CN113793029A - 一种虚拟电厂优化调度方法及装置 - Google Patents

一种虚拟电厂优化调度方法及装置 Download PDF

Info

Publication number
CN113793029A
CN113793029A CN202111075536.6A CN202111075536A CN113793029A CN 113793029 A CN113793029 A CN 113793029A CN 202111075536 A CN202111075536 A CN 202111075536A CN 113793029 A CN113793029 A CN 113793029A
Authority
CN
China
Prior art keywords
scheduling
time
day
ahead
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111075536.6A
Other languages
English (en)
Inventor
郭晓蕊
刘建涛
耿建
王珂
叶洪波
陈明
凌晓波
肖飞
王礼文
周竞
吕建虎
蔡晟琦
顾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Shanghai Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202111075536.6A priority Critical patent/CN113793029A/zh
Publication of CN113793029A publication Critical patent/CN113793029A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种虚拟电厂优化调度方法及装置,属于源‑网‑荷互动运行调度与控制技术领域,包括如下步骤:获取日前预测数据以及短时预测数据;基于日前预测数据以及短时预测数据构建日前‑实时市场的双层优化调度框架。本发明针对多物理实体的虚拟电厂参与日前‑实时市场的优化调度问题,为提升优化求解时间,提出双层分布式优化调度框架,上层基于日前预测数据建立以虚拟电厂收益最大为目标的分布式日前优化调度模型;对于可再生能源出力的波动性,下层基于短时预测数据建立以遵循日前调度方案为目标的实时调度模型,采用所引入的ADMM算法,将集中式优化问题转换为分布式优化问题,通信要求低、计算速度快。

Description

一种虚拟电厂优化调度方法及装置
技术领域
本发明属于源-网-荷互动运行调度与控制技术领域,更具体地说,涉及一种虚拟电厂优化调度方法及装置。
背景技术
近年来,虚拟电厂通过大规模减少用户需求,实现节约电能规模化,进而完成与新建电厂发出同样电量的目标,虚拟电厂在分布式电源的并网消纳和用户侧需求响应方面都有巨大的应用前景。
但虚拟电厂内部各物理实体的功率协调管理以及其作为一个整体参与电力系统调度存在一些难以解决的问题,因此研究虚拟电厂分层调度策略,具有显著的研究意义和应用价值。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种虚拟电厂优化调度方法及装置,本发明针对多物理实体的虚拟电厂参与日前-实时市场的优化调度问题,为提升优化求解时间,提出双层分布式优化调度框架,上层基于日前预测数据建立以虚拟电厂收益最大为目标的分布式日前优化调度模型;对于可再生能源出力的波动性,下层基于短时预测数据建立以遵循日前调度方案为目标的实时调度模型,采用所引入的ADMM算法,将集中式优化问题转换为分布式优化问题,通信要求低、计算速度快,解决了集中式优化出现计算负担大的问题。
为解决上述问题,本发明采用如下的技术方案:
第一方面,本发明提供一种虚拟电厂优化调度方法,包括如下步骤:
获取日前预测数据以及短时预测数据;
基于所述日前预测数据以及所述短时预测数据构建日前-实时市场的双层优化调度框架;
采用日前-实时市场的双层优化调度框架建立分布式日前优化调度模型;
采用日前-实时市场的双层优化调度框架建立实时调度模型;
求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据。
本发明进一步的改进在于:所述日前-实时市场的双层优化调度框架包括:
日前调度层,所述日前调度层基于所述日前预测数据建立分布式日前优化调度模型;以及
实时调整层,所述实时调整层基于所述短时预测数据建立实时调度模型。
本发明进一步的改进在于:所述分布式日前优化调度模型具体为:
Figure BDA0003261995550000021
其中:
λt DA表示第t个时步的能量价格,其为输入量;
Pt DA表示第t个时步虚拟电厂的日前投标量,其为决策变量;
λt L表示第t个时步虚拟电厂对内部负荷的供电电价,其为输入量;
Pt LOAD表示第t个时步虚拟电厂内部负荷量,其为输入量;
Pt IL表示第t个时步可中断负荷的中断功率,其为决策变量;
Figure BDA0003261995550000022
表示第t个时步的不平衡惩罚;
Figure BDA0003261995550000023
表示第t个时步储能运行成本;
Figure BDA0003261995550000024
表示第t个时步可中断负荷的成本;
Figure BDA0003261995550000025
表示第t个时步微型燃气轮机的成本;
Δt为日前调度时间间隔;
T为日前调度时段。
本发明进一步的改进在于:所述实时调度模型具体为:
min|Pt RT-Pt DA| (2)
Figure BDA0003261995550000031
其中:
“^”用于区别实时阶段与日前阶段的变量;Pt RT表示虚拟电厂各子区域的实际出力值;
Figure BDA0003261995550000032
表示风机在实时调度阶段的出力;
Figure BDA0003261995550000033
表示储能在实时调度阶段的发电功率;
Figure BDA0003261995550000034
表示微型燃气轮机在实时调度阶段的出力;
Figure BDA0003261995550000035
表示可中断负荷在实时调度阶段的可中断功率;
Figure BDA0003261995550000036
表示虚拟电厂在实时调度阶段的负荷功率;
Figure BDA0003261995550000037
表示储能在实时调度阶段的充电功率。
本发明进一步的改进在于:所述求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据的步骤,具体包括:
对包含虚拟电厂的电力系统网络进行分解,获得若干子区域;
每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据。
本发明进一步的改进在于:所述对包含虚拟电厂的电力系统网络进行分解,获得若干子区域的步骤,具体包括:
将一个包含虚拟电厂的电力系统网络撕裂成若干个子区域;每个子区域包含虚拟电厂的物理实体。对每一个子网络单独分析求解,最终将若干子网络的解相互联接构成原网络的整体解。
本发明进一步的改进在于:所述对包含虚拟电厂的电力系统网络进行分解,获得若干子区域的步骤,还包括:
引入全局变量,以实现各子区域边界变量与全局变量耦合。
本发明进一步的改进在于:所述每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据的步骤,具体包括:
初始化子区域内物理实体的输入参数、代求变量;初始化ADMM算法的算法参数以及确定收敛精度;
区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值;
区域A和区域B控制器交互耦合支路功率
Figure BDA0003261995550000041
Figure BDA0003261995550000042
并分别计算得到耦合支路功率的平均值,作为下一次迭代的固定参考值;
区域A和区域B控制器分别更新本子区域的变量;
收敛判断;若计算结果满足收敛精度,结束迭代,输出虚拟电厂分布式优化调度数据;若不满足收敛精度,则转区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值的步骤。
本发明进一步的改进在于:根据实际情况和优化需求将虚拟电厂分解为若干子区域,确定各子区域的目标函数和约束条件。
第二方面,本发明提供一种虚拟电厂优化调度装置,包括:
获取模块,用于获取日前预测数据以及短时预测数据;
日前优化调度模型建立模块,用于采用日前-实时市场的双层优化调度框架建立分布式日前优化调度模型;
实时调度模型建立模块,用于采用日前-实时市场的双层优化调度框架建立实时调度模型;
求解输出模块,用于求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据。
本发明进一步的改进在于:所述调度框架构建模块的日前-实时市场的双层优化调度框架包括:
日前调度层,所述日前调度层基于所述日前预测数据建立分布式日前优化调度模型;以及
实时调整层,所述实时调整层基于所述短时预测数据建立实时调度模型;
所述分布式日前优化调度模型具体为:
Figure BDA0003261995550000051
其中:
λt DA表示第t个时步的能量价格,其为输入量;
Pt DA表示第t个时步虚拟电厂的日前投标量,其为决策变量;
λt L表示第t个时步虚拟电厂对内部负荷的供电电价,其为输入量;
Pt LOAD表示第t个时步虚拟电厂内部负荷量,其为输入量;
Pt IL表示第t个时步可中断负荷的中断功率,其为决策变量;
Figure BDA0003261995550000052
表示第t个时步的不平衡惩罚;
Figure BDA0003261995550000053
表示第t个时步储能运行成本;
Figure BDA0003261995550000054
表示第t个时步可中断负荷的成本;
Figure BDA0003261995550000055
表示第t个时步微型燃气轮机的成本;
Δt为日前调度时间间隔;
T为日前调度时段;
所述实时调度模型具体为:
min|Pt RT-Pt DA| (2)
Figure BDA0003261995550000056
其中:
“^”用于区别实时阶段与日前阶段的变量;Pt RT表示虚拟电厂各子区域的实际出力值;
Figure BDA0003261995550000057
表示风机在实时调度阶段的出力;
Figure BDA0003261995550000061
表示储能在实时调度阶段的发电功率;
Figure BDA0003261995550000062
表示微型燃气轮机在实时调度阶段的出力;
Figure BDA0003261995550000063
表示可中断负荷在实时调度阶段的可中断功率;
Figure BDA0003261995550000064
表示虚拟电厂在实时调度阶段的负荷功率;
Figure BDA0003261995550000065
表示储能在实时调度阶段的充电功率。
本发明进一步的改进在于:所述求解输出模块求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据,具体包括:对包含虚拟电厂的电力系统网络进行分解,获得若干子区域;每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据;
所述初始化子区域内物理实体的输入参数、代求变量;初始化ADMM算法的算法参数以及确定收敛精度的步骤包括:
区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值;
区域A和区域B控制器交互耦合支路功率
Figure BDA0003261995550000066
Figure BDA0003261995550000067
并分别计算得到耦合支路功率的平均值,作为下一次迭代的固定参考值;
区域A和区域B控制器分别更新本子区域的变量;
收敛判断;若计算结果满足收敛精度,结束迭代,输出虚拟电厂分布式优化调度数据;若不满足收敛精度,则转区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值的步骤。
相比于现有技术,本发明的优点在于:
(1)本发明首先将风电场、燃气轮机机组、储能和需求响应聚合在虚拟电厂中,针对VPP内部调度对象较多,集中式的日前96时段优化求解时间较慢,引入ADMM,建立基于ADMM的虚拟电厂参与日前-实时市场的优化调度模型,设计相应的ADMM算法迭代求解,采用所引入的ADMM算法,将集中式优化问题转换为分布式优化问题,通信要求低、计算速度快,解决了集中式优化出现计算负担大的问题,ADMM算法各子问题的求解可并行计算,在计算机组足够大的情况下几乎不受虚拟电厂内部设备规模的影响,更加适用于大型虚拟电厂调度决策。
(2)本发明采用基于ADMM的求解算法,将集中式优化问题转换为分布式优化问题,通信要求低、计算速度快,解决了集中式优化运行时间过长的问题。
(3)本发明可以适用于含多物理实体的虚拟电厂参与电力市场运行的过程中,具有一定的理论价值和工程价值。
附图说明
图1为本发明一种虚拟电厂优化调度方法的流程图;
图2为本发明一种虚拟电厂优化调度方法中步骤S5处的流程图;
图3为本发明一种虚拟电厂优化调度方法中日前-实时市场的双层优化调度框架图;
图4为本发明一种虚拟电厂优化调度方法中区域耦合系统分解图;
图5为本发明一种虚拟电厂优化调度方法中步骤S52处的流程图;
图6为区域耦合分解过程示意图。
图7为本发明一种虚拟电厂优化调度装置的结构框图。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参阅图1-5,一种虚拟电厂优化调度方法,包括如下步骤:
S1、获取日前预测数据以及短时预测数据;
S2、基于日前预测数据以及短时预测数据构建日前-实时市场的双层优化调度框架,上述日前-实时市场的双层优化调度框架包括:
日前调度层,其基于日前预测数据建立以虚拟电厂收益最大为目标的分布式日前优化调度模型;
实时调整层,其基于短时预测数据建立以遵循日前调度方案为目标的实时调度模型;
S3、日前-实时市场的双层优化调度框架基于日前预测数据建立分布式日前优化调度模型,分布式日前优化调度模型具体为:
Figure BDA0003261995550000081
其中:
λt DA表示第t个时步的能量价格,其为输入量;
Pt DA表示第t个时步虚拟电厂的日前投标量,其为决策变量;
λt L表示第t个时步虚拟电厂对内部负荷的供电电价,其为输入量;
Pt LOAD表示第t个时步虚拟电厂内部负荷量,其为输入量;
Pt IL表示第t个时步可中断负荷的中断功率,其为决策变量;
Figure BDA0003261995550000082
表示第t个时步的不平衡惩罚;
Figure BDA0003261995550000083
表示第t个时步储能运行成本;
Figure BDA0003261995550000084
表示第t个时步可中断负荷的成本;
Figure BDA0003261995550000085
表示第t个时步微型燃气轮机的成本;
Δt为日前调度时间间隔,其取值为15min;
T为日前调度时段,一共96个时段;
需要进行说明的是:上述所有的成本均由相应的成本函数计算得到;
其中,虚拟电厂中各设备的优化出力结果为待求输出量,各设备的电量价格、补偿率等参数为输入变量;
本发明设定虚拟电厂在市场交易中作为价格接受者。因虚拟电厂规模较小,假定其在日前市场的竞标价格不会影响最终的出清价格,因此将其竞标价格设为0,以保证竞标容量可被完全调用,实际结算价格与市场的出清价格相同。为简化处理,将正、负不平衡价格设为日前电价的一定比例。目标函数的意义在于在调度周期内将虚拟电厂利润最大化,虚拟电厂的利润可以分成三部分:第一部分为虚拟电厂对市场售电的收益;第二部分为虚拟电厂向内部负荷供电的收益;第三部分为偏差惩罚以及各设备的成本;
S4、日前-实时市场的双层优化调度框架基于短时预测数据建立实时调度模型,由于分布式日前优化调度模型中的可再生能源出力预测存在较大的误差,其优化调度方案与系统实际运行出现较大的偏差,使系统的运行成本增加,因此实时调整层基于短时的可再生能源出力预测数据建立实时优化调度模型,其中,保持上层中VPP各区域的调度结果不变,对虚拟电厂内部各类单元进行能量管理,以虚拟电厂各子区域的实际出力值和日前投标量偏差最小为目标建立下层目标函数,实时调度模型具体为:
min|Pt RT-Pt DA| 公式(2)
Figure BDA0003261995550000091
其中:
“^”用于区别实时阶段与日前阶段的变量;Pt RT表示虚拟电厂各子区域的实际出力值;
Figure BDA0003261995550000092
表示风机在实时调度阶段的出力;
Figure BDA0003261995550000093
表示储能在实时调度阶段的发电功率;
Figure BDA0003261995550000094
表示微型燃气轮机在实时调度阶段的出力;
Figure BDA0003261995550000095
表示可中断负荷在实时调度阶段的可中断功率;
Figure BDA0003261995550000096
表示虚拟电厂在实时调度阶段的负荷功率;
Figure BDA0003261995550000097
表示储能在实时调度阶段的充电功率;
S5、调用分布式日前优化调度模型以及实时调度模型,并基于ADMM算法求解分布式日前优化调度模型以及实时调度模型,输出和显示虚拟电厂分布式优化调度数据,其具体包括如下步骤:
S51、对包含虚拟电厂的电力系统网络进行分解,获得若干子区域:把一个大型网络撕裂成若干个较小的子网络,对每一个子网络单独分析求解,不必考虑其他部分的存在,最后把各个子网络的解“相互联接”构成原网络的整体解,在对大型网络区域进行分解过程中,为了使得各区域变量相互独立,可通过引入全局变量,使各区域边界变量仅与全局变量之间存在耦合关系。结合电力系统网络特点,对以支路为耦合边界的系统需要对支路进行撕裂,如图4所示,为保证系统分解前与分解后在电气上等值,一般在耦合支路中间点设置“虚拟”节点,再引入相应一致性约束;通过S51将一个大型网络分解为多个子区域,即将大型网络分解为一个分布式的系统;各虚拟电厂分区内的物理实体,如风机、储能、燃气轮机、可中断负荷等分布在各个分解后的子区域,每个子区域在求解过程中根据前述的日前调度模型和实时调度模型进行求解,各子区域的求解结果即为虚拟电厂分布式的优化调度结果。
S52、每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据,其具体包括如下步骤:
S521、初始化子区域内物理实体的输入参数、代求变量;初始化ADMM算法的算法参数以及确定收敛精度;
S522、区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值;
S523、区域A和区域B控制器交互耦合支路功率
Figure BDA0003261995550000101
Figure BDA0003261995550000102
并分别计算得到耦合支路功率的平均值,作为下一次迭代的固定参考值;
S524、区域A和区域B控制器分别更新本子区域的变量;
S525、收敛判断:若计算结果满足收敛精度,结束迭代,输出虚拟电厂分布式优化调度数据;若不满足收敛精度,则转步骤S522。
基于ADMM的求解策略
区域分解的基本思想是:把一个大型网络被撕裂成若干个较小的子网络,对每一个子网络单独分析求解,不必考虑其他部分的存在,最后把各个子网络的解“相互联接”构成原网络的整体解。经上节中稳定连接区域划分后,子区域之间耦合方式包括节点耦合和支路耦合,图6中(a)和(c)所示,对这两类耦合方式可采用撕裂法实现区域分解。在区域分解过程中,为了使得各区域变量相互独立,可通过引入全局变量,使各区域边界变量仅与全局变量之间存在耦合关系。
对区域间不同的耦合方式对应的解耦方法也是不相同的。三种区域分解后对于区域间边界参数的处理方法,分别为节点撕裂法、支路撕裂法和支路复制法:
(1)节点撕裂法:对以节点为耦合边界的系统可对节点进行撕裂,如图6中(b)所示,为保证系统分解前与分解后在电气上等值,需添加相应的一致性约束。
(2)支路撕裂法:对以支路为耦合边界的系统需要对支路进行撕裂,如图6中(d)所示,为保证系统分解前与分解后在电气上等值,一般在耦合支路中间点设置“虚拟”节点,再引入相应一致性约束。
(3)支路复制法:区域之间以共用同一条支路为耦合边界的系统需要对支路进行复制,如图6中(f)所示,为保证系统分解前与分解后在电气上等值,只需添加节点电压一致性约束。
当虚拟电厂实现区域分解后,集中式数学模型也实现了分解,可表示成区域内部优化形式和全局(边界优化)形式。
分布式优化问题的模型应具有如下特点:
1)、集中式模型的目标函数可分解为各区域目标函数之和,且各区域目标函数仅包含本区域自身所包含的变量,以及虚拟边界变量;
2)、集中式模型的约束可根据目标函数分解为区域内部约束以及边界约束;
3)、各区域变量仅通过新增的虚拟边界变量联系在一起。根据分布式模型的特点,在虚拟边界约束从子问题中消除后,各区域可在本地调度控制中心独立计算,无需将大量的数据传递给上层调度中心,减少了调度中心的计算压力。
实施例2
请参阅图7所示,本发明提供一种虚拟电厂优化调度装置,包括:
获取模块,用于获取日前预测数据以及短时预测数据;
调度框架构建模块,用于基于所述日前预测数据以及所述短时预测数据构建日前-实时市场的双层优化调度框架;
日前优化调度模型建立模块,用于采用日前-实时市场的双层优化调度框架建立分布式日前优化调度模型;
实时调度模型建立模块,用于采用日前-实时市场的双层优化调度框架建立实时调度模型;
求解输出模块,用于求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据。
日前-实时市场的双层优化调度框架包括:
日前调度层,基于日前预测数据建立以虚拟电厂收益最大为目标的分布式日前优化调度模型;
实时调整层,其基于短时预测数据建立以遵循日前调度方案为目标的实时调度模型。
日前-实时市场的双层优化调度框架基于日前预测数据建立分布式日前优化调度模型,分布式日前优化调度模型具体为:
Figure BDA0003261995550000121
其中:
λt DA表示第t个时步的能量价格,其为输入量;
Pt DA表示第t个时步虚拟电厂的日前投标量,其为决策变量;
λt L表示第t个时步虚拟电厂对内部负荷的供电电价,其为输入量;
Pt LOAD表示第t个时步虚拟电厂内部负荷量,其为输入量;
Pt IL表示第t个时步可中断负荷的中断功率,其为决策变量;
Figure BDA0003261995550000131
表示第t个时步的不平衡惩罚;
Figure BDA0003261995550000132
表示第t个时步储能运行成本;
Figure BDA0003261995550000133
表示第t个时步可中断负荷的成本;
Figure BDA0003261995550000134
表示第t个时步微型燃气轮机的成本;
Δt为日前调度时间间隔,其取值为15min;
T为日前调度时段,一共96个时段;
需要进行说明的是:上述所有的成本均由相应的成本函数计算得到;
其中,虚拟电厂中各设备的优化出力结果为待求输出量,各设备的电量价格、补偿率等参数为输入变量。
本发明设定虚拟电厂在市场交易中作为价格接受者。因虚拟电厂规模较小,假定其在日前市场的竞标价格不会影响最终的出清价格,因此将其竞标价格设为0,以保证竞标容量可被完全调用,实际结算价格与市场的出清价格相同。为简化处理,将正、负不平衡价格设为日前电价的一定比例。目标函数的意义在于在调度周期内将虚拟电厂利润最大化,虚拟电厂的利润可以分成三部分:第一部分为虚拟电厂对市场售电的收益;第二部分为虚拟电厂向内部负荷供电的收益;第三部分为偏差惩罚以及各设备的成本;
日前-实时市场的双层优化调度框架基于短时预测数据建立实时调度模型,由于分布式日前优化调度模型中的可再生能源出力预测存在较大的误差,其优化调度方案与系统实际运行出现较大的偏差,使系统的运行成本增加,因此实时调整层基于短时的可再生能源出力预测数据建立实时优化调度模型,其中,保持上层中VPP各区域的调度结果不变,对虚拟电厂内部各类单元进行能量管理,以虚拟电厂各子区域的实际出力值和日前投标量偏差最小为目标建立下层目标函数,实时调度模型具体为:
min|Pt RT-Pt DA| 公式(2)
Figure BDA0003261995550000141
其中:
“^”用于区别实时阶段与日前阶段的变量;Pt RT表示虚拟电厂各子区域的实际出力值;
Figure BDA0003261995550000142
表示风机在实时调度阶段的出力;
Figure BDA0003261995550000143
表示储能在实时调度阶段的发电功率;
Figure BDA0003261995550000144
表示微型燃气轮机在实时调度阶段的出力;
Figure BDA0003261995550000145
表示可中断负荷在实时调度阶段的可中断功率;
Figure BDA0003261995550000146
表示虚拟电厂在实时调度阶段的负荷功率;
Figure BDA0003261995550000147
表示储能在实时调度阶段的充电功率;
本发明中,所述求解输出模块求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据,具体包括:
S51、对包含虚拟电厂的电力系统网络进行分解,获得若干子区域:把一个大型网络撕裂成若干个较小的子网络,对每一个子网络单独分析求解,不必考虑其他部分的存在,最后把各个子网络的解“相互联接”构成原网络的整体解,在对大型网络区域进行分解过程中,为了使得各区域变量相互独立,可通过引入全局变量,使各区域边界变量仅与全局变量之间存在耦合关系。结合电力系统网络特点,对以支路为耦合边界的系统需要对支路进行撕裂,如图4所示,为保证系统分解前与分解后在电气上等值,一般在耦合支路中间点设置“虚拟”节点,再引入相应一致性约束;
S52、每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据,其具体包括如下步骤:
S521、初始化子区域内物理实体的输入参数、代求变量;初始化ADMM算法的算法参数以及确定收敛精度;
S522、区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值;
S523、区域A和区域B控制器交互耦合支路功率
Figure BDA0003261995550000151
Figure BDA0003261995550000152
并分别计算得到耦合支路功率的平均值,作为下一次迭代的固定参考值;
S524、区域A和区域B控制器分别更新本子区域的变量;
S525、收敛判断:若计算结果满足收敛精度,结束迭代,输出虚拟电厂分布式优化调度数据;若不满足收敛精度,则转步骤S522。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种虚拟电厂优化调度方法,其特征在于,包括如下步骤:
获取日前预测数据以及短时预测数据;
基于所述日前预测数据以及所述短时预测数据构建日前-实时市场的双层优化调度框架;
采用日前-实时市场的双层优化调度框架建立分布式日前优化调度模型;
采用日前-实时市场的双层优化调度框架建立实时调度模型;
求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据。
2.根据权利要求1所述的一种虚拟电厂优化调度方法,其特征在于,所述日前-实时市场的双层优化调度框架包括:
日前调度层,所述日前调度层基于所述日前预测数据建立分布式日前优化调度模型;以及
实时调整层,所述实时调整层基于所述短时预测数据建立实时调度模型。
3.根据权利要求2所述的一种虚拟电厂优化调度方法,其特征在于,所述分布式日前优化调度模型具体为:
Figure FDA0003261995540000011
其中:
Figure FDA0003261995540000012
表示第t个时步的能量价格,其为输入量;
Figure FDA0003261995540000013
表示第t个时步虚拟电厂的日前投标量,其为决策变量;
Figure FDA0003261995540000014
表示第t个时步虚拟电厂对内部负荷的供电电价,其为输入量;
Figure FDA0003261995540000015
表示第t个时步虚拟电厂内部负荷量,其为输入量;
Figure FDA0003261995540000016
表示第t个时步可中断负荷的中断功率,其为决策变量;
Figure FDA0003261995540000017
表示第t个时步的不平衡惩罚;
Figure FDA0003261995540000021
表示第t个时步储能运行成本;
Figure FDA0003261995540000022
表示第t个时步可中断负荷的成本;
Figure FDA0003261995540000023
表示第t个时步微型燃气轮机的成本;
Δt为日前调度时间间隔;
T为日前调度时段。
4.根据权利要求3所述的一种虚拟电厂优化调度方法,其特征在于,所述实时调度模型具体为:
Figure FDA0003261995540000024
Figure FDA0003261995540000025
其中:
“^”用于区别实时阶段与日前阶段的变量;
Figure FDA0003261995540000026
表示虚拟电厂各子区域的实际出力值;
Figure FDA0003261995540000027
表示风机在实时调度阶段的出力;
Figure FDA0003261995540000028
表示储能在实时调度阶段的发电功率;
Figure FDA0003261995540000029
表示微型燃气轮机在实时调度阶段的出力;
Figure FDA00032619955400000210
表示可中断负荷在实时调度阶段的可中断功率;
Figure FDA00032619955400000211
表示虚拟电厂在实时调度阶段的负荷功率;
Figure FDA00032619955400000212
表示储能在实时调度阶段的充电功率。
5.根据权利要求4所述的一种虚拟电厂优化调度方法,其特征在于,所述求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据的步骤,具体包括:
对包含虚拟电厂的电力系统网络进行分解,获得若干子区域;
每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据。
6.根据权利要求5所述的一种虚拟电厂优化调度方法,其特征在于,所述对包含虚拟电厂的电力系统网络进行分解,获得若干子区域的步骤,具体包括:
将一个包含虚拟电厂的电力系统网络撕裂成若干个子区域;每个子区域包含虚拟电厂的物理实体。
7.根据权利要求5所述的一种虚拟电厂优化调度方法,其特征在于,所述每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据的步骤,具体包括:
初始化子区域内物理实体的输入参数、代求变量;初始化ADMM算法的算法参数以及确定收敛精度;
区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值;
区域A和区域B控制器交互耦合支路功率
Figure FDA0003261995540000031
Figure FDA0003261995540000032
并分别计算得到耦合支路功率的平均值,作为下一次迭代的固定参考值;
区域A和区域B控制器分别更新本子区域的变量;
收敛判断;若计算结果满足收敛精度,结束迭代,输出虚拟电厂分布式优化调度数据;若不满足收敛精度,则转区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值的步骤。
8.一种虚拟电厂优化调度装置,其特征在于,包括:
获取模块,用于获取日前预测数据以及短时预测数据;
调度框架构建模块,用于基于所述日前预测数据以及所述短时预测数据构建日前-实时市场的双层优化调度框架;
日前优化调度模型建立模块,用于采用日前-实时市场的双层优化调度框架建立分布式日前优化调度模型;
实时调度模型建立模块,用于采用日前-实时市场的双层优化调度框架建立实时调度模型;
求解输出模块,用于求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据。
9.根据权利要求8所述的一种虚拟电厂优化调度装置,其特征在于,所述调度框架构建模块的日前-实时市场的双层优化调度框架包括:
日前调度层,所述日前调度层基于所述日前预测数据建立分布式日前优化调度模型;以及
实时调整层,所述实时调整层基于所述短时预测数据建立实时调度模型;
所述分布式日前优化调度模型具体为:
Figure FDA0003261995540000041
其中:
Figure FDA0003261995540000042
表示第t个时步的能量价格,其为输入量;
Figure FDA0003261995540000043
表示第t个时步虚拟电厂的日前投标量,其为决策变量;
Figure FDA0003261995540000044
表示第t个时步虚拟电厂对内部负荷的供电电价,其为输入量;
Figure FDA0003261995540000045
表示第t个时步虚拟电厂内部负荷量,其为输入量;
Figure FDA0003261995540000046
表示第t个时步可中断负荷的中断功率,其为决策变量;
Figure FDA0003261995540000047
表示第t个时步的不平衡惩罚;
Figure FDA0003261995540000048
表示第t个时步储能运行成本;
Figure FDA0003261995540000049
表示第t个时步可中断负荷的成本;
Figure FDA00032619955400000410
表示第t个时步微型燃气轮机的成本;
Δt为日前调度时间间隔;
T为日前调度时段;
所述实时调度模型具体为:
Figure FDA0003261995540000051
Figure FDA0003261995540000052
其中:
“^”用于区别实时阶段与日前阶段的变量;
Figure FDA0003261995540000053
表示虚拟电厂各子区域的实际出力值;
Figure FDA0003261995540000054
表示风机在实时调度阶段的出力;
Figure FDA0003261995540000055
表示储能在实时调度阶段的发电功率;
Figure FDA0003261995540000056
表示微型燃气轮机在实时调度阶段的出力;
Figure FDA0003261995540000057
表示可中断负荷在实时调度阶段的可中断功率;
Figure FDA0003261995540000058
表示虚拟电厂在实时调度阶段的负荷功率;
Figure FDA0003261995540000059
表示储能在实时调度阶段的充电功率。
10.根据权利要求9所述的一种虚拟电厂优化调度装置,其特征在于,所述求解输出模块求解所述分布式日前优化调度模型以及所述实时调度模型,输出和显示虚拟电厂分布式优化调度数据,具体包括:对包含虚拟电厂的电力系统网络进行分解,获得若干子区域;每个子区域中,基于ADMM算法求解日前调度模型和实时调度模型;各子区域的求解结果为虚拟电厂分布式优化调度数据;
所述初始化子区域内物理实体的输入参数、代求变量;初始化ADMM算法的算法参数以及确定收敛精度的步骤包括:
区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值;
区域A和区域B控制器交互耦合支路功率
Figure FDA00032619955400000510
Figure FDA00032619955400000511
并分别计算得到耦合支路功率的平均值,作为下一次迭代的固定参考值;
区域A和区域B控制器分别更新本子区域的变量;
收敛判断;若计算结果满足收敛精度,结束迭代,输出虚拟电厂分布式优化调度数据;若不满足收敛精度,则转区域A和区域B控制器分别求解本子区域的日前调度模型和实时调度模型,并行计算求得使目标函数最小的本子区域决策变量值,同时获得各子区域耦合变量值的步骤。
CN202111075536.6A 2021-09-14 2021-09-14 一种虚拟电厂优化调度方法及装置 Pending CN113793029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111075536.6A CN113793029A (zh) 2021-09-14 2021-09-14 一种虚拟电厂优化调度方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111075536.6A CN113793029A (zh) 2021-09-14 2021-09-14 一种虚拟电厂优化调度方法及装置

Publications (1)

Publication Number Publication Date
CN113793029A true CN113793029A (zh) 2021-12-14

Family

ID=78880229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111075536.6A Pending CN113793029A (zh) 2021-09-14 2021-09-14 一种虚拟电厂优化调度方法及装置

Country Status (1)

Country Link
CN (1) CN113793029A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115358519A (zh) * 2022-07-13 2022-11-18 上海嘉柒智能科技有限公司 一种虚拟电厂优化调度方法及装置
CN115953011A (zh) * 2023-03-10 2023-04-11 中国铁塔股份有限公司 通信基站储能资源调度方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108510212A (zh) * 2018-04-17 2018-09-07 香港中文大学(深圳) 一种交互式能源系统的分布式能源调度方法及系统
CN108808734A (zh) * 2018-07-09 2018-11-13 东北电力大学 一种含虚拟电厂的风电并网系统分布式优化调度建模方法
CN111242392A (zh) * 2020-03-06 2020-06-05 上海电力大学 多虚拟电厂参与主动配电网的双层-两阶段运行方法
CN113177323A (zh) * 2021-05-14 2021-07-27 华北电力大学 基于矩不确定分布式鲁棒的电热综合系统优化调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108510212A (zh) * 2018-04-17 2018-09-07 香港中文大学(深圳) 一种交互式能源系统的分布式能源调度方法及系统
CN108808734A (zh) * 2018-07-09 2018-11-13 东北电力大学 一种含虚拟电厂的风电并网系统分布式优化调度建模方法
CN111242392A (zh) * 2020-03-06 2020-06-05 上海电力大学 多虚拟电厂参与主动配电网的双层-两阶段运行方法
CN113177323A (zh) * 2021-05-14 2021-07-27 华北电力大学 基于矩不确定分布式鲁棒的电热综合系统优化调度方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张立辉等: "考虑需求响应的风光燃储集成虚拟电厂双层随机调度优化模型", 《可再生能源》, vol. 35, no. 10, pages 1514 - 1522 *
陈厚合等: "含虚拟电厂的风电并网系统分布式优化调度建模", 《中国电机工程学报》, vol. 39, no. 9, pages 2615 - 2624 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115358519A (zh) * 2022-07-13 2022-11-18 上海嘉柒智能科技有限公司 一种虚拟电厂优化调度方法及装置
CN115953011A (zh) * 2023-03-10 2023-04-11 中国铁塔股份有限公司 通信基站储能资源调度方法及设备

Similar Documents

Publication Publication Date Title
Zhang et al. Adaptive distributed auction-based algorithm for optimal mileage based AGC dispatch with high participation of renewable energy
CN107330568A (zh) 基于Benders解耦的储能、分布式电源与配电网协调规划方法
CN113793029A (zh) 一种虚拟电厂优化调度方法及装置
CN107392395A (zh) 一种基于价格激励机制的配电网和微电网协调优化方法
Xu et al. Look-ahead risk-constrained scheduling for an energy hub integrated with renewable energy
CN104769802A (zh) 用于计算机辅助控制电网中的功率的方法
CN111932075A (zh) 主动配电网多区域调度方法、系统、设备及可读存储介质
CN113128786B (zh) 一种基于空间网格搜索的风光水互补容量与选址优化方法
Xiao et al. Multi-period data driven control strategy for real-time management of energy storages in virtual power plants integrated with power grid
CN115425668A (zh) 一种基于电力系统时序生产模拟的储能容量优化配置方法
Liu et al. Multi-objective mayfly optimization-based frequency regulation for power grid with wind energy penetration
Zhang et al. A holistic robust method for optimizing multi-timescale operations of a wind farm with energy storages
CN115860205A (zh) 考虑跨季节调度的两阶段分布鲁棒氢储设备优化配置方法
CN115115276A (zh) 考虑不确定性和隐私保护的虚拟电厂调度方法及系统
CN115051360A (zh) 集成式知识迁移的电力系统运行风险在线计算方法与装置
CN112734277B (zh) 信息物理融合的需求侧响应资源多层级建模方法
Cheng et al. Optimal energy management of energy internet: A distributed actor-critic reinforcement learning method
CN108321792A (zh) 计及风电的电力系统动态经济调度多场景协同优化算法
Yu et al. Application of fuzzy spiking neural dP systems in energy coordinated control of multi-microgrid
Zhang et al. Data-Driven Distributionally Robust Optimization-Based Coordinated Dispatching for Cascaded Hydro-PV-PSH Combined System
CN111476456A (zh) 一种日前发电计划的实现方法及系统
CN113078685B (zh) 一种微电网动态划分方法及系统
CN112865151B (zh) 一种含电动汽车的虚拟发电厂在线实时调度方法
CN116054241B (zh) 一种新能源微电网群系统鲁棒能量管理方法
Nguyen et al. Solutions of economic load dispatch problems for hybrid power plants using Dandelion optimizer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination