CN113792977A - 保底电网的储能规划方法、装置、设备及介质 - Google Patents

保底电网的储能规划方法、装置、设备及介质 Download PDF

Info

Publication number
CN113792977A
CN113792977A CN202110938875.6A CN202110938875A CN113792977A CN 113792977 A CN113792977 A CN 113792977A CN 202110938875 A CN202110938875 A CN 202110938875A CN 113792977 A CN113792977 A CN 113792977A
Authority
CN
China
Prior art keywords
energy storage
power supply
load
planning scheme
guaranteed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110938875.6A
Other languages
English (en)
Inventor
喻松涛
陈鸿琳
何智鹏
龚贤夫
李巍巍
彭虹桥
卢洵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSG Electric Power Research Institute
Guangdong Power Grid Co Ltd
Original Assignee
CSG Electric Power Research Institute
Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSG Electric Power Research Institute, Guangdong Power Grid Co Ltd filed Critical CSG Electric Power Research Institute
Priority to CN202110938875.6A priority Critical patent/CN113792977A/zh
Publication of CN113792977A publication Critical patent/CN113792977A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Power Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Water Supply & Treatment (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种保底电网的储能规划方法、装置、设备及介质,所述方法通过考虑负荷互补特性,对保底负荷供电路径进行优化,并考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案,并根据场地约束、潮流约束、可靠供电约束和负荷响应时间约束从多个初始储能规划方案中选出至少一个候选储能规划方案,最后,考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从至少一个候选储能规划方案中选出一个最终储能规划方案,以根据最终储能规划方案对保底电网的储能系统进行配置,其能考虑保底电网差异化建设特点,对保底电网的储能系统进行规划,并考虑负荷互补特性,实现保底电网储能的优化配置。

Description

保底电网的储能规划方法、装置、设备及介质
技术领域
本发明涉及电网规划技术领域,尤其涉及一种保底电网的储能规划方法装置、设备及计算机可读存储介质。
背景技术
城市保底电网是针对台风、低温雨雪凝冻、洪涝内涝等严重自然灾害和外力破坏等极端情况,以保障城市基本运转、尽量降低社会影响为出发点,以城市指挥(应急)机构、核心基础设施用户为保障对象,选取城市重要变电站、重要线路和抗灾保障电源进行差异化建设维护,保障城市指挥(应急)机构不停电、核心基础设施可快速复电的最小规模网架。严重自然灾害情况下保底电网可分为多个局部电网独立运行。
抗灾保障电源是指在严重自然灾害情况下,可为城市核心区域、重要负荷提供稳定可靠电力供应,并具有“孤岛”或“黑启动”运行能力的电源,包括抽蓄机组、水电机组、燃气机组等常规电源机组。对于部分城市保底电网场景,由于改造成本过高,缺乏从常规抗灾保障电源到保底用户的“全电缆+全户内站”保底供电路径,可以考虑储能替代常规抗灾保障电源,构建坚强局部电网,支撑保底用户供电需求。
然而,目前针对储能在保底电网中的规划方法,尚无直接相关成果。
发明内容
本发明多个方面提供一种保底电网的储能规划方法、装置、设备及计算机可读存储介质,以解决现有技术未能针对储能系统在保底电网的应用提出一种有效的规划方案。
本发明第一方面提供一种保底电网的储能规划方法,包括:
获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
作为上述方案的改进,所述获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径,具体包括:
获取目标保底电网覆盖范围内的保底负荷供电路径;
选取所述保底负荷供电路径上的一环状馈线上的关键分段开关和关键联络开关进行关闭状态转换,以优化所述保底负荷供电路径,其中,所述关键分段开关和所述关键联络开关是以优化后的保底负荷供电路径的储能配置容量最小为目标进行选取的。
作为上述方案的改进,所述从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束,具体包括:
对于每一所述初始储能规划方案,检测所述初始储能规划方案是否同时满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
将同时满足所述场地约束、所述潮流约束、所述可靠供电约束和所述负荷响应时间约束的所述初始储能规划方案作为候选储能规划方案,得到至少一个候选储能规划方案;
其中,所述场地约束具体为:存在实际场地满足储能系统的建设需求;
其中,所述潮流约束具体为:节点电压和线路传输功率约束;
其中,所述可靠供电约束具体为:具备保底电网的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”生命线通道,或者“全电缆+户内站+储能”的储能保底供电路径;
其中,所述负荷响应时间约束具体为:储能系统的响应时间满足重要负荷的供电质量要求。
作为上述方案的改进,所述考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置,具体包括:
对于每一所述候选储能规划方案,计算所述候选储能规划方案对应的储能效率、储能保底供电系统的可靠性指标和电能质量指标,并将所述储能效率、所述可靠性指标和所述电能质量指标之和作为每一所述候选储能规划方案的技术指标;
选取技术指标最大的候选储能规划方案作为最佳储能规划方案,以根据所述最佳储能规划方案对保底电网的储能系统进行配置。
本发明第二方面提供一种保底电网的储能规划装置,包括:
供电路径优化模块,用于获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
初始储能规划方案获取模块,用于基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
候选储能规划方案获取模块,用于从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
最终储能规划方案获取模块,用于考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
作为上述方案的改进,所述供电路径优化模块,具体用于:
获取目标保底电网覆盖范围内的保底负荷供电路径;
选取所述保底负荷供电路径上的一环状馈线上的关键分段开关和关键联络开关进行关闭状态转换,以优化所述保底负荷供电路径,其中,所述关键分段开关和所述关键联络开关是以优化后的保底负荷供电路径的储能配置容量最小为目标进行选取的。
作为上述方案的改进,所述候选储能规划方案获取模块,具体用于:
对于每一所述初始储能规划方案,检测所述初始储能规划方案是否同时满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
将同时满足所述场地约束、所述潮流约束、所述可靠供电约束和所述负荷响应时间约束的所述初始储能规划方案作为候选储能规划方案,得到至少一个候选储能规划方案;
其中,所述场地约束具体为:存在实际场地满足储能系统的建设需求;
其中,所述潮流约束具体为:节点电压和线路传输功率约束;
其中,所述可靠供电约束具体为:具备保底电网的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”生命线通道,或者“全电缆+户内站+储能”的储能保底供电路径;
其中,所述负荷响应时间约束具体为:储能系统的响应时间满足重要负荷的供电质量要求。
作为上述方案的改进,所述最终储能规划方案获取模块,具体用于:
对于每一所述候选储能规划方案,计算所述候选储能规划方案对应的储能效率、储能保底供电系统的可靠性指标和电能质量指标,并将所述储能效率、所述可靠性指标和所述电能质量指标之和作为每一所述候选储能规划方案的技术指标;
选取技术指标最大的候选储能规划方案作为最佳储能规划方案,以根据所述最佳储能规划方案对保底电网的储能系统进行配置。
本发明第三方面提供一种保底电网的储能规划设备,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面提供的所述的保底电网的储能规划方法。
本发明第四方面提供一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如第一方面提供的所述的保底电网的储能规划方法。
本发明提供的保底电网的储能规划方法具有以下有益效果:
本发明提供的保底电网的储能规划方法,其通过考虑负荷互补特性,对保底负荷供电路径进行优化,并考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案,并根据场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束从所述多个初始储能规划方案中选出至少一个候选储能规划方案,最后,考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置,其能考虑保底电网差异化建设特点,对保底电网的储能系统进行规划配置,并考虑负荷互补特性,实现保底电网储能的优化配置。相应地,本发明还提供一种保底电网的储能规划装置、设备及计算机可读存储介质。
附图说明
图1是本发明实施例一提供的保底电网的储能规划方法的流程示意图;
图2是本发明实施例一提供的保底负荷供电路径优化前后的对比图;
图3是本发明实施例二提供的保底电网的储能规划方法的流程示意图;
图4是本发明实施例三提供的保底电网的储能规划装置的结构框图;
图5是本发明实施例四提供的保底电网的储能规划设备的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了方便理解,首先对本实施例方案中出现的术语进行解释。
保底电网:针对台风、洪涝、凝冻等严重自然灾害和外力破坏等极端情况,以提高城市核心区域和重要电力用户供电安全、提高严重故障下的快速复电能力为目标,选取城市重要站点、关键线路和抗灾保障电源进行差异化设计建设,所形成的最小规模网架。
储能:本发明主要针对电化学储能,可将电能存储为化学能,并在需要时释放出来,提升保底电网的建设运行综合效益。
配电网重构:利用配电网馈线的分段开关和联络开关实现配电网馈线结构的灵活配置。
实施例一
参见图1,图1是本发明实施例一提供的保底电网的储能规划方法的流程示意图。
本发明实施例一提供的保底电网的储能规划方法,包括步骤S11到步骤S14:
步骤S11,获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
步骤S12,基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
步骤S13,从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
步骤S14,考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
示例性的,所述重要用户包括城市应急指挥机构和核心基础设施等重要用户。
示例性的,在所述步骤S11中,根据目标保底电网的覆盖范围,获取覆盖范围内的重要用户清单(包括城市应急指挥机构和核心基础设施等重要用户),并从10kV至500kV自负荷侧向上梳理500kV变电站向重要用户供电的多个供电路径,得到保底负荷供电路径。
可以理解的是,由于城市保底电网重要用户至少需要具备一条“户内站+全电缆”的抗灾“生命线”通道,但受限于电网实际建设/改造情况,部分城市重要负荷缺乏完整的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”的生命线通道,根据“生命线”通道建设情况,需要在合适的站点配置储能系统。因此,在具体实施时,先梳理“户内站+全电缆”保底负荷供电路径,在结合重要用户在抗灾期间的用电负荷需求,对储能系统进行合理的规划和配置。
值得说明的是,本发明实施例在对储能系统规划时,考虑了保底电网的建设特点,对配电网的拓扑结构进行优化,具体通过优化保底负荷供电路径,以使得最终储能配置容量最小。
示例性的,在所述步骤S13中,基于优化后的保底负荷供电路径,需在关键节点配置储能系统,满足重要用户灾害期间的负荷用电需求。具体的,根据“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”的生命线通道建设完整情况,保底电网储能系统安装位置可有如下几种形式:
(1)10kV馈线未实现电缆化
用户不纳入保底电网,其灾害情况下的供电电源主要由用户自备电源或应急移动电源提供保障。
(2)110kV线路未实现电缆化或无110kV户内站
储能系统安装于110kV变电站的10kV母线上或者视情况安装于10kV馈线上的合适位置。
(3)220kV线路未实现电缆化或无220kV户内站
储能系统可安装于220kV变电站的110kV母线、110kV变电站的10kV母线或110kV、10kV电压等级的线路合适位置。
根据上述三种典型的储能位置情况,可见储能系统主要可以集中配置在110kV电压等级,或者分散配置在220kV/110kV变电站的10kV母线,且该10kV母线靠近重要用户。
进一步的,对于配置10kV电压等级的储能系统,需满足重点用户的用电需求,因此储能容量
Figure BDA0003213967780000081
其中Pi为10kV馈线上的有功负荷,km1为10kV储能容量选取的裕度系数,m为重要用户的数量。
对于配置110kV电压等级的集中储能系统,其储能系统的容量需满足110kV变电站的全部用电需求,因此其储能容量
Figure BDA0003213967780000082
其中Pj为110kV变电站的的有功负荷,km2为110kV集中储能系统容量选取的裕度系数,n为110kV变电站的个数。
同时,考虑到储能电量的配置与储能放电时间直接相关,根据目标城市保底电网在历史严重自然灾害期间的500kV/220kV电网最短停电时间进行合理评估,记500kV/220kV电网平均最短停电时间为tblack,则总储能配置的有效电量需满足EESS≥PESS·tblack
本发明实施例一提供的保底电网的储能规划方法,其通过考虑负荷互补特性,对保底负荷供电路径进行优化,并考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案,并根据场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束从所述多个初始储能规划方案中选出至少一个候选储能规划方案,最后,考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置,其能考虑保底电网差异化建设特点,对保底电网的储能系统进行规划配置,并考虑负荷互补特性,实现保底电网储能的优化配置。
在一种实施方式中,所述步骤S11“获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径”,具体包括:
获取目标保底电网覆盖范围内的保底负荷供电路径;
选取所述保底负荷供电路径上的一环状馈线上的关键分段开关和关键联络开关进行关闭状态转换,以优化所述保底负荷供电路径,其中,所述关键分段开关和所述关键联络开关是以优化后的保底负荷供电路径的储能配置容量最小为目标进行选取的。
具体的,本发明实施例考虑了保底电网差异化建设特点,对配电网进行重构,优化了储能系统容量配置。需要说明的是,在本发明实施例中,所述储能配置容量最小应当理解为,所选取的关键分段开关和关键联络开关进行状态转换后的储能配置容量比选取其他分段开关和其他联络开关进行状态转换后的储能配置容量都小,从而达到提升电源容量的利用率,降低储能系统配置容量的目的。
参见图2,图2示出了保底负荷供电路径优化前后的对比图,其示了关键分段开关和关键联络开关的开闭状态的转换逻辑。其中,St代表联络开关,Sd代表分段开关,优化前,左侧联络St开关处于常开状态,分段开关Sd处于常闭状态,两路馈线上的负荷通过响应的馈线进行供电;优化后,右侧通过转换联络开关和分段开关的分合状态,即此时联络开关St处于常闭状态,分段开关Sd处于常开状态,进而改变了保底负荷供电路径。
具体的,图2中的左侧馈线上的重要负荷有功负荷为
Figure BDA0003213967780000101
右侧馈线上的重要负荷有功负荷为
Figure BDA0003213967780000102
其中m和n代表左侧和右侧馈线上的用户数量,Pl_i和Pr_j分别代表左侧第i个负荷和右侧第j个用户的有功负荷。同时,馈线上不同用户负荷的叠加即为馈线始端总负荷(忽略线路损耗),由于不同用户负荷曲线的峰值发生在不同时间,选取合适的负荷进行叠加,可以使得馈线始端峰值降低,并达到
Figure BDA0003213967780000103
最小的效果,从而降低储能系统配置容量,并提升电源容量的利用率。
在一种实施方式中,所述步骤S13“从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束”,具体包括:
对于每一所述初始储能规划方案,检测所述初始储能规划方案是否同时满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
将同时满足所述场地约束、所述潮流约束、所述可靠供电约束和所述负荷响应时间约束的所述初始储能规划方案作为候选储能规划方案,得到至少一个候选储能规划方案;
其中,所述场地约束具体为:存在实际场地满足储能系统的建设需求;具体的,规划的110kV/10kV储能系统,考虑不同的储能系统类型,根据其容量所决定的储能系统占地面积,校核是否有实际场地满足储能系统建设需求;
其中,所述潮流约束具体为:节点电压和线路传输功率约束;具体的,节点电压表示为Umin≤Ui≤Umax,其中Umin和Umax为节点允许运行电压的下限和上限;线路传输功率约束表示为|Pij|≤Pmax,Pij为线路i-j的传输功率,Pmax为线路最大允许传输功率;
其中,所述可靠供电约束具体为:具备保底电网的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”生命线通道,或者“全电缆+户内站+储能”的储能保底供电路径;
其中,所述负荷响应时间约束具体为:储能系统的响应时间满足重要负荷的供电质量要求。
在一种实施方式中,所述步骤S14“考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置”,具体包括:
对于每一所述候选储能规划方案,计算所述候选储能规划方案对应的储能效率、储能保底供电系统的可靠性指标和电能质量指标,并将所述储能效率、所述可靠性指标和所述电能质量指标之和作为每一所述候选储能规划方案的技术指标;
选取技术指标最大的候选储能规划方案作为最佳储能规划方案,以根据所述最佳储能规划方案对保底电网的储能系统进行配置。
具体的,储能系统效率表征储能电池到负荷终端的供电效率,主要影响因素包括储能本体的转换效率、储能变流器效率和电网供电系统效率,因此储能系统效率ηESS可以表示为:
Figure BDA0003213967780000111
其中,Pload、PESS分别表示负荷功率和储能电池输出功率,PLoss_battery、PLoss_pcs、PLoss_grid分别表示储能电池本体损耗、储能变流器损耗和电网损耗。
具体的,在对储能保底供电系统可靠性进行评估时,采用最小割集法进行可靠性评估,即每一个重要负荷点存在一条或多条连通电源的供电路径,当移除电网的多个原件使得负荷点停电,放回任一原件负荷点即可恢复供电时,这些元件构成的集合即为该负荷点的最小割集,通过求取各负荷点的最小割集,可将复杂的网络结构转变为简单的元件串并联关系,因此负荷点的可靠性指标Z为:
Figure BDA0003213967780000121
其中,S表示负荷点的一阶和二阶最小供电割集的集合;λi和ri分别为第i个供电割集的等效故障率和修复时间,且λL和UL分别表示总系统的等效故障率和修复时间。
具体的,对于储能供电系统,灾害期间重要负荷供电电能质量需要满足相关标准要求,包括供电电压偏差、电压波动和闪变、谐波、三相不平衡度、系统频率等。根据相关标准要求,求得电能质量指标。由于供电电压偏差、电压波动和闪变、谐波、三相不平衡度、系统频率在国家相关标准中都有进行指标规定计算,这里不作过多的描述。
实施例二
本发明实施例二与实施例一不同的是,在对最终的储能规划方案决策时,将储能规划方案的优化问题转为一个多目标优化问题,既要优化储能的效率与质量,又要优化经济效益,从而为投资方提供一种技术可靠利润又高的储能规划方案。
具体的,参见图2,图2示出了本发明实施例二的保底电网的储能规划方法的流程示意图。本发明实施例二提供的保底电网的储能规划方法,包括步骤S21到步骤S24:
步骤S21,获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
步骤S22,基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
步骤S23,从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
步骤S24,考虑系统的效率质量和系统的运行效益,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置,其中,所述系统的效率质量是根据储能系统效率、储能保底供电系统的可靠性和电能质量进行评估的,所述系统的运行效益是根据储能系统成本、储能系统抗灾效益和储能系统常规效益进行评估的。
需要说明的是,本发明实施例二与实施例一的不同在于步骤S24,对于步骤S21到步骤S23,其实现原理和作用和上述实施例一的步骤S11到步骤S13相同,这里不再作过多的赘述。
具体的,在所述步骤S24中,是以技术指标的大小来衡量系统的效率质量,其中,技术指标的计算可参见实施例一,这里不再作赘述。
具体的,所述系统的运行效益是根据储能系统成本、储能系统抗灾效益和储能系统常规效进行评估的。
在一种实施方式中,储能系统成本包括储能系统的固定投资成本和年运行维护费用成本。其中,储能系统的固定投资成本与配置储能系统的容量及最大放电功率有关,主要包括:站址建设成本、电能转换设备成本和储能系统成本。则,储能系统的固定投资成本C1可表示为:
C1=kr0(Cf+c1PESS+c2EESS)
式中,Cf为单个储能电站的站址建设成本,可取与储能系统固定投资成本一致;PESS为储能系统设计的额定充放电功率,EESS为储能系统设计的额定电量;
Figure BDA0003213967780000131
为折现系数,c1为储能单位功率成本,c2为储能单位容量成本,r0为折现利率,n为储能系统经济运行年限。
其中,储能系统的年运行维护费用成本表示为:
C2=c3EESS
式中,C2为储能系统的年运行维护费用成本;c3为储能单位容量年运行维护成本。
在一种实施方式中,储能系统抗灾效益用电缆线路建设投资计算,其计算公式为:
Figure BDA0003213967780000141
式中,Erep为储能系统抗灾效益,Zcable为电缆投资,
Figure BDA0003213967780000142
为折现系数,u1为年运行费,分为运行维护费和电能损耗费。
在一种实施方式中,储能系统常规效益包括储能的削峰填谷效益、辅助AGC服务收益、储能促进新能源消纳的收益和储能提高用户的供电可靠性的收益,具体情况如下:
(1)储能的削峰填谷效益:其是在负荷低谷、电价较低时充电,在负荷高峰、电价较高时放电,进行低储高发套利,实现其经济收益,其计算如下:
Figure BDA0003213967780000143
式中,Ecut为储能电站削峰填谷收益;n为储能电站充放电循环次数;DDOD为放电深度,Pmax为储能电站充放电功率;T为储能电站充放电时间;η1为储能电站放电效率;η2为储能电站充电效率;e1、e2分别为地市电网的峰、谷电价。
(2)储能辅助机组参与AGC调频收益计算如下:
Figure BDA0003213967780000144
其中,K1表示发电单元实测速率与调频资源分布区内AGC发电单元平均调节速率的比值,K2表示发电单元响应延迟时间比值,K3表示发电单元调节误差与允许误差的比值,EAGC为辅助AGC服务收益;n为每月调频市场总的交易周期数;Di为该发电单元在第i个交易周期提供的调频里程;Qi为第i个交易周期的里程结算价格;Ki为发电单元在第i个交易周期的综合调频性能指标平均值。
(3)储能促进新能源消纳的收益:当新能源大发、电网出现阻塞时,可利用储能存储盈余电量、平抑新能源波动,避免弃风弃光,该部分电量即为储能促进新能源消纳的收益。计算如下:
Figure BDA0003213967780000151
式中,Erenewables为储能促进新能源消纳的收益;Qi为因网络阻塞引起的新能源弃风弃光电量;p为新能源上网电价。
(4)储能提高用户的供电可靠性的收益:储能提高用户的供电可靠性的收益受用户点的平均故障率和平均故障持续时间影响,具体收益计算如下:
Figure BDA0003213967780000152
式中,Ereliable为储能提高用户的供电可靠性的收益;λ为馈线故障概率;Li为馈线长度;T为馈线故障平均修复时间;p为用户停电损失。
本发明实施例二提供的保底电网的储能规划方案,其考虑了保底电网的建设特点,得到所有可行的储能规划方案,并对方案进行技术经济性评价,以便投资方决定最佳的保底电网储能规划方案。
实施例三
参见图3,图3是本发明实施例三提供的保底电网的储能规划装置的结构框图。本发明实施例三提供的保底电网的储能规划装置10,其用于实现本发明实施例一提供的保底电网的储能规划方法的全部步骤和流程,包括:
供电路径优化模块11,用于获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
初始储能规划方案获取模块12,用于基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
候选储能规划方案获取模块13,用于从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
最终储能规划方案获取模块14,用于考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
在一种实施方式中,所述供电路径优化模块11,具体用于:
获取目标保底电网覆盖范围内的保底负荷供电路径;
选取所述保底负荷供电路径上的一环状馈线上的关键分段开关和关键联络开关进行关闭状态转换,以优化所述保底负荷供电路径,其中,所述关键分段开关和所述关键联络开关是以优化后的保底负荷供电路径的储能配置容量最小为目标进行选取的。
在一种实施方式中,所述候选储能规划方案获取模块13,具体用于:
对于每一所述初始储能规划方案,检测所述初始储能规划方案是否同时满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
将同时满足所述场地约束、所述潮流约束、所述可靠供电约束和所述负荷响应时间约束的所述初始储能规划方案作为候选储能规划方案,得到至少一个候选储能规划方案;
其中,所述场地约束具体为:存在实际场地满足储能系统的建设需求;
其中,所述潮流约束具体为:节点电压和线路传输功率约束;
其中,所述可靠供电约束具体为:具备保底电网的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”生命线通道,或者“全电缆+户内站+储能”的储能保底供电路径;
其中,所述负荷响应时间约束具体为:储能系统的响应时间满足重要负荷的供电质量要求。
在一种实施方式中,所述最终储能规划方案获取模块14,具体用于:
对于每一所述候选储能规划方案,计算所述候选储能规划方案对应的储能效率、储能保底供电系统的可靠性指标和电能质量指标,并将所述储能效率、所述可靠性指标和所述电能质量指标之和作为每一所述候选储能规划方案的技术指标;
选取技术指标最大的候选储能规划方案作为最佳储能规划方案,以根据所述最佳储能规划方案对保底电网的储能系统进行配置。
实施例四
参见图5,其是本发明实施例四提供的保底电网的储能规划设备的结构框图,本发明实施例提供的保底电网的储能规划设备20,包括处理器21、存储器22以及存储在所述存储器22中且被配置为由所述处理器21执行的计算机程序,所述处理器21执行所述计算机程序时实现如上述保底电网的储能规划方法实施例中的步骤,例如图1中所述的步骤S11~S14;或者,所述处理器21执行所述计算机程序时实现上述各装置实施例中各模块的功能,例如供电路径优化模块11。
示例性的,所述计算机程序可以被分割成一个或多个模块,所述一个或者多个模块被存储在所述存储器22中,并由所述处理器21执行,以完成本发明。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述保底电网的储能规划设备20中的执行过程。例如,所述计算机程序可以被分割成供电路径优化模块11、初始储能规划方案获取模块12、候选储能规划方案获取模块13和最终储能规划方案获取模块14,各模块具体功能如下:
供电路径优化模块11,用于获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
初始储能规划方案获取模块12,用于基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
候选储能规划方案获取模块13,用于从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
最终储能规划方案获取模块14,用于考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
各个模块具体的工作过程可参考上述实施例所述的保底电网的储能规划装置10的工作过程,在此不再赘述。
所述保底电网的储能规划设备20可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述保底电网的储能规划设备20可包括,但不仅限于,处理器21、存储器22。本领域技术人员可以理解,所述示意图仅仅是网页的文字排版设备的示例,并不构成对保底电网的储能规划设备20的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述保底电网的储能规划设备20还可以包括输入输出设备、网络接入设备、总线等。
所述处理器21可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器21是所述保底电网的储能规划设备20的控制中心,利用各种接口和线路连接整个保底电网的储能规划设备20的各个部分。
所述存储器22可用于存储所述计算机程序和/或模块,所述处理器21通过运行或执行存储在所述存储器22内的计算机程序和/或模块,以及调用存储在存储器22内的数据,实现所述保底电网的储能规划设备20的各种功能。所述存储器22可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中,所述保底电网的储能规划设备20集成的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-OnlyMemory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
实施例五
发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如上述实施例的保底电网的储能规划方法中的步骤,例如图1中所述的步骤S11~S14。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种保底电网的储能规划方法,其特征在于,包括:
获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
2.如权利要求1所述的保底电网的储能规划方法,其特征在于,所述获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径,具体包括:
获取目标保底电网覆盖范围内的保底负荷供电路径;
选取所述保底负荷供电路径上的一环状馈线上的关键分段开关和关键联络开关进行关闭状态转换,以优化所述保底负荷供电路径,其中,所述关键分段开关和所述关键联络开关是以优化后的保底负荷供电路径的储能配置容量最小为目标进行选取的。
3.如权利要求1所述的保底电网的储能规划方法,其特征在于,所述从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束,具体包括:
对于每一所述初始储能规划方案,检测所述初始储能规划方案是否同时满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
将同时满足所述场地约束、所述潮流约束、所述可靠供电约束和所述负荷响应时间约束的所述初始储能规划方案作为候选储能规划方案,得到至少一个候选储能规划方案;
其中,所述场地约束具体为:存在实际场地满足储能系统的建设需求;
其中,所述潮流约束具体为:节点电压和线路传输功率约束;
其中,所述可靠供电约束具体为:具备保底电网的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”生命线通道,或者“全电缆+户内站+储能”的储能保底供电路径;
其中,所述负荷响应时间约束具体为:储能系统的响应时间满足重要负荷的供电质量要求。
4.如权利要求1所述的保底电网的储能规划方法,其特征在于,所述考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置,具体包括:
对于每一所述候选储能规划方案,计算所述候选储能规划方案对应的储能效率、储能保底供电系统的可靠性指标和电能质量指标,并将所述储能效率、所述可靠性指标和所述电能质量指标之和作为每一所述候选储能规划方案的技术指标;
选取技术指标最大的候选储能规划方案作为最佳储能规划方案,以根据所述最佳储能规划方案对保底电网的储能系统进行配置。
5.一种保底电网的储能规划装置,其特征在于,包括:
供电路径优化模块,用于获取目标保底电网覆盖范围内的保底负荷供电路径,并考虑负荷互补特性,优化所述保底负荷供电路径;
初始储能规划方案获取模块,用于基于优化后的保底负荷供电路径,考虑重要用户在灾害期间的负荷用电需求,选择关键变电站配置储能系统,得到多个初始储能规划方案;
候选储能规划方案获取模块,用于从所述多个初始储能规划方案中选出至少一个候选储能规划方案,其中,所述候选储能规划方案满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
最终储能规划方案获取模块,用于考虑储能系统效率、储能保底供电系统的可靠性和电能质量,从所述至少一个候选储能规划方案中选出一个最终储能规划方案,以根据所述最终储能规划方案对保底电网的储能系统进行配置。
6.如权利要求5所述的保底电网的储能规划装置,其特征在于,所述供电路径优化模块,具体用于:
获取目标保底电网覆盖范围内的保底负荷供电路径;
选取所述保底负荷供电路径上的一环状馈线上的关键分段开关和关键联络开关进行关闭状态转换,以优化所述保底负荷供电路径,其中,所述关键分段开关和所述关键联络开关是以优化后的保底负荷供电路径的储能配置容量最小为目标进行选取的。
7.如权利要求5所述的保底电网的储能规划装置,其特征在于,所述候选储能规划方案获取模块,具体用于:
对于每一所述初始储能规划方案,检测所述初始储能规划方案是否同时满足场地约束、潮流约束、重要负荷灾害期间可靠供电约束和负荷响应时间约束;
将同时满足所述场地约束、所述潮流约束、所述可靠供电约束和所述负荷响应时间约束的所述初始储能规划方案作为候选储能规划方案,得到至少一个候选储能规划方案;
其中,所述场地约束具体为:存在实际场地满足储能系统的建设需求;
其中,所述潮流约束具体为:节点电压和线路传输功率约束;
其中,所述可靠供电约束具体为:具备保底电网的“10kV电缆+110kV户内站+110kV电缆+220kV户内站+220kV电缆+500kV户内站”生命线通道,或者“全电缆+户内站+储能”的储能保底供电路径;
其中,所述负荷响应时间约束具体为:储能系统的响应时间满足重要负荷的供电质量要求。
8.如权利要求5所述的保底电网的储能规划装置,其特征在于,所述最终储能规划方案获取模块,具体用于:
对于每一所述候选储能规划方案,计算所述候选储能规划方案对应的储能效率、储能保底供电系统的可靠性指标和电能质量指标,并将所述储能效率、所述可靠性指标和所述电能质量指标之和作为每一所述候选储能规划方案的技术指标;
选取技术指标最大的候选储能规划方案作为最佳储能规划方案,以根据所述最佳储能规划方案对保底电网的储能系统进行配置。
9.一种保底电网的储能规划设备,其特征在于,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至4中任意一项所述的保底电网的储能规划方法。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如权利要求1至4中任意一项所述的保底电网的储能规划方法。
CN202110938875.6A 2021-08-16 2021-08-16 保底电网的储能规划方法、装置、设备及介质 Pending CN113792977A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110938875.6A CN113792977A (zh) 2021-08-16 2021-08-16 保底电网的储能规划方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110938875.6A CN113792977A (zh) 2021-08-16 2021-08-16 保底电网的储能规划方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
CN113792977A true CN113792977A (zh) 2021-12-14

Family

ID=79181848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110938875.6A Pending CN113792977A (zh) 2021-08-16 2021-08-16 保底电网的储能规划方法、装置、设备及介质

Country Status (1)

Country Link
CN (1) CN113792977A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115965225A (zh) * 2023-03-16 2023-04-14 华南理工大学 一种城市保底电网中抗灾保障电源布局方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109034653A (zh) * 2018-08-16 2018-12-18 广东电网有限责任公司 一种电源规划方案综合评价方法
CN109193638A (zh) * 2018-10-10 2019-01-11 国网福建省电力有限公司 一种基于路径搜索算法的配电网灾后供电恢复方法
CN109713669A (zh) * 2019-01-28 2019-05-03 广东电网有限责任公司 一种抗灾保底电网的规划方法、装置和设备
CN109768543A (zh) * 2018-12-18 2019-05-17 广西电网有限责任公司电力科学研究院 一种基于混合整数线性规划的弹性保底网架搜索建模方法
CN110796352A (zh) * 2019-10-18 2020-02-14 广州供电局有限公司 电网网架设计方法、计算机设备和存储介质
CN112598159A (zh) * 2020-12-02 2021-04-02 广西大学 一种基于多源网络重构的孤岛融合恢复方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109034653A (zh) * 2018-08-16 2018-12-18 广东电网有限责任公司 一种电源规划方案综合评价方法
CN109193638A (zh) * 2018-10-10 2019-01-11 国网福建省电力有限公司 一种基于路径搜索算法的配电网灾后供电恢复方法
CN109768543A (zh) * 2018-12-18 2019-05-17 广西电网有限责任公司电力科学研究院 一种基于混合整数线性规划的弹性保底网架搜索建模方法
CN109713669A (zh) * 2019-01-28 2019-05-03 广东电网有限责任公司 一种抗灾保底电网的规划方法、装置和设备
CN110796352A (zh) * 2019-10-18 2020-02-14 广州供电局有限公司 电网网架设计方法、计算机设备和存储介质
CN112598159A (zh) * 2020-12-02 2021-04-02 广西大学 一种基于多源网络重构的孤岛融合恢复方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
龚贤夫;樊扬;程鑫;覃芸;余浩;刘新苗;: "可局部自平衡运行的城市保底电网规划方法研究", 广东电力, no. 7, pages 72 - 80 *
龚贤夫;覃芸;段瑶;许亮;郇嘉嘉;余浩;: "广东沿海城市防风保底电网规划方法", 广东电力, no. 7, pages 7 - 11 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115965225A (zh) * 2023-03-16 2023-04-14 华南理工大学 一种城市保底电网中抗灾保障电源布局方法及系统
CN115965225B (zh) * 2023-03-16 2023-08-22 华南理工大学 一种城市保底电网中抗灾保障电源布局方法及系统

Similar Documents

Publication Publication Date Title
CN109787261B (zh) 电网侧及用户侧储能系统容量优化配置方法
CN109492824B (zh) 考虑源-网-荷多方利益的分散式风储系统优化方法
CN113690877B (zh) 一种考虑能源消纳的有源配电网与集中能源站互动方法
CN111799794B (zh) 一种考虑输电阻塞盈余的输电网扩展规划方法
CN111049152B (zh) 一种在线预决策的精准负荷控制方法、装置、设备及系统
CN112865146A (zh) 一种用户侧储能系统协调化运行策略的生成方法
CN113792977A (zh) 保底电网的储能规划方法、装置、设备及介质
CN115000985A (zh) 一种用户侧分布式储能设施聚合管控方法及系统
Li et al. Double-layer optimized configuration of distributed energy storage and transformer capacity in distribution network
Linhao et al. Reliability evaluation of microgrid considering electric vehicles and demand response
CN116094032A (zh) 高渗透率光伏接入的配电网云边端协同能量自平衡方法
CN115659098A (zh) 一种分布式新能源消纳能力计算方法、装置、设备及介质
NamKoong et al. Voltage control of distribution networks to increase their hosting capacity in South Korea
Hesse et al. Autonomous versus coordinated control of residential energy storage systems-monitoring profit, battery aging, and system efficiency
CN113240350A (zh) 一种基于储能并网的综合效用评价方法及系统
CN113469436A (zh) 一种城市电网侧储能规划方法
Etherden et al. The use of battery storage for increasing the hosting capacity of the grid for renewable electricity production
CN112102047A (zh) 虚拟电厂优化组合竞价方法、装置、设备和存储介质
Li et al. Composite power system reliability evaluation incorporating network topology optimization and demand side management
CN110707689A (zh) 适用于全清洁能源发电电网的稳定性的分析方法及装置
Plecas et al. Integration of energy storage to improve utilisation of distribution networks with active network management schemes
CN112234633B (zh) 一种基于提高电网运行可靠性的储能单元分配方法
Amarasinghe et al. Distribution Transformer Based Smart Grids with Rooftop Solar: A Case study for Sri Lanka
Awad Novel planning and market models for energy storage systems in smart grids
CN104009479B (zh) 一种220kV发电厂调度电压曲线优化制定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination