。The minimum circumscribed rectangle of the cable target is obtained by using the moments of the image.
根据本发明的第四个方面,提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本发明第一个方面所述的方法。According to a fourth aspect of the present invention, there is provided a storage medium storing a computer program, the computer program implementing the method according to the first aspect of the present invention when executed by a processor.
综上所述,本发明提供了一种高压线缆目标识别定位方法及装置,对Yolo v4深度神经网络模型进行优化并利用其提取目标的ROI区域;然后,结合HSV色彩追踪技术,提取ROI区域内线缆目标最小外接矩形;最后,结合深度相机的参数信息求得线缆目标上多个等分点的三维坐标信息,从而实现了对高压线缆目标三维坐标的提取,进而为带电作业机器人的机械臂动作提供更加准确的目标空间信息。本发明提供的定位识别方法,在对高压电缆的识别上的识别速度更快,识别准确率提高,并具有更高的可靠性,解决了现有技术中目标识别在不同背景下存在识别定位不准确的问题。In summary, the present invention provides a high-voltage cable target identification and positioning method and device, which optimizes the Yolo v4 deep neural network model and uses it to extract the ROI area of the target; then, combined with the HSV color tracking technology, extracts the ROI area The minimum circumscribed rectangle of the inner cable target; finally, combined with the parameter information of the depth camera, the three-dimensional coordinate information of multiple equal points on the cable target is obtained, so as to realize the extraction of the three-dimensional coordinates of the high-voltage cable target, and then for the live working robot The motion of the robotic arm provides more accurate target space information. The positioning and identification method provided by the present invention has faster identification speed in identification of high-voltage cables, improved identification accuracy, and higher reliability, and solves the problem of inconsistencies in identification and positioning in the prior art for target identification under different backgrounds. exact question.
附图说明Description of drawings
图1是本发明高压线缆目标识别定位方法的流程图;Fig. 1 is the flow chart of the high-voltage cable target identification and positioning method of the present invention;
图2是不同光线、角度下统计的线缆目标HSV特征分布图;Figure 2 is the distribution diagram of cable target HSV characteristics under different light and angle statistics;
图3是本发明高压线缆目标识别定位装置的构成框图。FIG. 3 is a block diagram of the structure of the high-voltage cable target identification and positioning device of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the specific embodiments and the accompanying drawings. It should be understood that these descriptions are exemplary only and are not intended to limit the scope of the invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present invention.
下面对结合附图对本发明的技术方案进行详细说明。根据本发明的一个实施例,提供了一种高压线缆目标识别定位方法,该方法的流程图如图1所示,包括如下步骤:The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings. According to an embodiment of the present invention, a method for identifying and locating a target of a high-voltage cable is provided. The flowchart of the method is shown in FIG. 1 and includes the following steps:
S1、采集高压线缆图像,并进行预处理。可以采用深度相机来采集高压线缆目标图像,该图像中包括线缆的各种位置、高度以及角度等信息。相比较传统的相机,深度相机在功能上添加了深度测量功能,从而能够更方便准确的感知周围的环境及变化。对图像进行预处理,以消除噪声的影响,例如可以使用Yolo_mark或labelImg等处理软件对图像进行标注,并将其保存为txt格式。S1. Collect high-voltage cable images and perform preprocessing. A depth camera can be used to collect an image of a high-voltage cable target, and the image includes information such as various positions, heights, and angles of the cable. Compared with traditional cameras, the depth camera adds a depth measurement function to the function, which makes it more convenient and accurate to perceive the surrounding environment and changes. Preprocess the image to remove the influence of noise. For example, you can use processing software such as Yolo_mark or labelImg to label the image and save it in txt format.
S2、优化YOLO v4深度神经网络模型。在本实施例中,采用YOLO v4深度神经网络模型进行图像识别。YOLO v4深度神经网络模型是一个结合了大量前人研究技术,加以组合并进行适当创新的算法,实现了速度和精度的平衡。针对具体的应用对象,本实施例对YOLOv4深度神经网络模型进行了适当优化,以使其在对于高压电缆的识别上的识别速度更快,识别准确率提高,并具有更高的可靠性。优化过程包括:对特征提取骨干网络进行精简优化,YOLO v4的CSPDarknet53骨干网络拥有5个下采样层和5个CSPNet结构,CSPNet结构内分别拥有1、2、8、8、4个残差单元Res-unit。本实施例中将CSPNet结构内残差单元个数简化为1、2、4、4、2个残差单元,并利用通道数量减半来进一步缩小模型尺寸;改进SPP结构网络,通过添加Shortcut层,形成一个类似CSP单元的结构,即CSP-SPP模块;利用网络裁剪方法在通道维度上进行裁剪;利用k-Means聚类方法,结合高压线缆实际目标,生成高压线缆的anchors尺寸,替换配置文件内anchors。S2. Optimize the YOLO v4 deep neural network model. In this embodiment, the YOLO v4 deep neural network model is used for image recognition. The YOLO v4 deep neural network model is an algorithm that combines a large number of previous research techniques, combined with appropriate innovation, and achieves a balance between speed and accuracy. For specific application objects, this embodiment appropriately optimizes the YOLOv4 deep neural network model, so that it can recognize high-voltage cables faster, improve the recognition accuracy, and have higher reliability. The optimization process includes: streamlining and optimizing the feature extraction backbone network. The CSPDarknet53 backbone network of YOLO v4 has 5 downsampling layers and 5 CSPNet structures, and the CSPNet structure has 1, 2, 8, 8, and 4 residual units Res respectively. -unit. In this embodiment, the number of residual units in the CSPNet structure is simplified to 1, 2, 4, 4, and 2 residual units, and the number of channels is halved to further reduce the size of the model; the SPP structure network is improved by adding a Shortcut layer , form a structure similar to CSP unit, namely CSP-SPP module; use the network cutting method to cut in the channel dimension; use the k-Means clustering method, combined with the actual target of the high-voltage cable, generate the anchors size of the high-voltage cable, replace Anchors within the configuration file.
S3、采用训练后的深度神经网络模型识别图像中的高压线缆目标并提取该目标的ROI区域。可以采用以下步骤:S3. Use the trained deep neural network model to identify the high-voltage cable target in the image and extract the ROI area of the target. The following steps can be taken:
采用训练后的深度神经网络模型对该图像进行目标检测;Use the trained deep neural network model to perform target detection on the image;
判断该图像中是否包含高压线缆目标,若包含,则进行下一步;若不包含,则返回采集高压线缆图像的步骤;Determine whether the image contains a high-voltage cable target, and if so, proceed to the next step; if not, return to the step of collecting the high-voltage cable image;
根据检测结果输出的位置信息在所采集的图像上对线缆目标的ROI区域做掩模处理。The ROI area of the cable target is masked on the collected image according to the position information output from the detection result.
S4、根据该高压线缆目标的固有属性和深度信息,提取该线缆目标的最小外接矩形。以下进行详细说明。S4. According to the intrinsic properties and depth information of the high-voltage cable target, extract the minimum circumscribed rectangle of the cable target. A detailed description will be given below.
对所述ROI区域进行HSV特征变换,并统计其分布特征。在本实施例中,根据不同光照、不同角度线缆成像特点,统计1300余个线缆像素点H、S、V三分量值,并统计其分布特征,在不同光线、角度下统计的线缆目标HSV特征分布如图2所示,其中横坐标表示H、S、V的量值,纵坐标表示其强度。根据所统计的HSV分布特征以及该高压线缆目标的固有属性,选择阈值以进行二值化处理,即在HSV颜色空间下,根据不同环境下高压线缆色彩信息的固有属性和深度信息,选取合适的阈值进行二值化处理,具体来说,可以根据预设的线缆目标距离深度相机范围,对ROI区域对应得深度图进行二值化处理,然后将两次的二值化图进行与运算,以获得更准确的二值化图。利用形态学处理对二值化处理后的图像进行滤波;利用图像的矩求得线缆目标的最小外接矩形。由于二值化处理后得到的线缆图像为黑白图,正常情况下图中白色部分代表线缆,黑色部分代表背景;但是在异常情况下也会提取到一些色彩比较接近线缆色彩的伪目标,对图像进行上述处理可以得到可靠性更高的目标图像。在该步骤中,例如可以采用常用的图像处理软件OpenCV中的基本函数来求得最小外接矩形,并且在此过程中可以获取到该最小外接矩形的长宽比、面积大小以及旋转角度等参数。HSV feature transformation is performed on the ROI region, and its distribution features are counted. In this embodiment, according to the imaging characteristics of cables with different lighting and different angles, the H, S, and V three-component values of more than 1300 cable pixel points are counted, and their distribution characteristics are counted. The target HSV feature distribution is shown in Figure 2, where the abscissa represents the magnitude of H, S, and V, and the ordinate represents its intensity. According to the statistics of the HSV distribution characteristics and the inherent properties of the high-voltage cable target, the threshold is selected for binarization processing, that is, in the HSV color space, according to the inherent properties and depth information of the high-voltage cable color information in different environments, select A suitable threshold is used for binarization. Specifically, the depth map corresponding to the ROI area can be binarized according to the preset range of the cable target distance and depth camera, and then the two binarized maps are compared with each other. operation to obtain a more accurate binarized image. The binarized image is filtered by morphological processing; the minimum circumscribed rectangle of the cable target is obtained by using the moment of the image. Since the cable image obtained after binarization is a black and white image, under normal circumstances, the white part in the figure represents the cable, and the black part represents the background; however, under abnormal conditions, some pseudo-targets with colors that are closer to the cable color will also be extracted. , performing the above processing on the image can obtain the target image with higher reliability. In this step, for example, the basic functions in the commonly used image processing software OpenCV can be used to obtain the minimum circumscribed rectangle, and parameters such as the aspect ratio, area size, and rotation angle of the minimum circumscribed rectangle can be obtained in this process.
在求得线缆目标的最小外接矩形后,判断该矩形内是否包含目标,若包含,则进行步骤S5;若不包含,则返回步骤S1采集高压线缆图像。可以利用上一步骤中获得的最小外接矩形的长宽比、面积大小以及旋转角度等参数来判断该求得的最小外接矩形中是否包含高压线缆目标,即对目标识别的结果进行了再一次验证。After the minimum circumscribed rectangle of the cable target is obtained, it is judged whether the rectangle contains the target, if so, go to step S5; if not, return to step S1 to collect the high-voltage cable image. The aspect ratio, area size and rotation angle of the minimum circumscribed rectangle obtained in the previous step can be used to determine whether the obtained minimum circumscribed rectangle contains a high-voltage cable target, that is, the target recognition result is performed again. verify.
S5、根据该最小外接矩形将线缆目标在长度上进行N等分,求得等分点的三维坐标。根据最小外接矩形的位置信息以及在上一步骤中获得的参数旋转角度在该矩形的长边上进行N等分;根据相机深度信息及参数信息求得等分点的三维坐标值。其中,参数信息包括相机的内部参数信息以及镜头焦距等信息。三维坐标值可以采用常用的投影公式获得。S5. Divide the cable target into N equal parts in length according to the minimum circumscribed rectangle, and obtain the three-dimensional coordinates of the divided points. According to the position information of the minimum circumscribed rectangle and the parameter rotation angle obtained in the previous step, divide N equally on the long side of the rectangle; obtain the three-dimensional coordinate value of the divided point according to the camera depth information and parameter information. The parameter information includes internal parameter information of the camera and information such as the focal length of the lens. The three-dimensional coordinate value can be obtained by using the commonly used projection formula.
S6、利用所述三维坐标进行定位。S6. Use the three-dimensional coordinates to perform positioning.
根据本发明的第二个实施例,提供了一种带电作业机器人的机械臂引导方法,该方法利用高压线缆目标识别定位方法获得的三维坐标,引导带电作业机器人的机械臂进行作业。其中,高压线缆目标识别定位方法可以采用如本发明第一个实施例中所述的定位方法。在实际应用中,当下位机采用该定位方法获取到等分点的三维坐标信息后,采用例如socket等通信协议,将三维坐标信息上传至控制中心,由控制中心根据三维坐标信息对带电作业机器人的机械臂下发控制指令,控制其到达指定位置。According to a second embodiment of the present invention, a method for guiding a robotic arm of a live working robot is provided, which uses the three-dimensional coordinates obtained by a high-voltage cable target identification and positioning method to guide the robotic arm of the live working robot to perform operations. The high-voltage cable target identification and positioning method may adopt the positioning method described in the first embodiment of the present invention. In practical applications, after the host computer uses this positioning method to obtain the three-dimensional coordinate information of the equidistant point, it uses a communication protocol such as socket to upload the three-dimensional coordinate information to the control center, and the control center will carry out the live work robot according to the three-dimensional coordinate information. The robot arm sends control commands to control it to the specified position.
根据本发明的第三个实施例,提供了一种高压线缆目标识别定位装置,该装置的构成框图如图3所示,包括图像采集模块、神经网络模型优化模块、图像识别模块、坐标获取模块、以及定位模块。According to a third embodiment of the present invention, a high-voltage cable target identification and positioning device is provided. The block diagram of the device is shown in FIG. 3 , including an image acquisition module, a neural network model optimization module, an image recognition module, and a coordinate acquisition module. module, and positioning module.
图像采集模块用于采集高压线缆图像,并进行预处理;The image acquisition module is used to collect high-voltage cable images and perform preprocessing;
神经网络模型优化模块用于优化YOLO v4深度神经网络模型;The neural network model optimization module is used to optimize the YOLO v4 deep neural network model;
图像识别模块采用训练后的深度神经网络模型识别并提取高压线缆目标图像的ROI区域;The image recognition module uses the trained deep neural network model to identify and extract the ROI area of the high-voltage cable target image;
坐标获取模块用于根据该高压线缆目标的固有属性和深度信息,提取该线缆目标的最小外接矩形;并根据该最小外接矩形将线缆目标在长度上进行N等分,求得等分点的三维坐标;The coordinate acquisition module is used to extract the minimum circumscribed rectangle of the cable target according to the inherent properties and depth information of the high-voltage cable target; and divide the length of the cable target into N equal parts according to the minimum circumscribed rectangle to obtain equal divisions the three-dimensional coordinates of the point;
定位模块利用所述三维坐标进行定位。The positioning module uses the three-dimensional coordinates for positioning.
该装置中各模块实现其功能的具体过程与本发明提供的第一个实施例中故障定位方法的各步骤相同,在此不再赘述。The specific process of each module in the device implementing its function is the same as each step of the fault location method in the first embodiment provided by the present invention, which is not repeated here.
根据本发明的第四个实施例,提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本发明第一个或第二个实施例中所述的方法。According to a fourth embodiment of the present invention, there is provided a storage medium storing a computer program which, when executed by a processor, implements the method described in the first or second embodiment of the present invention method described.
综上所述,本发明涉及一种高压线缆目标识别定位方法及装置,对Yolo v4深度神经网络模型进行优化并利用其提取目标的ROI区域;然后,结合HSV色彩追踪技术,提取ROI区域内线缆目标最小外接矩形;最后,结合深度相机的参数信息求得线缆目标上多个等分点的三维坐标信息,从而实现了对高压线缆目标三维坐标的提取,进而为带电作业机器人的机械臂动作提供更加准确的目标空间信息。本发明提供的定位识别方法,在对高压电缆的识别上的识别速度更快,识别准确率提高,并具有更高的可靠性,解决了现有技术中目标识别在不同背景下存在识别定位不准确的问题。In summary, the present invention relates to a high-voltage cable target identification and positioning method and device, which optimizes the Yolo v4 deep neural network model and uses it to extract the ROI area of the target; and then, combined with the HSV color tracking technology, extracts the ROI area. The minimum circumscribed rectangle of the cable target; finally, combined with the parameter information of the depth camera, the three-dimensional coordinate information of multiple equal points on the cable target is obtained, so as to realize the extraction of the three-dimensional coordinates of the high-voltage cable target, and then for the live working robot. The motion of the robotic arm provides more accurate target space information. The positioning and identification method provided by the present invention has faster identification speed in identification of high-voltage cables, improved identification accuracy, and higher reliability, and solves the problem of inconsistencies in identification and positioning in the prior art for target identification under different backgrounds. exact question.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。It should be understood that the above-mentioned specific embodiments of the present invention are only used to illustrate or explain the principle of the present invention, but not to limit the present invention. Therefore, any modifications, equivalent replacements, improvements, etc. made without departing from the spirit and scope of the present invention should be included within the protection scope of the present invention. Furthermore, the appended claims of this invention are intended to cover all changes and modifications that fall within the scope and boundaries of the appended claims, or the equivalents of such scope and boundaries.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110973073.9A CN113807348A (en) | 2021-08-24 | 2021-08-24 | A kind of high-voltage cable target identification and positioning method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110973073.9A CN113807348A (en) | 2021-08-24 | 2021-08-24 | A kind of high-voltage cable target identification and positioning method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113807348A true CN113807348A (en) | 2021-12-17 |
Family
ID=78941484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110973073.9A Pending CN113807348A (en) | 2021-08-24 | 2021-08-24 | A kind of high-voltage cable target identification and positioning method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113807348A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114511695A (en) * | 2022-02-21 | 2022-05-17 | 上海锡鼎智能科技有限公司 | Wire detection method for electrical experiment evaluation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109814600A (en) * | 2019-03-12 | 2019-05-28 | 重庆大学 | A UAV cable tunnel inspection flight method |
CN112069886A (en) * | 2020-07-31 | 2020-12-11 | 许继集团有限公司 | Transformer substation respirator state intelligent identification method and system |
CN112796036A (en) * | 2020-12-29 | 2021-05-14 | 黑龙江维摩科技有限责任公司 | Bobbin state detection method |
-
2021
- 2021-08-24 CN CN202110973073.9A patent/CN113807348A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109814600A (en) * | 2019-03-12 | 2019-05-28 | 重庆大学 | A UAV cable tunnel inspection flight method |
CN112069886A (en) * | 2020-07-31 | 2020-12-11 | 许继集团有限公司 | Transformer substation respirator state intelligent identification method and system |
CN112796036A (en) * | 2020-12-29 | 2021-05-14 | 黑龙江维摩科技有限责任公司 | Bobbin state detection method |
Non-Patent Citations (1)
Title |
---|
李东宾 等: "基于改进YOLO 与HSV 变换的高压线缆识别定位方法", 《通信电源技术》, vol. 38, no. 12, pages 1 - 6 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114511695A (en) * | 2022-02-21 | 2022-05-17 | 上海锡鼎智能科技有限公司 | Wire detection method for electrical experiment evaluation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110222787B (en) | Multi-scale target detection method, device, computer equipment and storage medium | |
CN110084243B (en) | File identification and positioning method based on two-dimensional code and monocular camera | |
EP3920095A1 (en) | Image processing method and apparatus, moveable platform, unmanned aerial vehicle and storage medium | |
CN113052903B (en) | Vision and radar fusion positioning method for mobile robot | |
CN111291708A (en) | Obstacle detection and recognition method for substation inspection robot based on depth camera | |
CN111563442A (en) | Slam method and system for fusing point cloud and camera image data based on laser radar | |
US12293457B2 (en) | Positioning method based on semantic information, device and computer-readable storage medium | |
CN112232139B (en) | An obstacle avoidance method based on the combination of Yolo v4 and Tof algorithm | |
CN114782626A (en) | Substation scene mapping and positioning optimization method based on fusion of laser and vision | |
CN109949593A (en) | A traffic signal recognition method and system based on prior knowledge of intersections | |
CN113837166B (en) | Automatic pointer instrument reading method based on deep learning | |
CN114387576B (en) | Lane line recognition method, system, medium, device and information processing terminal | |
CN112197705A (en) | Fruit positioning method based on vision and laser ranging | |
CN114677531B (en) | Multi-mode information fusion method for detecting and positioning targets of unmanned surface vehicle | |
CN114067206A (en) | Spherical fruit identification and positioning method based on depth image | |
Liu et al. | YES-SLAM: YOLOv7-enhanced-semantic visual SLAM for mobile robots in dynamic scenes | |
CN113807348A (en) | A kind of high-voltage cable target identification and positioning method and device | |
Hou et al. | Detection and localization of citrus picking points based on binocular vision | |
CN113780040B (en) | Positioning method and device for lip key points, storage medium and electronic equipment | |
CN119206203A (en) | A semantic visual SLAM method based on deep mask segmentation in dynamic environment | |
CN118781192A (en) | Multi-mobile robot visual SLAM method based on deep learning | |
Liu et al. | A multi-sensor fusion based 2D-driven 3D object detection approach for large scene applications | |
CN116660916B (en) | Positioning method, mapping method and electronic equipment for orchard mobile robot | |
CN118115712A (en) | A terminal bud identification and positioning system and method suitable for a cotton topping machine in the field | |
CN117671637A (en) | Object point cloud overlapping identification method, device, equipment, robot and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211217 |
|
RJ01 | Rejection of invention patent application after publication |