CN113799966A - Wing structure and aircraft - Google Patents

Wing structure and aircraft Download PDF

Info

Publication number
CN113799966A
CN113799966A CN202111074623.XA CN202111074623A CN113799966A CN 113799966 A CN113799966 A CN 113799966A CN 202111074623 A CN202111074623 A CN 202111074623A CN 113799966 A CN113799966 A CN 113799966A
Authority
CN
China
Prior art keywords
wing
skin
spar
engine
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111074623.XA
Other languages
Chinese (zh)
Inventor
曾锐
刘毅
赵新新
熊俊
杨雅慧
李洪淼
冷崇富
周义
陈飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetc Wuhu Diamond Aircraft Manufacture Co ltd
Cetc Wuhu General Aviation Industry Technology Research Institute Co ltd
Original Assignee
Cetc Wuhu Diamond Aircraft Manufacture Co ltd
Cetc Wuhu General Aviation Industry Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetc Wuhu Diamond Aircraft Manufacture Co ltd, Cetc Wuhu General Aviation Industry Technology Research Institute Co ltd filed Critical Cetc Wuhu Diamond Aircraft Manufacture Co ltd
Priority to CN202111074623.XA priority Critical patent/CN113799966A/en
Publication of CN113799966A publication Critical patent/CN113799966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/26Construction, shape, or attachment of separate skins, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/32Wings specially adapted for mounting power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The application relates to a wing structure and an aircraft. The wing structure includes: the interior of the skin is a cavity, and the front edge of the skin is provided with an opening; the supporting component is arranged in the cavity of the skin and comprises a wing beam and a supporting rib, the supporting rib is arranged on the wing beam, and the supporting rib is positioned at the opening of the front edge of the skin; the firewall is arranged on the support rib and used for installing the engine; and the engine cover is used for closing the opening of the front edge of the skin. The wing structure integrates the wings and the engine nacelle, and has simple structure and strong bearing capacity.

Description

Wing structure and aircraft
Technical Field
The application relates to the field of aviation equipment, in particular to a wing structure and an airplane.
Background
An aircraft adopting a plurality of engines generally installs a nacelle of the engine on a wing, and can be divided into three main forms of upper wing surface installation, lower wing surface installation and front wing surface installation according to the up-down relation of the nacelle relative to the wing. The installation mode on the airfoil is simply connected with the airfoil, the ground clearance is large, but the influence on the lift resistance of the airplane is large. The mounting mode under the airfoil is convenient for engine maintenance, but the ground clearance is small and is easily influenced by sand and dust on the ground. The gap between the front installation form of the wing and the ground is moderate, the tension arm of the engine is small relative to the bearing structure force arm of the wing, but the design difficulty of the structural strength is larger.
The engine generates complex load when working, and puts forward higher requirements on a corresponding bearing structure, wherein the higher requirements mainly comprise tension, torque, gravity, corresponding bending moment, inertial load and the like, and in addition, various constraint requirements such as load pulsation, engine thermal deformation, fire prevention, heat insulation, maintenance inspection, structure weight reduction and the like need to be considered. On a traditional metal structure airplane, an engine nacelle structure is usually designed to be a semi-hard shell structure with a frame, a beam, ribs and a skin, and a part of the airplane also adopts a pull rod structure to bear concentrated loads of an engine mounting rack so as to meet the bearing requirements of complex loads of an engine.
The traditional engine nacelle and the installation structure thereof have numerous parts and components, are easy to fatigue after being subjected to pulsating load, and finally cause heavy structure and poor maintainability.
Disclosure of Invention
Based on the problem, the application provides a wing structure and aircraft, with wing and the structure as an organic whole of engine nacelle combination, alleviates wing structure weight, has promoted aircraft maintainability.
One embodiment of the present application provides a wing structure, comprising: the inner part of the skin is a cavity, and the front edge of the skin is provided with an opening; a support assembly disposed within the cavity of the skin, the support assembly including a wing spar and a support rib disposed on the wing spar, the support rib being located at the opening of the skin leading edge; a firewall disposed on the support rib, the firewall configured to mount an engine; an engine cover closing the opening of the skin leading edge.
According to some embodiments of the application, the wing spar comprises a wing front spar and a wing back spar, the wing front spar and the wing back spar being arranged in the same direction.
According to some embodiments of the application, the support assembly further comprises a stiffener between the wing front spar and the wing rear spar.
According to some embodiments of the application, the support assembly further comprises a plurality of leading edge ribs disposed on the wing spar, the leading edge ribs being located on either side of the support rib, the leading edge ribs supporting the skin.
According to some embodiments of the application, the leading edge rib is C-shaped in cross-section.
According to some embodiments of the application, the upper and lower surfaces of the wing front spar and the upper and lower surfaces of the wing rear spar are provided with bulkheads, which support the skin.
According to some embodiments of the application, the separator is C-shaped in cross-section.
According to some embodiments of the application, the skin comprises an upper skin and a lower skin, the upper skin is connected with the lower skin to form the cavity, and the engine cover is connected with the upper skin and the lower skin respectively.
According to some embodiments of the application, the upper skin is provided with an upper protrusion at a position corresponding to the engine cover, and the lower skin is provided with a lower protrusion at a position corresponding to the engine cover.
One embodiment of the present application provides an aircraft comprising: the wing structure as described above; an engine located within the engine cover, the engine mounted on the firewall.
The support component is made of composite materials, can be integrally cemented and solidified, and is simple to manufacture and convenient to assemble; the skin is made of an integral sandwich structure material, so that the composite material is fatigue-resistant and light in weight; the wing and the engine nacelle are integrated, so that the complex load of the engine is transferred to the wing beam and the skin, the number of parts is obviously reduced, and the manufacturing and the maintenance are convenient; the wing structure has no fatigue problem, and has obvious fatigue resistance characteristic advantage compared with the conventional metal structure.
Drawings
In order to more clearly illustrate the technical solutions of the present application, the drawings needed to be used in the description of the embodiments are briefly introduced below, it is obvious that the drawings in the following description are only some embodiments of the present application, and it is obvious for a person skilled in the art to obtain other drawings based on these drawings without exceeding the protection scope of the present application.
FIG. 1 is a schematic illustration of a wing structure according to an embodiment of the present application;
FIG. 2 is a schematic view of the interior of a wing structure according to an embodiment of the present application;
FIG. 3 is a schematic view of a support assembly according to an embodiment of the present application;
FIG. 4 is a schematic view of a support rib according to an embodiment of the present application;
FIG. 5 is a schematic diagram of a firewall installation location according to an embodiment of the present application;
FIG. 6 is an exploded view of an airfoil configuration according to an embodiment of the present application;
FIG. 7 is a schematic diagram of a firewall according to an embodiment of the present application;
FIG. 8 is an exploded view of a support assembly according to an embodiment of the present application;
FIG. 9 is a schematic view of a stiffener according to an embodiment of the present application;
FIG. 10 is a schematic view of a leading edge rib of an embodiment of the present application;
FIG. 11 is a schematic view of a separator plate according to an embodiment of the present application.
Detailed Description
The technical solutions of the present application will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present application, and it is obvious that the described embodiments are some, not all, of the embodiments of the present application. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present application.
As shown in fig. 1 and 2, the present embodiment provides a wing structure 100. The wing structure 100 includes: skin 1, support assembly 2, firewall 3 and hood 4.
The interior of the skin 1 is a cavity, an opening 13 is arranged at the front edge of the skin 1, and the opening 13 of the embodiment is arranged from the bottom end of the skin 1 to the rear edge direction of the skin in an inclined and upward manner. The angle between the plane of the opening 13 and the vertical plane is about 10-20 deg.. Optionally, the skin of the present embodiment is a load-bearing skin with an integral sandwich structure, which is simple to manufacture, fatigue-resistant, and light in weight, and improves the overall performance of the wing structure 100.
As shown in fig. 3, the support component 2 is disposed in the cavity of the skin 1, and the support component 2 supports the skin 1. The support assembly 2 comprises a wing spar 21 and support ribs 22. Support ribs 22 are provided on the wing spar 21, the support ribs 22 being located at the opening 13 at the leading edge of the skin 1.
As shown in fig. 4, the wing beam 21 and the support rib 22 of the present embodiment are both made of a composite material, such as a carbon fiber composite material. The rear end of the support rib 22 is provided with a connection base 221, and the connection base 221 is bonded to the wing member 21 with resin. The front face 222 of the support rib 22 is a slope, and the angle of inclination of the front face 222 of the support rib 3 is the same as or similar to the angle of inclination of the opening 13.
As shown in fig. 5 and 6, the firewall 3 is provided on the support rib 22, and the firewall 3 is used to mount an engine of an aircraft. The arrows in fig. 6 indicate the mounting direction of the components.
As shown in fig. 7, the firewall 3 includes a horizontal portion 31 and an inclined portion 32. The horizontal portion 31 is bonded to the top surface of the support rib 22, and the inclined portion 32 is bonded to the front end surface 222 of the support rib 22. Optionally, the firewall 3 is made of a composite material of carbon fibers and a foam interlayer.
The hood 4 closes the opening 13 of the front edge of the skin 1. The engine of the aircraft is located in the engine cover 4, and the engine cover 4 protects the engine. In this embodiment, the material of the engine cover 4 may be a composite material of glass fiber and foam sandwich. The shape of the engine cover 4 may be set as required, and the present application does not limit this.
The wing structure of the embodiment integrates the wing and the engine nacelle, so that the complex load of the engine is transferred to the wing beam and the skin, the number of parts is obviously reduced, and the wing structure is convenient to manufacture and maintain.
As shown in fig. 8, according to an alternative embodiment of the present invention, the wing spar 21 includes a wing front spar 211 and a wing rear spar 212, the wing front spar 211 and the wing rear spar 212 are arranged in the same direction, and the wing front spar 211 is located in front of the wing rear spar 212. Wherein the support rib 22 is located on the wing nose spar 211. Optionally, the wing front spar 211 and the wing rear spar 212 are cured with the skin 1 by resin into an integral structure. The arrows in fig. 8 represent the mounting direction of the components.
According to an alternative embodiment of the present application, the support assembly 2 further comprises a stiffener 23, the stiffener 23 being located between the front spar 211 and the rear spar 212 of the wing. The reinforcing ribs 23 reinforce the support member 2 and improve the load-bearing capacity of the support member 2. In the present embodiment, the number of the reinforcing ribs 23 is two, and both the reinforcing ribs 23 are provided near the support rib 22.
As shown in fig. 9, the stiffener 23 optionally includes a stiffener body 231 and a stiffener flange 232, and the stiffener flange 232 is located around the stiffener body 231, so that the cross-section of the stiffener 23 is C-shaped, which facilitates the manufacturing of the stiffener 23, and also facilitates the bonding of the stiffener 23 with the wing front spar 211 and the wing rear spar 212 through resin.
According to an alternative solution of the present application, the support assembly 2 further comprises a plurality of leading edge ribs 24. A plurality of leading edge ribs 24 are provided on the wing spar 1, the leading edge ribs 24 being located on either side of the support rib 22, the leading edge ribs 24 being used to support the skin 1. The provision of the leading edge rib 24 further enhances the load bearing capacity of the support assembly 2.
As shown in fig. 10, according to an alternative embodiment of the present invention, the leading edge rib 24 includes a leading edge rib body 241 and a leading edge rib flange 242, and in this embodiment, except for the rear end of the leading edge rib body 241, the remaining edges of the leading edge rib body 241 are provided with the leading edge rib flange 242, so that the section of the leading edge rib 24 is C-shaped, which facilitates the bonding of the leading edge rib 24 and the wing spar 211 by resin.
According to an alternative embodiment of the present application, the upper surface and the lower surface of the wing front spar 211 and the upper surface and the lower surface of the wing rear spar 212 are provided with bulkheads 25, and the bulkheads 25 support the skin 1. In this embodiment, a first bulkhead 251 is provided on the upper surface of the wing front spar 211, a second bulkhead 252 is provided on the upper surface of the wing rear spar 212, a third bulkhead 253 is provided on the lower surface of the wing front spar 211, and a fourth bulkhead 254 is provided on the lower surface of the wing rear spar 212.
As shown in fig. 11, the bulkhead 25 optionally includes a bulkhead body 255 and bulkhead flanges 256, and the bulkhead flanges 256 are positioned around the bulkhead body 255 such that the bulkhead 25 has a C-shaped cross-section to facilitate bonding of the bulkhead 25 to the front wing spar 211 and the rear wing spar 212 via the resin.
The wing beam 21, the support rib 22, the reinforcing rib 23, the leading edge rib 24 and the partition plate 25 of the embodiment are all made of carbon fiber composite materials, the connection among all parts of the support assembly can be bonded through resin, the fatigue problem does not exist, and the advantage of the fatigue resistance of the support assembly is obvious compared with that of a conventional metal structure.
According to an alternative solution of the present application, the skin 1 comprises an upper skin 11 and a lower skin 12, and the upper skin 11 and the lower skin 12 are connected to form a cavity of the skin 1 and an opening 13 of a front edge of the skin. The engine cover 4 is connected to an upper skin 11 and a lower skin 12, respectively.
According to an optional technical scheme of the application, the upper skin 11 is provided with an upper protrusion 111 at a position corresponding to the engine hood 4, and the lower skin 12 is provided with a lower protrusion 121 at a position corresponding to the engine hood 4. The upper protrusions 111 and the lower protrusions 121 are arranged, so that the transition from the engine hood 4 to the skin 1 is smooth, the resistance of the wing during flight is reduced, and the overall performance of the wing structure 100 is improved. The upper and lower protrusions 111 and 121 may also be used for engine line routing.
Alternatively, the engine cover 4 includes an upper cover and a lower cover, which are connected. The engine cover 4 is arranged to be of a split structure, so that the engine cover 4 is convenient to mount.
The present embodiments provide an aircraft comprising: such as the wing structure 100 and engine described above, the engine is located within the hood 4 and the engine is mounted on the firewall 3.
The wing structure 100 of the embodiment is simple in structure, the wings and the engine nacelle are integrated, the overall performance of the wing structure is improved through the composite materials, the supporting assembly is used for supporting the engine, the fatigue problem of traditional metal is avoided, the weight of the wing structure is reduced, and the maintainability of the airplane is improved.
The embodiments of the present application are described in detail above. The principle and the implementation of the present application are explained herein by applying specific examples, and the above description of the embodiments is only used to help understand the technical solutions and the core ideas of the present application. Therefore, the person skilled in the art should, according to the idea of the present application, change or modify the embodiments and applications of the present application based on the scope of protection of the present application. In view of the above, the description should not be taken as limiting the application.

Claims (10)

1. A wing structure, comprising:
the inner part of the skin is a cavity, and the front edge of the skin is provided with an opening;
a support assembly disposed within the cavity of the skin, the support assembly including a wing spar and a support rib disposed on the wing spar, the support rib being located at the opening of the skin leading edge;
a firewall disposed on the support rib, the firewall being used to mount an engine;
an engine cover closing the opening of the skin leading edge.
2. The wing structure of claim 1, wherein the wing spars include a front wing spar and a rear wing spar, the front wing spar and the rear wing spar being co-directional.
3. The wing structure of claim 2, wherein the support assembly further comprises a stiffener between the wing forward spar and the wing aft spar.
4. The wing structure of claim 2, wherein the support assembly further includes a plurality of leading edge ribs disposed on the wing spar, a plurality of the leading edge ribs being located on either side of the support ribs, the leading edge ribs supporting the skin.
5. The wing structure of claim 4, wherein the leading edge rib is C-shaped in cross-section.
6. The wing structure of claim 2, wherein the upper and lower surfaces of the wing front spar and the upper and lower surfaces of the wing rear spar are provided with bulkheads that support the skin.
7. The wing structure of claim 6, wherein the bulkhead is C-shaped in cross-section.
8. The wing structure of claim 1, wherein the skin includes an upper skin and a lower skin, the upper skin and the lower skin being connected to form the cavity, the hood being connected to the upper skin and the lower skin, respectively.
9. The wing structure of claim 8, wherein the upper skin is provided with an upper projection at a position corresponding to the engine cover, and the lower skin is provided with a lower projection at a position corresponding to the engine cover.
10. An aircraft, comprising:
an airfoil structure as claimed in any one of claims 1 to 9;
an engine located within the engine cover, the engine mounted on the firewall.
CN202111074623.XA 2021-09-14 2021-09-14 Wing structure and aircraft Pending CN113799966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111074623.XA CN113799966A (en) 2021-09-14 2021-09-14 Wing structure and aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111074623.XA CN113799966A (en) 2021-09-14 2021-09-14 Wing structure and aircraft

Publications (1)

Publication Number Publication Date
CN113799966A true CN113799966A (en) 2021-12-17

Family

ID=78895218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111074623.XA Pending CN113799966A (en) 2021-09-14 2021-09-14 Wing structure and aircraft

Country Status (1)

Country Link
CN (1) CN113799966A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778681A (en) * 1952-04-15 1957-07-10 Bristol Aircraft Ltd Improvements in or relating to aerofoils
CN202175199U (en) * 2011-06-03 2012-03-28 哈尔滨飞机工业集团有限责任公司 Space truss structure used for installing engine
US20120080554A1 (en) * 2010-10-01 2012-04-05 Airbus Operations (S.A.S.) Aircraft engine attachment pylon comprising two front wing system attachments with orthogonal shearing pins
US20160144967A1 (en) * 2014-11-26 2016-05-26 The Boeing Company Integrated pusher turbofan for aircraft
US20160207631A1 (en) * 2015-01-20 2016-07-21 United Technologies Corporation Pusher fan engine with in wing configuration
CN107571985A (en) * 2017-08-25 2018-01-12 中国航空工业集团公司沈阳飞机设计研究所 A kind of ultralight whole wing structure of truss-like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778681A (en) * 1952-04-15 1957-07-10 Bristol Aircraft Ltd Improvements in or relating to aerofoils
US20120080554A1 (en) * 2010-10-01 2012-04-05 Airbus Operations (S.A.S.) Aircraft engine attachment pylon comprising two front wing system attachments with orthogonal shearing pins
CN202175199U (en) * 2011-06-03 2012-03-28 哈尔滨飞机工业集团有限责任公司 Space truss structure used for installing engine
US20160144967A1 (en) * 2014-11-26 2016-05-26 The Boeing Company Integrated pusher turbofan for aircraft
US20160207631A1 (en) * 2015-01-20 2016-07-21 United Technologies Corporation Pusher fan engine with in wing configuration
CN107571985A (en) * 2017-08-25 2018-01-12 中国航空工业集团公司沈阳飞机设计研究所 A kind of ultralight whole wing structure of truss-like

Similar Documents

Publication Publication Date Title
US9868540B2 (en) Aircraft engine mounting system
RU2435702C2 (en) Fuselage structure of aircraft and structure manufacturing method
US6616101B2 (en) Leading edge of supporting surfaces of aircraft
US8286911B2 (en) Fitting for pivotally connecting aerodynamic control element to aircraft structure
US8251310B2 (en) Sail wing aircraft which includes an engine mounted on a pylon
CN104276274A (en) Apparatus and methods for joining composite structures of aircrafts
CN112977798A (en) Wing assembly and hovercar
US7793885B2 (en) Landing gear support
CN116691997A (en) Heavy-load light aircraft
CN115535211A (en) Aircraft and method of manufacturing an aircraft
CN103144763A (en) A fixed aerodynamic structural component of a plane and a shield component of the plane
US9868539B2 (en) Aircraft engine pylon to wing mounting assembly
KR20180041654A (en) Subfloor structure with an integral hull for a rotary wing aircraft
CN113799966A (en) Wing structure and aircraft
US11597496B2 (en) Leading edge for an airfoil
CN211391653U (en) Fixed wing unmanned aerial vehicle and multi-functional aircraft tail boom thereof
CN209757494U (en) Helicopter multifunctional auxiliary flight support and helicopter
CN113581476A (en) Engine back support structure and airplane
RU2481243C1 (en) Aircraft wing and outer wing joint assembly
CN220263054U (en) Wing structure of thin wing composite material with large aspect ratio
CN220263051U (en) Light composite material rear fuselage structure
CN219927958U (en) Large-load light stealth composite material fuselage structure
CN210681136U (en) Control surface combined wing beam structure
US11987343B2 (en) Aircraft empennage with a horizontal stabilizer interfacing at the vertical stabilizer root
US11840348B2 (en) Braced-pylon architecture for mounting an engine to an aircraft

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination