CN113804860A - 石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法 - Google Patents

石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法 Download PDF

Info

Publication number
CN113804860A
CN113804860A CN202111100744.7A CN202111100744A CN113804860A CN 113804860 A CN113804860 A CN 113804860A CN 202111100744 A CN202111100744 A CN 202111100744A CN 113804860 A CN113804860 A CN 113804860A
Authority
CN
China
Prior art keywords
water storage
water
test
side wall
tank body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111100744.7A
Other languages
English (en)
Other versions
CN113804860B (zh
Inventor
何廷全
周成
林煜宏
吴明峰
陈群
林子创
吴燕
叶琼瑶
周泽昶
聂杰雄
梁若翔
陈晓红
范丽娟
张劢捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Guangxi Xinfazhan Communications Group Co Ltd
Original Assignee
Sichuan University
Guangxi Xinfazhan Communications Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Guangxi Xinfazhan Communications Group Co Ltd filed Critical Sichuan University
Priority to CN202111100744.7A priority Critical patent/CN113804860B/zh
Publication of CN113804860A publication Critical patent/CN113804860A/zh
Application granted granted Critical
Publication of CN113804860B publication Critical patent/CN113804860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N2033/245Earth materials for agricultural purposes

Abstract

本发明公开了石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法,包括由格栅板和有机玻璃组合而成的试验槽体、土体、防渗透保护层、蓄水层或蓄水腔、吸水带、植株、模拟降雨装置和支撑结构;试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度,所述防渗漏保护层覆盖在试验槽体下侧壁和底板上,所述蓄水层通过碎石堆积在试验槽体下侧壁与底板构成的角落中形成,所述蓄水腔通过格栅板架设在试验槽体的下侧壁和底板之间,与下侧壁、底板共同围成蓄水空腔而成;土体覆盖在蓄水层或蓄水腔上方,吸水带埋设在土体中且延伸至蓄水层或蓄水腔底部。本发明能够揭示石漠化边坡植被板槽持水保水特性,有助于探究石漠化边坡植被板槽持水保水的实用性和有效性。

Description

石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验 方法
技术领域
本发明属于石漠化边坡的水土保持、植被恢复和生态环境重建领域,具体涉及石漠化边坡植被板槽的组合蓄水和持水养护。
背景技术
石漠化边坡存在着一些严重阻碍植被恢复的难题,例如水土流失、地表缺土或者土层浅薄致使水分会快速流失,还常出现蒸发量大于降水量的干燥期,都会造成土壤季节性干旱。板槽是岩溶坡地与石漠化边坡的一个种植植被进行植被恢复的单元,通过在坡面设置挡土板,在挡土板与坡面的夹角空间内填充种植土种植植物进行植被恢复,如图1所示。针对石漠化边坡板槽植被恢复中的持水养护问题,研究一种快速、简捷、实用的植被板槽组合蓄水和持水养护的试验方法及模拟系统,以便通过试验充分揭示石漠化边坡植被板槽蓄水和持水特性,探究石漠化边坡植被板槽持水保水的实用性和有效性,是促进石漠化边坡植被恢复的关键问题之一。
发明内容
本发明的目的在于提供石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法,以便充分揭示石漠化边坡植被板槽持水保水特性,探究石漠化边坡植被板槽持水保水的实用性和有效性,为促进石漠化边坡植被恢复提供理论依据。
本发明是基于国家自然科学基金项目、广西交通运输行业重点科技项目和四川省重点研发基金项目的资助而提出。
本发明提供的石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法,根据模拟的对象、情景不同,分为以下三种。
本发明提供的第一种石漠化边坡植被板槽组合蓄水和持水养护的试验模型,即植被板槽在降雨蓄水后再抵抗干旱胁迫的试验模型,用于为了模拟石漠化边坡的植被板槽在雨后久旱或在旱季的土体吸水养护。所述模型包括试验槽体、土体、防渗透保护层、蓄水层或蓄水腔、吸水带、吸力传感器、含水率传感器、测温探头、植株、降雨模拟装置和支撑结构;所述试验槽体为矩形截面的槽体,由有机玻璃板和格栅板围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度,所述防渗漏保护层覆盖在试验槽体下侧壁和底板上,所述蓄水层通过碎石堆积在试验槽体下侧壁与底板构成的角落中形成,所述蓄水腔通过格栅板架设在试验槽体的下侧壁和底板之间,与下侧壁、底板共同围成蓄水空腔而成;所述土体覆盖在蓄水层或蓄水腔上方,所述吸力传感器、含水率传感器、测温探头埋设在土体中,所述植株种植在土体中,所述吸水带埋设在土体中且延伸至蓄水层或蓄水腔底部;所述降雨模拟装置位于试验槽体上方。
上述第一种试验模型,进一步地,所述植株为乔灌木以及辅助种植的草本或爬藤植物,或,所述植物为非肉根茎蓄水型植物、肉根茎蓄水型植物中的至少一种。
上述第一种试验模型,进一步地,所述碎石大小不一,大粒径碎石填充在下层,小粒径碎石填充在上层与土体相邻,从而利用大碎石的粒间大孔隙形成蓄水空腔,小碎石与土体相邻起到反滤作用,避免土体渗漏堵塞蓄水腔。
上述第一种试验模型,进一步地,所述土体中拌合有保水剂。
基于上述第一种试验模型的石漠化边坡植被板槽在雨后久旱或在旱季土体吸水养护试验方法,包括以下内容:打开降雨模拟装置,在降雨入渗到模型底部时停止降雨,然后开模拟雨后久旱或在旱季的展蒸腾蒸发试验,模拟在干旱季节植被板槽的土体从蓄水层或蓄水腔吸水养护过程,观测水分迁移和持水过程。
本发明提供的第二种石漠化边坡植被板槽组合蓄水和持水养护的试验模型,即植被板槽的根茎在干旱季节组合持水(模拟旱季养护)试验模型,模拟石漠化边坡的植被板槽在雨后久旱或在旱季的土体吸水以及联合根茎共生持水的养护模式。该模型包括试验槽体、土体、防渗透保护层、蓄水层或蓄水腔、吸水带、吸力传感器、含水率传感器、测温探头、降雨模拟装置和支撑结构;所述试验槽体为矩形截面的槽体,由有机玻璃板和格栅板围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度;所述防渗漏保护层覆盖在试验槽体下侧壁和底板上;所述蓄水层通过碎石堆积在试验槽体下侧壁与底板构成的角落中形成,所述蓄水腔通过格栅板架设在试验槽体的下侧壁和底板之间,与下侧壁、底板共同围成蓄水空腔而成;所述土体覆盖在蓄水层或蓄水腔上方,所述吸力传感器、含水率传感器、测温探头埋设在土体中;所述吸水带埋设在土体中且延伸至蓄水层或蓄水腔底部;所述降雨模拟装置位于试验槽体上方。
上述第二种试验模型,进一步地,还包括种植在土体中的肉根茎蓄水型植物。该种情形是模拟和测试在板槽中种植肉根茎蓄水型植物情况下的蓄水和持水性能及植物生长性态。
上述第二种试验模型,进一步地,还包括种植在土体中的非肉根茎蓄水型植物。该种情形是模拟和测试在板槽中种植非肉根茎蓄水型植物情况下的蓄水和持水性能及植物生长性态。
上述第二种试验模型,进一步地,还包括种植在土体中的肉根茎蓄水型植物和非肉根茎蓄水型植物。该种情形是模拟和测试在板槽中种植肉根茎蓄水型植物和非肉根茎蓄水型植物情况下的蓄水和持水性能及植物生长性态。
上述第二种试验模型,进一步地,所述非肉根茎蓄水型植物优选为长根系发达的植物(例如三角梅等灌木、香根草)、爬山虎、皇竹草、紫花苜蓿、红凤菜等具有抗干旱、适宜钙质土壤的植物中的至少一种;所述肉根茎蓄水型植物优选为短根系发达的植物,例如肉根茎的植物例如吊兰、海棠花、仙人掌等。
上述第一种和第二种试验模型,进一步地,所述土体表层覆盖有覆盖层,所述覆盖层可拆卸,用于模拟只有蒸腾条件或蒸发、蒸腾条件同时存在的情况下,不同的非肉根茎蓄水型、肉根茎的植物组合的蓄水持水性能和植物生长性态。优选地,所述覆盖层可以是秸秆、枯草、树叶、碎石、塑料薄膜中的一种。
上述第二种试验模型,进一步地,所述土体中拌合有保水剂。
基于第二种试验模型的有无植物组合蓄水和持水条件下蒸腾蒸发干旱胁迫试验方法,包括以下内容:开启降雨模拟装置,在降雨入渗到模型底部时停止降雨,然后开展蒸腾蒸发干旱胁迫试验,观测土体水分迁移过程,观测在干旱季节土体从蓄水腔吸干净水后、在只有蒸腾条件或同时存在蒸发与蒸腾条件下,不同的非肉根茎蓄水型、肉根茎蓄水型植物以及二者组合下的组合蓄水和持水性能及植物生长性态。
本发明提供的第三种试验模型,蓄水腔底的不同防渗材料的防渗漏泌水试验模型,用于模拟石漠化边坡的植被板槽蓄水层底的不同防渗材料的防渗漏性能及其所保障的板槽组合蓄水和持水养护的耐久性。该模型包括该模型包括试验槽体、防渗透保护层、底部收集箱和支撑结构;所述试验槽体为矩形截面的槽体,由有机玻璃板和格栅板围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度;所述防渗漏保护层覆盖在试验槽体下侧壁和底板上;所述底部收集箱放置在试验槽体下方收集渗漏出的水。
基于上述第三种试验模型的蓄水腔底的不同防渗材料的防渗漏泌水试验方法,包括以下内容:在试验槽体中蓄满水,观测不同材料的防渗漏保护层的泌水和渗漏过程。
上述三种试验模型,进一步地,所述试验槽体通过卡具或扎带卡(绑)紧相邻格栅板,再通过U型卡具穿过格栅孔将相邻有机玻璃板和格栅板勒卡紧连接形成。
上述三种试验模型,进一步地,所述防渗漏保护层为黏土衬垫、土工膜和土工合成材料的组合衬垫、土工合成黏土衬垫、胶结碎石层衬垫、水泥土层衬垫、微生物矿化MICP固化土层衬垫、有机硅喷洒土层衬垫等中的一种。
上述三种试验模型,进一步地,所述降雨模拟装置为喷淋管。
上述三种试验模型,进一步地,所述格栅板为不锈钢格栅板、塑料格栅板、刷过防腐蚀涂料或沥青的竹排等中的一种。
与现有技术相比,本发明具有以下有益效果:
1.本发明提供的石漠化边坡植被板槽的组合蓄水和持水养护的试验模型和试验方法,促进了石漠化边坡板槽植被恢复中持水保水机理的研究,快速、简捷、实用、一体化的操作提高了试验效率,使充分揭示石漠化边坡植被板槽的持水保水特性成为可能。
2.本发明的方法简单易行,成本低廉,使用效果好,能够直接用于指导石漠化边坡板槽植被恢复技术的研究和应用,促进石漠化边坡的水土保持、生态护坡和环境重建。
附图说明
图1为本发明中试验模拟对象石漠化边坡植被板槽的示意图:(a)大粒径块石形成蓄水腔/层,(b)格栅板架空形成蓄水腔/层。
图2为本发明所述第一种试验模型示意图:(a)大粒径块石形成蓄水腔/层,(b)格栅板架空形成蓄水腔/层。
图3为本发明所述第二种试验模型示意图:(a)纯土,(b)纯土+肉根茎蓄水型植物,(c)纯土+非肉根茎蓄水型植物,(d)纯土+肉根茎蓄水型植物+非肉根茎蓄水型植物,(e)俯视图。
图4为本发明所述第三种试验示意图。
图中,1、石漠化边坡,2、小锚杆,3、挡土板,4、防渗漏保护层,5、格栅板,6、蓄水层或蓄水腔,7、保水剂,8-1、乔灌木(或非肉根茎蓄水型植物),8-2、草本或爬藤植物(或肉根茎蓄水型植物),9、表土覆盖层,10、有机玻璃板,11、碎石,12、土体,13、吸水带,14-1、吸力传感器,14-2、含水率传感器,15、测温探头,16、底部收集箱,17、支撑结构,18、土工布,19、降雨模拟装置。
具体实施方式
下面通过实施例对本发明做进一步说明。有必要指出,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,所属领域技术人员根据上述发明内容,对本发明做出一些非本质的改进和调整进行具体实施,仍属于发明保护的范围。
实施例1
本实施例所述石漠化边坡植被板槽组合蓄水和持水养护的试验模型,即植被板槽在降雨蓄水后再抵抗干旱胁迫的试验模型,如图2所示,用于为了模拟石漠化边坡的植被板槽在雨后久旱或在旱季的土体吸水养护。
所述模型包括试验槽体、土体12、防渗透保护层4、蓄水层或蓄水腔6、吸水带13、吸力传感器14-1、含水率传感器14-2、测温探头15、植株、降雨模拟装置19和支撑结构17。所述试验槽体为长方体形截面的槽体,由有机玻璃板10和不锈钢格栅板5围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板。相邻格栅板通过卡具或扎带卡(绑)紧,再通过U型卡具穿过格栅孔将相邻有机玻璃板和格栅板勒卡紧连接形成长方体形槽体。试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度。所述防渗漏保护层为防水膜,覆盖在试验槽体下侧壁和底板上,所述蓄水层通过碎石11堆积在试验槽体下侧壁与底板构成的角落中形成。所述碎石11大小不一,大粒径碎石填充在下层,小粒径碎石填充在上层与土体相邻,从而利用大碎石的粒间大孔隙形成蓄水空腔,小碎石与土体相邻起到反滤作用,避免土体渗漏堵塞蓄水腔。所述蓄水腔通过格栅板架设在试验槽体的下侧壁和底板之间,与下侧壁、底板共同围成蓄水空腔而成;所述土体覆盖在蓄水层或蓄水腔上方,所述吸力传感器、含水率传感器、测温探头埋设在土体中,所述土体中拌和有保水剂7;所述植株种植在土体中,植株为乔灌木例如三角梅或长根系的香根草8-1以及辅助种植的草本或爬藤植物8-2。所述吸水带13埋设在土体中且延伸至蓄水层或蓄水腔底部,所述土体中拌合有保水剂。所述降雨模拟装置19为喷淋管,位于试验槽体上方。
实施例2
基于实施例1所述试验模型的石漠化边坡植被板槽在雨后久旱或在旱季土体吸水养护试验方法,包括以下内容:打开降雨模拟装置,在降雨入渗到模型底部时停止降雨,然后开展蒸腾蒸发试验,模拟在干旱季节植被板槽的土体从蓄水腔吸水养护过程,观测水分迁移和持水过程。
实施例3
本发明提供的石漠化边坡植被板槽组合蓄水和持水养护的试验模型,即植被板槽的根茎在干旱季节组合持水(模拟旱季养护)试验模型,如图3所示,模拟石漠化边坡的植被板槽在雨后久旱或在旱季的土体吸水以及联合根茎共生持水的养护模式。
所述模型包括试验槽体、土体12、防渗透保护层4、蓄水层6、吸水带13、吸力传感器14-1、含水率传感器14-2、测温探头15、植株、降雨模拟装置19和支撑结构17。所述试验槽体为长方体形截面的槽体,由有机玻璃板10和不锈钢格栅板5围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板。相邻格栅板通过卡具或扎带卡(绑)紧,再通过U型卡具穿过格栅孔将相邻有机玻璃板和格栅板勒卡紧连接形成长方体形槽体。试验槽体的底板通过支撑结构17根据所模拟的石漠化边坡的坡度支撑形成相应坡度。所述防渗漏保护层为防水膜,覆盖在试验槽体下侧壁和底板上,所述蓄水层通过碎石堆积在试验槽体下侧壁与底板构成的角落中形成。所述碎石大小不一,大粒径碎石填充在下层,小粒径碎石填充在上层,在碎石层与土体之间设置有一层防止土体漏失,堵塞蓄水层的土工布18。所述土体覆盖在蓄水层或蓄水腔上方,所述吸力传感器、含水率传感器、测温探头埋设在土体中,所述土体中拌合有保水剂。所述吸水带埋设在土体中且延伸至蓄水层或蓄水腔底部,所述土体中拌合有保水剂7。所述降雨模拟装置为喷淋管,位于试验槽体上方。
所示试验模型还包括种植在土体中的植物,所述植物的选择根据所需模拟的情形分为以下四种:
在土体中移植肉根茎蓄水型植物8-2,从而模拟和测试在板槽中种植肉根茎蓄水型植物情况下的蓄水和持水性能及植物生长性态。
在土体中移植非肉根茎蓄水型植物8-1,从而模拟和测试在板槽中种植非肉根茎蓄水型植物情况下的蓄水和持水性能及植物生长性态。
在土体中移植肉根茎蓄水型植物8-2和非肉根茎蓄水型植物8-1,从而模拟和测试在板槽中种植肉根茎蓄水型植物和非肉根茎蓄水型植物情况下的蓄水和持水性能及植物生长性态。
所述非肉根茎蓄水型植物优选为长根系发达的植物(例如三角梅等灌木、香根草)以及爬山虎、皇竹草、紫花苜蓿、红凤菜等具有抗干旱、适宜钙质土壤的植物中的至少一种;所述肉根茎蓄水型植物优选为短根系发达的植物,例如肉根茎的植物例如吊兰、海棠花、仙人掌等。
所述土体表层覆盖有表土覆盖层,所述覆盖层可拆卸,用于模拟在只有蒸腾条件或同时存在蒸发、蒸腾条件的情况下,不同的非肉根茎蓄水型、肉根茎的植物组合的蓄水和持水性能及植物生长性态。
实施例4
基于实施例4所述试验模型的蒸腾蒸发干旱胁迫试验方法,包括以下内容:开启降雨模拟装置,在降雨入渗到模型底部时停止降雨,然后开展蒸腾蒸发干旱胁迫试验,观测水分迁移过程,观测在干旱季节从蓄水腔吸干净水后、在只有蒸腾条件或同时存在蒸发与蒸腾的条件下,不同的非肉根茎蓄水型、肉根茎蓄水型植物以及二者组合下的组合蓄水和持水性能及植物生长性态。
实施例5
本实施例提供蓄水腔底的不同防渗材料的防渗漏泌水试验模型,如图4所示用于模拟石漠化边坡的植被板槽蓄水层底的不同防渗材料的防渗漏性能及其所保障的板槽组合蓄水和持水养护的耐久性。该模型包括该模型包括试验槽体、防渗透保护层4、底部收集箱16、降雨模拟装置4和支撑结构17;所述试验槽体为长方形槽体,由有机玻璃板10和不锈钢格栅板5围成,相邻格栅板通过卡具或扎带卡(绑)紧,再通过U型卡具穿过格栅孔将相邻有机玻璃板和格栅板勒卡紧连接形成。垂直坡向的上下侧壁和底板为栅格板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度;所述防渗漏保护层覆盖在试验槽体下侧壁和底板上;所述降雨模拟装置为喷淋管,位于试验槽体上方;所述底部收集箱放置在试验槽体下方收集渗漏出的水。
所述防渗漏保护层为防水膜、黏土衬垫、土工膜和土工合成材料的组合衬垫、土工合成黏土衬垫(GCL)、胶结碎石层衬垫、水泥土层衬垫、微生物矿化MICP固化土层衬垫、有机硅喷洒土层衬垫等中的一种,以分别测试各个材料的防渗漏性能及其所保障的板槽组合蓄水和持水养护的耐久性。
实施例6
基于实施例5所述试验模型的蓄水腔底的不同防渗材料的防渗漏泌水试验方法,包括以下内容:打开降雨模拟装置,在试验槽体中蓄满水,观测不同材料的防渗漏性能及其所保障的板槽组合蓄水和持水养护的耐久性,以及防渗漏保护层的泌水和渗漏过程。

Claims (10)

1.一种石漠化边坡植被板槽组合蓄水和持水养护的试验模型,其特征在于,包括试验槽体、土体、防渗透保护层、蓄水层或蓄水腔、吸水带、吸力传感器、含水率传感器、测温探头、植株、降雨模拟装置和支撑结构;所述试验槽体为矩形截面的槽体,由有机玻璃板和格栅板围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度;所述防渗漏保护层覆盖在试验槽体下侧壁和底板上;所述蓄水层通过碎石堆积在试验槽体下侧壁与底板构成的角落中形成,所述蓄水腔通过格栅板架设在试验槽体的下侧壁和底板之间,与下侧壁、底板共同围成蓄水空腔而成;所述土体覆盖在蓄水层或蓄水腔上方,所述吸力传感器、含水率传感器、测温探头埋设在土体中,所述植株种植在土体中;所述吸水带埋设在土体中且延伸至蓄水层或蓄水腔底部;所述降雨模拟装置位于试验槽体上方。
2.根据权利要求1所述试验模型,其特征在于,所述植株为乔灌木以及辅助种植的草本或爬藤植物,或,所述植物为非肉根茎蓄水型植物、肉根茎蓄水型植物中的至少一种。
3.基于权利要求1所述试验模型的石漠化边坡植被板槽在雨后久旱或在旱季土体吸水养护试验方法,包括以下内容:打开降雨模拟装置,在降雨入渗到模型底部时停止降雨,然后开展模拟雨后久旱或在旱季的蒸腾蒸发试验,模拟在干旱季节植被板槽的土体从蓄水层或蓄水腔吸水养护过程,观测土体水分迁移与持水过程和效应。
4.一种石漠化边坡植被板槽组合蓄水和持水养护的试验模型,其特征在于,包括试验槽体、土体、防渗透保护层、蓄水层或蓄水腔、吸水带、吸力传感器、含水率传感器、测温探头、降雨模拟装置和支撑结构;所述试验槽体为矩形截面的槽体,由有机玻璃板和格栅板围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度;所述防渗漏保护层覆盖在试验槽体下侧壁和底板上;所述蓄水层通过碎石堆积在试验槽体下侧壁与底板构成的角落中形成,所述蓄水腔通过格栅板架设在试验槽体的下侧壁和底板之间,与下侧壁、底板共同围成蓄水空腔而成;所述土体覆盖在蓄水层上方,所述吸力传感器、含水率传感器、测温探头埋设在土体中;所述吸水带埋设在土体中且延伸至蓄水层或蓄水腔底部;所述降雨模拟装置位于试验槽体上方。
5.根据权利要求3所述试验模型,其特征在于,还包括种植在土体中的肉根茎蓄水型植物或/和非肉根茎蓄水型植物;所述非肉根茎蓄水型植物为长根系发达的灌木、香根草中的至少一种,以及爬山虎、皇竹草、紫花苜蓿、红凤菜中的至少一种,所述肉根茎蓄水型植物为吊兰、海棠花、仙人掌中的至少一种。
6.根据权利要求1或4所述试验模型,其特征在于,所述土体表面覆盖有覆盖层,所述覆盖层可拆卸。
7.基于权利要求4所述试验模型的有无植物组合蓄水和持水条件下蒸腾蒸发干旱胁迫试验方法,其特征在于,包括以下内容:开启降雨模拟装置,在降雨入渗到模型底部时停止降雨,然后开展蒸腾蒸发干旱胁迫试验,观测土体水分迁移过程;观测在干旱季节土体从蓄水腔吸干净水后,在只有蒸腾条件或同时存在蒸发与蒸腾条件下,不同的非肉根茎蓄水型、肉根茎蓄水型植物以及二者组合下的组合蓄水和持水性能及植物生长性态。
8.蓄水腔底的不同防渗材料的防渗漏泌水试验模型,其特征在于,该模型包括试验槽体、防渗透保护层、底部收集箱和支撑结构;所述试验槽体为矩形截面的槽体,由有机玻璃板和格栅板围成,垂直坡向的上下侧壁和底板为格栅板,顺坡向的左右侧壁为有机玻璃板,试验槽体的底板通过支撑结构根据所模拟的石漠化边坡的坡度支撑形成相应坡度;所述防渗漏保护层覆盖在试验槽体下侧壁和底板上;所述底部收集箱放置在试验槽体下方收集渗漏出的水。
9.基于权利要求7所述试验模型的蓄水腔底的不同防渗材料的防渗漏泌水试验方法,其特征在于,包括以下内容:在试验槽体中蓄满水,观测不同材料的防渗漏保护层的泌水和渗漏过程。
10.根据权利要求1、4、8中任一权利要求所述试验模型,其特征在于,所述试验槽体通过卡具或扎带连接固定相邻格栅板,再通过卡具穿过格栅孔将相邻有机玻璃板和格栅板勒卡紧连接形成;所述防渗漏保护层为黏土衬垫、土工膜与土工合成材料的组合衬垫、土工合成黏土衬垫、胶结碎石层衬垫、水泥土层衬垫、微生物矿化MICP固化土层衬垫、有机硅喷洒土层衬垫中的一种;所述格栅板为不锈钢格栅板、塑料格栅板、刷过防腐蚀涂料或沥青的竹排等中的一种。
CN202111100744.7A 2021-09-18 2021-09-18 石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法 Active CN113804860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111100744.7A CN113804860B (zh) 2021-09-18 2021-09-18 石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111100744.7A CN113804860B (zh) 2021-09-18 2021-09-18 石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法

Publications (2)

Publication Number Publication Date
CN113804860A true CN113804860A (zh) 2021-12-17
CN113804860B CN113804860B (zh) 2022-10-25

Family

ID=78939775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111100744.7A Active CN113804860B (zh) 2021-09-18 2021-09-18 石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法

Country Status (1)

Country Link
CN (1) CN113804860B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602033A (zh) * 2022-11-01 2023-01-13 浙江大学(Cn) 一种可宽范围调控土体基质吸力的可吸水根系模型
CN116369159A (zh) * 2023-05-23 2023-07-04 贵州师范大学 一种石漠化坡面石芽溶沟低碳降水收集灌溉方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204305674U (zh) * 2014-11-25 2015-05-06 陈洪凯 利用锚杆网格进行页岩边坡种植绿化结构
CN204982917U (zh) * 2015-08-14 2016-01-20 井浩 一种边坡骨架植物防护储水利用系统
CN105258719A (zh) * 2015-09-30 2016-01-20 四川大学 多空隙组合介质隧洞渗流植被生长用水测试方法
CN105369767A (zh) * 2015-09-30 2016-03-02 四川大学 模拟挡墙支护覆土弃碴场植被生长用水测试方法
CN106596897A (zh) * 2017-01-18 2017-04-26 河海大学 测定加筋植物土固坡效果与吸水性能的试验装置及方法
CN206971238U (zh) * 2017-06-27 2018-02-06 内蒙古自治区林业科学研究院 一种应用于生态恢复的植被种植装置
CN109633123A (zh) * 2018-12-13 2019-04-16 华北水利水电大学 一种边坡植被水文效应模型
CN111289727A (zh) * 2020-04-02 2020-06-16 中国科学院、水利部成都山地灾害与环境研究所 降雨作用下植被覆被坡体失稳临界条件研究模型试验系统
CN213127425U (zh) * 2020-08-31 2021-05-07 甘肃省科学院地质自然灾害防治研究所 一种边坡修复用植生基材结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204305674U (zh) * 2014-11-25 2015-05-06 陈洪凯 利用锚杆网格进行页岩边坡种植绿化结构
CN204982917U (zh) * 2015-08-14 2016-01-20 井浩 一种边坡骨架植物防护储水利用系统
CN105258719A (zh) * 2015-09-30 2016-01-20 四川大学 多空隙组合介质隧洞渗流植被生长用水测试方法
CN105369767A (zh) * 2015-09-30 2016-03-02 四川大学 模拟挡墙支护覆土弃碴场植被生长用水测试方法
CN106596897A (zh) * 2017-01-18 2017-04-26 河海大学 测定加筋植物土固坡效果与吸水性能的试验装置及方法
CN206971238U (zh) * 2017-06-27 2018-02-06 内蒙古自治区林业科学研究院 一种应用于生态恢复的植被种植装置
CN109633123A (zh) * 2018-12-13 2019-04-16 华北水利水电大学 一种边坡植被水文效应模型
CN111289727A (zh) * 2020-04-02 2020-06-16 中国科学院、水利部成都山地灾害与环境研究所 降雨作用下植被覆被坡体失稳临界条件研究模型试验系统
CN213127425U (zh) * 2020-08-31 2021-05-07 甘肃省科学院地质自然灾害防治研究所 一种边坡修复用植生基材结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王晓亮: "人工降雨作用下边坡植被水文效应模型试验研究", 《中国硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602033A (zh) * 2022-11-01 2023-01-13 浙江大学(Cn) 一种可宽范围调控土体基质吸力的可吸水根系模型
CN115602033B (zh) * 2022-11-01 2023-11-28 浙江大学 一种可宽范围调控土体基质吸力的可吸水根系模型
CN116369159A (zh) * 2023-05-23 2023-07-04 贵州师范大学 一种石漠化坡面石芽溶沟低碳降水收集灌溉方法
CN116369159B (zh) * 2023-05-23 2023-12-08 贵州师范大学 一种石漠化坡面石芽溶沟低碳降水收集灌溉方法

Also Published As

Publication number Publication date
CN113804860B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN106900342B (zh) 一体化半岩质高边坡植被重建保护方法
US10405502B2 (en) Water and soil conservation and ecological restoration method of high and steep, abandoned slag piles at high elevation with large temperature difference in dry, hot valley
CN101849454B (zh) 盐碱滩地的生物综合改良方法
CN113804860B (zh) 石漠化边坡植被板槽组合蓄水和持水养护的试验模型和试验方法
CN104620838A (zh) 水库消落带植被恢复方法
CN110832964A (zh) 一种建筑骨料矿山原位土壤改良及绿化方法
CN106717851B (zh) 一种热带珊瑚岛礁生态绿化的方法
CN101288377A (zh) 盐碱地树木的栽植方法
CN108476648A (zh) 一种岩质海岸困难立地植被恢复的方法及系统
CN109757146B (zh) 一种利用耐盐植物进行海滨盐碱沙地生态复绿的方法
CN208266847U (zh) 适用于黄土地区的沟壑区快速修复结构
CN110178473B (zh) 一种脱水污泥填埋场生态修复方法
CN105724208A (zh) 一种景天植物屋顶绿化基质及其制备方法
CN109042103B (zh) 一种园林边坡复绿方法
CN111264118A (zh) 一种新型裸露砒砂岩区土壤改良种乔灌木的装置及方法
CN111335335A (zh) 一种炭质岩边坡坡面防渗与加固的结构体系及其应用方法
CN107905208B (zh) 一种加速石漠化区岩石风化的水土保持结构及其构建方法
CN106954404B (zh) 一种盐渍土地区局部隔离装置
CN108934703A (zh) 一种保水膜包裹沙质土壤治理沙漠的方法
CN101965794A (zh) 肥墒井
CN112012229A (zh) 一种用于石灰岩矿采场高陡坡岩石边坡的生态修复系统
CN216452081U (zh) 岩质边坡植被板槽组合蓄水和持水养护的试验模型
CN1180677C (zh) 沙地膜袋植树法
CN113718864B (zh) 岩溶坡地与石漠化边坡地表和地下水土流失一体化试验模型
CN212506332U (zh) 坡面锚钉挂网结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant