CN113805177A - 一种毫米波角雷达威力覆盖范围实现方法 - Google Patents

一种毫米波角雷达威力覆盖范围实现方法 Download PDF

Info

Publication number
CN113805177A
CN113805177A CN202110847146.XA CN202110847146A CN113805177A CN 113805177 A CN113805177 A CN 113805177A CN 202110847146 A CN202110847146 A CN 202110847146A CN 113805177 A CN113805177 A CN 113805177A
Authority
CN
China
Prior art keywords
radar
antenna
power coverage
millimeter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110847146.XA
Other languages
English (en)
Inventor
罗善文
孙靖虎
朱海洋
西格弗雷德·博龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Desay SV Intelligent Transport Technology Research Institute Co Ltd
Original Assignee
Huizhou Desay SV Intelligent Transport Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Desay SV Intelligent Transport Technology Research Institute Co Ltd filed Critical Huizhou Desay SV Intelligent Transport Technology Research Institute Co Ltd
Priority to CN202110847146.XA priority Critical patent/CN113805177A/zh
Publication of CN113805177A publication Critical patent/CN113805177A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种毫米波角雷达威力覆盖范围实现方法,通过对雷达天线波束进行赋形以实现角雷达对车辆正后方和侧方目标探测的威力覆盖范围需求,并且采用同时MIMO(多输入多输出)的发射方式,对发射波形进行相位的调制,进一步提高雷达发射功率,进而提高信噪比,以满足角雷达在不同安装角度下对整个FOV(视场角)范围内目标的准确探测。

Description

一种毫米波角雷达威力覆盖范围实现方法
技术领域
本发明涉及毫米波角雷达技术领域,尤其是涉及一种毫米波角雷达威力覆盖范围实现方法。
背景技术
毫米波雷达作为智能驾驶辅助系统(ADAS)中不可或缺的一部分,它的应用使得汽车主动安全预警系统得到了升级,给汽车驾驶提供了安全保障,在一定程度上保证了驾驶员的生命财产不受侵害。将毫米波防撞雷达应用到汽车上,可以方便的探测到目标的距离、速度及角度等信息,一旦遇到危险可以及时的提出预警。
由于角雷达的威力覆盖范围需求主要在车辆的正后方和侧方,正后方的探测距离目标需要达到90~100m,侧方探测距离目标需要达到50~60m。基于此距离需求,需要增大天线的阵元数以提高增益,进而提高雷达探测距离,但这样会增加天线的尺寸,减小天线俯仰面的波束宽度;并且,雷达安装在车辆的拐角上,对法线方向的探测距离要求不高,传统的设计会造成天线法线辐射方向的增益浪费。因此,考虑到一定的安装角度范围,为满足此威力覆盖范围需求,在现有雷达结构基础上减小天线增益、波束宽度及尺寸的设计压力,研究雷达天线的波束赋形及同时MIMO的发射调相方式显得尤为必要。
发明内容
针对上述问题,本专利提出了一种毫米波角雷达威力覆盖范围实现方法,包括以下步骤:
S1:根据实际应用定义毫米波角雷达威力覆盖范围,设计雷达天线方向图的初始形状及确定天线的波束赋形要求;
S2:根据雷达系统链路公式分别计算得天线设计所需要的发射(Gtx)和接收(Grx)增益要求;
S3:采用同时MIMO的方式,使雷达三个发射通道同时发射,并在各发射波形上进行相位调制,获得雷达在不同安装角度下对整个视场角FOV范围内目标的探测结果。
其中,所述毫米波角雷达威力覆盖范围包括:汽车正后方最远距离车身100m处区域,及侧后方距离车身50-60m处区域。
所述雷达天线方向图的初始形状包括:汽车正后方的梯形区域,及汽车侧后方的半圆形区域。
进一步的,所述雷达系统链路公式为:
Figure 706843DEST_PATH_IMAGE001
Figure 436902DEST_PATH_IMAGE002
Figure 636939DEST_PATH_IMAGE003
其中,Psig为接收信号功率;PTX为雷达芯片发射功率;GTX,ANT 为发射天线增益;LTX 为发射馈线损耗;GRX,ANT 为接收天线增益;LRX 为接收馈线损耗;LRAD 为雷达天线罩损耗;RCS为雷达目标散射截面;λ为工作波长;R为目标距离;GRX 为接收链路增益;Lbumper 为保险杠损耗;Pnoise 为链路噪声;k为玻尔兹曼常数,k=1.380649 × 10-23 J/K;T为工作温度;B为中频信号带宽;NFcascade为接收链路总噪声;SNR为信噪比;
根据算法检测信噪比SNR要求反推得到发射和接收天线增益GTX,ANT 和GRX,ANT。
其中,所述S3还包括:分别通过天线的3个发射通道:通道TX1,通道TX2和通道TX3同时发射雷达波形,其中,通道TX1相位为0,通道TX2相位为0和π交替变化,通道TX3相位为0,0,π和π交替变化;进行雷达帧间相位调制,得到调相波束T。
进一步的,所述调相波束T在同一时刻的相位分别为Beam1:Tx Phase=[0,0,0],Beam2:Tx Phase=[0,π,0],Beam3:Tx Phase=[0,0,π],Beam4:Tx Phase=[0,π,π]。
所述天线的3个发射通道根据所述调相波束T进行发射雷达波形,通过空间上的叠加获得不同天线方向图结果,最终获得不同雷达安装角度下的FOV范围探测结果。
所述安装角度至少为雷达相对车辆正后方35°-50°安装角度范围。
所述FOV范围探测结果完全覆盖所述雷达天线方向图的初始形状。
综上所述,本发明提供一种毫米波角雷达威力覆盖范围实现方法,通过对雷达天线波束进行赋形以实现角雷达对车辆正后方和侧方目标探测的威力覆盖范围需求,并且采用同时MIMO(多输入多输出)的发射方式,对发射波形进行相位的调制,进一步提高雷达发射功率,进而提高信噪比,以满足角雷达在不同安装角度下对整个FOV(视场角)范围内目标的准确探测。
附图说明
图1 为毫米波角雷达威力覆盖范围需求示意图。
图2为雷达天线方向图。
图3为雷达发射相位调制示意图。
图4为雷达帧间调相波束示意图。
图5为雷达35°安装角度下Beam1威力覆盖范围。
图6为雷达35°安装角度下Beam2威力覆盖范围。
图7为雷达35°安装角度下Beam3威力覆盖范围。
图8为雷达35°安装角度下Beam4威力覆盖范围。
图9为雷达50°安装角度下Beam1威力覆盖范围。
图10为雷达50°安装角度下Beam2威力覆盖范围。
图11为雷达50°安装角度下Beam3威力覆盖范围。
图12为雷达50°安装角度下Beam4威力覆盖范围。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本专利提出了一种毫米波角雷达威力覆盖范围实现方法,包括以下步骤:
S1:根据实际应用定义毫米波角雷达威力覆盖范围,设计雷达天线方向图的初始形状及确定天线的波束赋形要求;
S2:根据雷达系统链路公式分别计算得天线设计所需要的发射(Gtx)和接收(Grx)增益要求(如图2所示);
S3:采用同时MIMO的方式,使雷达三个发射通道同时发射,并在各发射波形上进行相位调制,获得雷达在不同安装角度下对整个视场角FOV范围内目标的探测结果。
其中,所述毫米波角雷达威力覆盖范围包括:汽车正后方最远距离车身100m处区域,及侧后方距离车身50-60m处区域。
所述雷达天线方向图的初始形状包括:汽车正后方的梯形区域,及汽车侧后方的半圆形区域。
进一步的,所述雷达系统链路公式为:
Figure 521980DEST_PATH_IMAGE001
Figure 73047DEST_PATH_IMAGE002
Figure 341218DEST_PATH_IMAGE003
其中,Psig为接收信号功率;PTX为雷达芯片发射功率;GTX,ANT 为发射天线增益;LTX 为发射馈线损耗;GRX,ANT 为接收天线增益;LRX 为接收馈线损耗;LRAD 为雷达天线罩损耗;RCS为雷达目标散射截面;λ为工作波长;R为目标距离;GRX 为接收链路增益;Lbumper 为保险杠损耗;Pnoise 为链路噪声;k为玻尔兹曼常数,k=1.380649 × 10-23 J/K;T为工作温度;B为中频信号带宽;NFcascade为接收链路总噪声;SNR为信噪比;
根据算法检测信噪比SNR要求反推得到发射和接收天线增益GTX,ANT 和GRX,ANT。
其中,(如图3所示)所述S3还包括:分别通过天线的3个发射通道:通道TX1,通道TX2和通道TX3同时发射雷达波形,其中,通道TX1相位为0,通道TX2相位为0和π交替变化,通道TX3相位为0,0,π和π交替变化;进行雷达帧间相位调制,得到调相波束T(如图4所示)。
进一步的,所述调相波束T在同一时刻的相位分别为Beam1:Tx Phase=[0,0,0],Beam2:Tx Phase=[0,π,0],Beam3:Tx Phase=[0,0,π],Beam4:Tx Phase=[0,π,π]。
所述天线的3个发射通道根据所述调相波束T进行发射雷达波形,通过空间上的叠加获得不同天线方向图结果,最终获得不同雷达安装角度下的FOV范围探测结果。
所述安装角度至少为雷达相对车辆正后方35°-50°安装角度范围。
所述FOV范围探测结果完全覆盖所述雷达天线方向图的初始形状。
作为另一优选实施例,如图5-8所示,采用本发明所述的方法,即结合上述步骤1-3使得天线方向图在空间上进行合成以满足角雷达不同安装角度下的威力覆盖范围需求。例如,分别为雷达相对车辆正后方35度安装角度下4种相位调制的雷达FOV覆盖范围,图中,S1区域为雷达威力覆盖范围需求,S2为通过此方法设计得到的实际雷达威力覆盖范围,在此种天线波束赋形及相位调制的方法下,雷达威力覆盖范围能满足图1的要求,结果参见图5为雷达35°安装角度下Beam1威力覆盖范围;图6为雷达35°安装角度下Beam2威力覆盖范围;图7为雷达35°安装角度下Beam3威力覆盖范围;图8为雷达35°安装角度下Beam4威力覆盖范围。
同理,图9~12分别为雷达相对车辆正后方50度安装角度下4种相位调制的雷达FOV覆盖范围,在此种天线波束赋形及相位调制的方法下,雷达威力覆盖范围同样满足图1的要求。具体为:图9为雷达50°安装角度下Beam1威力覆盖范围;图10为雷达50°安装角度下Beam2威力覆盖范围;图11为雷达50°安装角度下Beam3威力覆盖范围;图12为雷达50°安装角度下Beam4威力覆盖范围。因此,通过本技术方案的设计方法,可使角雷达在相对车辆正后方35°~50°安装角度范围内的威力覆盖范围均能满足需求。
可见,通过本发明方案的设计实施方法,减小了对雷达天线的增益、波束宽度、尺寸等的设计要求,保证了在现有雷达结构及天线设计的基础上优化实现角雷达的威力覆盖范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种毫米波角雷达威力覆盖范围实现方法,其特征在于,包括以下步骤:
S1:根据实际应用定义毫米波角雷达威力覆盖范围,设计雷达天线方向图的初始形状及确定天线的波束赋形要求;
S2:根据雷达系统链路公式分别计算得天线设计所需要的发射(Gtx)和接收(Grx)增益要求;
S3:采用同时MIMO的方式,使雷达三个发射通道同时发射,并在各发射波形上进行相位调制,获得雷达在不同安装角度下对整个视场角FOV范围内目标的探测结果。
2.根据权利要求1所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述毫米波角雷达威力覆盖范围包括:汽车正后方最远距离车身100m处区域,及侧后方距离车身50-60m处区域。
3.根据权利要求1所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述雷达天线方向图的初始形状包括:汽车正后方的梯形区域,及汽车侧后方的半圆形区域。
4.根据权利要求1所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述雷达系统链路公式为:
Figure 719459DEST_PATH_IMAGE001
Figure 869818DEST_PATH_IMAGE002
Figure 418742DEST_PATH_IMAGE003
其中,Psig为接收信号功率;PTX为雷达芯片发射功率;GTX,ANT 为发射天线增益;LTX 为发射馈线损耗;GRX,ANT 为接收天线增益;LRX 为接收馈线损耗;LRAD 为雷达天线罩损耗;RCS为雷达目标散射截面;λ为工作波长;R为目标距离;GRX 为接收链路增益;Lbumper 为保险杠损耗;Pnoise 为链路噪声;k为玻尔兹曼常数,k=1.380649 × 10-23 J/K;T为工作温度;B为中频信号带宽;NFcascade为接收链路总噪声;SNR为信噪比;
根据算法检测信噪比SNR要求反推得到发射和接收天线增益GTX,ANT 和GRX,ANT
5.根据权利要求4所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述发射和接收天线增益GTX,ANT 和GRX,ANT用于确定雷达最远探测距离。
6.根据权利要求1所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述S3还包括:分别通过天线的3个发射通道:通道TX1,通道TX2和通道TX3同时发射雷达波形,其中,通道TX1相位为0,通道TX2相位为0和π交替变化,通道TX3相位为0,0,π和π交替变化;进行雷达帧间相位调制,得到调相波束T。
7.根据权利要求5所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,
所述调相波束T在同一时刻的相位分别为Beam1:Tx Phase=[0,0,0],Beam2:Tx Phase=[0,π,0],Beam3:Tx Phase=[0,0,π],Beam4:Tx Phase=[0,π,π]。
8.根据权利要求7所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,还包括:
所述天线的3个发射通道根据所述调相波束T进行发射雷达波形,通过空间上的叠加获得不同天线方向图结果,最终获得不同雷达安装角度下的FOV范围探测结果。
9.根据权利要求8所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述安装角度至少为雷达相对车辆正后方35°-50°安装角度范围。
10.根据权利要求8所述的毫米波角雷达威力覆盖范围实现方法,其特征在于,所述FOV范围探测结果完全覆盖所述雷达天线方向图的初始形状。
CN202110847146.XA 2021-10-21 2021-10-21 一种毫米波角雷达威力覆盖范围实现方法 Pending CN113805177A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110847146.XA CN113805177A (zh) 2021-10-21 2021-10-21 一种毫米波角雷达威力覆盖范围实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110847146.XA CN113805177A (zh) 2021-10-21 2021-10-21 一种毫米波角雷达威力覆盖范围实现方法

Publications (1)

Publication Number Publication Date
CN113805177A true CN113805177A (zh) 2021-12-17

Family

ID=78893184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110847146.XA Pending CN113805177A (zh) 2021-10-21 2021-10-21 一种毫米波角雷达威力覆盖范围实现方法

Country Status (1)

Country Link
CN (1) CN113805177A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076290A (ja) * 2006-09-22 2008-04-03 Oki Electric Ind Co Ltd レーダ装置
CN106338724A (zh) * 2016-08-22 2017-01-18 西安电子科技大学 机扫米波mimo三坐标雷达威力的获取方法
CN107479040A (zh) * 2017-08-13 2017-12-15 惠州市德赛西威汽车电子股份有限公司 一种紧缩场车载毫米波雷达测试系统
CN110190409A (zh) * 2019-05-31 2019-08-30 珠海上富电技股份有限公司 波束赋形天线的波束赋形算法、设计方法以及波束赋形天线
CN110346768A (zh) * 2019-06-26 2019-10-18 惠州市德赛西威智能交通技术研究院有限公司 一种毫米波雷达威力图紧缩场模拟方法及系统
CN110534923A (zh) * 2019-09-03 2019-12-03 东南大学 一种波束赋形天线结构及设计方法
CN113466810A (zh) * 2021-07-28 2021-10-01 中汽创智科技有限公司 一种车载雷达的天线参数确定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076290A (ja) * 2006-09-22 2008-04-03 Oki Electric Ind Co Ltd レーダ装置
CN106338724A (zh) * 2016-08-22 2017-01-18 西安电子科技大学 机扫米波mimo三坐标雷达威力的获取方法
CN107479040A (zh) * 2017-08-13 2017-12-15 惠州市德赛西威汽车电子股份有限公司 一种紧缩场车载毫米波雷达测试系统
CN110190409A (zh) * 2019-05-31 2019-08-30 珠海上富电技股份有限公司 波束赋形天线的波束赋形算法、设计方法以及波束赋形天线
CN110346768A (zh) * 2019-06-26 2019-10-18 惠州市德赛西威智能交通技术研究院有限公司 一种毫米波雷达威力图紧缩场模拟方法及系统
CN110534923A (zh) * 2019-09-03 2019-12-03 东南大学 一种波束赋形天线结构及设计方法
CN113466810A (zh) * 2021-07-28 2021-10-01 中汽创智科技有限公司 一种车载雷达的天线参数确定方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
姜兴等: "77 GHz汽车角雷达宽波束平坦增益阵列天线设计", 《电波科学学报》, pages 1 - 7 *
季晓宇等: "77GHz多载频MIMO汽车雷达信号处理方法的研究", 《微波学报》, vol. 33, no. 1, 31 August 2017 (2017-08-31), pages 214 - 217 *
尚翔: "车载毫米波雷达天线研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, no. 5, pages 55 - 65 *
李健伟等: "机载有源相控阵雷达给告警器带来的威胁", 《雷达与对抗》, vol. 34, no. 2, 30 June 2014 (2014-06-30), pages 14 - 17 *
李权等: "一款用于77GHz汽车防撞雷达的阵列天线设计", 《2019年全国天线年会论文集(中册)》, 31 December 2019 (2019-12-31), pages 1026 - 1029 *
杨晓波等: "《太赫兹雷达》", vol. 1, 31 December 2017, 国防工业出版社, pages: 40 - 41 *
汤玄等: "针对雷达信号损耗的保险杠厚度设计优化", 《2020中国汽车工程学会年会论文集(4)》, 31 October 2020 (2020-10-31), pages 1829 - 1834 *
袁起: "《防空导弹武器制导控制系统设计(下)》", 31 August 2009, 中国宇航出版社, pages: 172 - 175 *

Similar Documents

Publication Publication Date Title
KR102167084B1 (ko) 레이더 장치 및 그를 위한 안테나 장치
KR102662232B1 (ko) 다중입력 다중출력 안테나부를 포함하는 레이더 장치
KR102653129B1 (ko) 레이더 장치 및 그를 위한 안테나 장치
CN103558594B (zh) 基于机载设备的相控阵波束合成方法
US10270166B2 (en) Radar and method for switching to enable array antenna
US11422254B2 (en) Radar sensor apparatus for vehicle, object detecting method, and antenna apparatus therefor
KR102662238B1 (ko) 레이더 장치 및 그를 위한 안테나 장치
KR101643194B1 (ko) Mimo 신호처리 기법을 이용한 다중빔 방식의 후측방 레이더
KR20180060344A (ko) 레이더 장치 및 그의 오차 보정 방법
KR102167097B1 (ko) 레이더 장치 및 그를 위한 안테나 장치
US20110285573A1 (en) Integrated radar system and vehicle control system
JP7306573B2 (ja) レーダ装置、並びに、それを備える車両および位置検知装置
CN111175703B (zh) 天线发波方法和天线布阵
KR20200124838A (ko) 레이더 장치와 물체 감지 방법 및 그를 위한 신호 처리 장치
CN113064173A (zh) 一种球形双偏振相控阵天气雷达
KR102651145B1 (ko) 레이더 장치 및 그를 위한 안테나 장치
CN111541050B (zh) 和差双通道旁瓣抑制天线
CN211123248U (zh) 一种车载mimo雷达天线布局结构
CN111180905B (zh) 阵列天线布阵和汽车
CN111856409A (zh) 一种车载mimo雷达天线布局结构
KR101654252B1 (ko) 이중 송신빔 방식의 후측방 레이더
CN106814348B (zh) 雷达天线系统
CN113805177A (zh) 一种毫米波角雷达威力覆盖范围实现方法
KR20200076971A (ko) 자동차 레이더용 어레이 안테나 구조 및 그 배치 방법
CN216563514U (zh) 天线阵列和毫米波雷达

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination