CN113788888B - 时钟基因rve5在调控植物生长和开花时间中的应用 - Google Patents

时钟基因rve5在调控植物生长和开花时间中的应用 Download PDF

Info

Publication number
CN113788888B
CN113788888B CN202111098837.0A CN202111098837A CN113788888B CN 113788888 B CN113788888 B CN 113788888B CN 202111098837 A CN202111098837 A CN 202111098837A CN 113788888 B CN113788888 B CN 113788888B
Authority
CN
China
Prior art keywords
rve5
gene
flowering time
mutant
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111098837.0A
Other languages
English (en)
Other versions
CN113788888A (zh
Inventor
刘建祥
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111098837.0A priority Critical patent/CN113788888B/zh
Publication of CN113788888A publication Critical patent/CN113788888A/zh
Application granted granted Critical
Publication of CN113788888B publication Critical patent/CN113788888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了基因RVE5在调控生物节律控制高温条件下植物生长以及开花时间中的应用。本发明在模式植物拟南芥中利用转录因子编码基因RVE5的T‑DNA插入突变体(rve5‑2),以及利用转基因工程技术在该突变体中表达RVE5获得遗传互补材料(COM25/34/29),探究植物的开花时间以及对环境温度升高的生长响应的调控。本发明针对RVE5基因获得破坏RVE5基因功能的材料,该突变体材料开花时间延迟、温和高温下的下胚轴伸长变快,遗传互补材料的相关性状恢复到与野生型(WT)一致。本发明提供的基因及操作技术在调控植物开花时间以及对环境温度的响应方面具有应用价值。

Description

时钟基因RVE5在调控植物生长和开花时间中的应用
技术领域
本发明涉及基因工程领域,具体涉及一种时钟基因RVE5在调控植物生长和开花时间中的应用。
背景技术
生物钟广泛存在于生物体中,是生物的内在时间装置。它能够预测外部环境信息并相应地调整内部生物过程。生物钟系统主要包括信号输入、核心振荡器和信号输出3个部分。光照和温度的昼夜周期性变化是调节植物生物钟的两个主要输入信号,包括转录和翻译后两种水平。核心振荡器由转录反馈调控回路组成(Harmer SL.The circadian systemin higher plants.Annu Rev Plant Biol.60(2009)357–377.),CCA1、LHY和TOC1构成的核心回路;PRR5/7/9组成的白昼回路;ELF3、ELF4、GI和LUX形成夜晚回路(Romanowski A,Yanovsky MJ.Circadian rhythms and post-transcriptional regulation in higherplants.Front Plant Sci.6(2015)437.)。作为输出途径,生物钟调节昼夜下胚轴生长和光周期依赖性开花(Farre,E.M.The regulation of plant growth by the circadianclock.Plant Biology.14(2012)401-410)。之前有Park等研究表明在温和高温下,植物中的生物钟通过感知并适应环境温度的变化控制下胚轴的生长,参与热形态建成。
PIF4是植物热形态建成的中心调节因子,在转录和翻译后水平都受到多重调控(Vu,L.D,et al.Developmental plasticity at high temperature.PlantPhysiology.181(2019)399-411.)。它识别包含G-box(CACGTG)的顺式元件并调节参与生长素生物合成和信号传导的下游基因的表达(Sun,J.,et al.PIF4-mediated activation ofYUCCA8 expression integrates temperature into the auxin pathway in regulatingArabidopsis hypocotyl growth.PLOS Genetics(2012)810.1371/journal.pgen.1002594.)。EARLY FLOWERING3(ELF3)是生物钟的重要核心组件,与ELF4和LUX ARRHYTHMO(LUX)一起组装成EC复合体(Huang,H.,et al.Into the evening:complexinteractions in the Arabidopsis circadian clock.Trends in Genetics.32(2016)674-686.)。EC与PIF4/5的启动子结合以抑制其基因表达,但这种抑制在温暖的温度条件下会减弱。在红光和温暖的温度条件下,CCA1通过招募SHORT HYPOCOTYL UNDER BLUE 1(SHB1)与PIF4的启动子结合以维持PIF4表达来促进植物热形态建成(Sun,Q.B.,etal.SHB1 and CCA1 interaction desensitizeslight responses and enhances thermomorphogenesis.Nat.Commun.10(2019)3110.)。
发明内容
本发明提供一种利用基因RVE5改变植物开花时间和在温和高温(28~30℃,优选为29℃)下下胚轴生长速度的应用,并发掘能与RVE5相结合的靶标基因。
本发明研究发现转录因子RVE5在促进开花、抑制拟南芥热响应性下胚轴生长和促进生物钟相关基因表达方面具有重要作用。
时钟基因RVE5在调控植物生长和开花时间中的应用,所述的时钟基因RVE5的碱基序列如SEQ ID NO.1所示。
时钟基因RVE5在调控拟南芥开花时间和热响应性下胚轴生长的应用,所述的时钟基因RVE5的碱基序列如SEQ ID NO.1所示。
时钟基因RVE5,碱基序列如SEQ ID NO.1所示。时钟基因RVE5的编码区,碱基序列如SEQ ID NO.2所示。
所述的时钟基因RVE5编码的蛋白质,其氨基酸序列如SEQ ID NO.3所示。所述的时钟基因RVE5的编码区编码的蛋白质,其特征在于,其氨基酸序列如SEQ ID NO.3所示。
一种参与拟南芥开花时间调控的基因编码的蛋白质,其氨基酸序列如SEQ IDNO.3所示。
一种参与拟南芥热形态建成的基因编码的蛋白质,其氨基酸序列如SEQ ID NO.3所示。
一种扩增出所述的时钟基因RVE5所需的正反引物序列,正反引物序列的碱基序列如SEQ ID NO.7和SEQ ID NO.8所示。
本发明提供的RVE5基因是拟南芥第4号染色体上的一个MYB转录因子,其属于RVE家族,基因编码为AT4G01280。本实验使用的其它启动子序列分别是来自第2号和第5号染色体的ELF4和PRR5基因,基因编号分别为AT2G40080、AT5G24470。
RVE5的基因组全长为4104bp,共含有8个外显子,7个内含子,序列如SEQ ID NO.1所示,其结构图见图1。RVE5基因编码区CDS全长为912bp,序列如SEQ ID NO.2所示;RVE5基因编码303个氨基酸,具体序列如SEQ ID NO.3所示。RVE5蛋白中含有一个MYB-like结构域(MYB-like domain),具体见图2所示。
本发明提供一种利用基因RVE5改变开花时间和在温和高温下拟南芥下胚轴伸长速度的应用,具体为:从NASC种子库购得T-DNA突变体rve5-2:(GK_225C06),提取DNA,并设计引物鉴定突变体是否纯合,其系列为SEQ ID NO.4、SEQ ID NO.5、SEQ ID NO.6。针对RVE5的基因组设计引物,其系列为SEQ ID NO.7和SEQ ID NO.8,扩增出RVE5的基因组序列并连接到pCAMBIA1300载体,通过农杆菌花序侵染法稳定转化rve5-2,获得能够稳定遗传的回补材料。
本发明提供设计并合成鉴定rve5-2突变体所需的正反序列,其序列碱基为:
RVE5-T-DNA-F:CAGAGCTCTACGGGACATAAACGT(SEQ ID NO.4)
RVE5-T-DNA-R:CTCGAAGACGGGAGAGAGGT(SEQ ID NO.5)
GABI-LB:ATATTGACCATCATACTCATTGC(SEQ ID NO.6)
rve5-2突变体中T-DNA为反向插入,分别利用RVE5-T-DNA-F/R,RVE5-T-DNA-F/GABI,以rve5-2基因组DNA为模板进行扩增。具体为:在95℃预变性5min;在95℃变性30sec,60℃退火30sec,72℃延伸1:30min,在第2-第4步循环35cycle。将PCR产物进行琼脂糖凝胶电泳检测条带,挑选出用RVE5-T-DNA-F/R扩增无条带,RVE5-T-DNA-F/GABI有条带的line,此为rve5-2纯合突变体。
本发明提供设计并合成扩增出RVE5的基因组所需的正反引物序列,其序列碱基为:
RVE5-Genomic-F:GGGGTACCTAGTTCCACTCAGTTCACATGGC(SEQ ID NO.7)
RVE5-Genomic-R:GCGTCGACCCGGAAACCTGATCAAACCCT(SEQ ID NO.8)
利用RVE5-Genomic-F/R,以野生型拟南芥DNA为模板,使用KOD酶扩增RVE5基因组DNA,具体为:在95℃预变性5min;在95℃变性30sec,60℃退火30sec,68℃延伸4min,在第2-第4步循环35cycle。将扩增的双链插入到pCAMBIA1300载体中,获得pCAMBIA-RVE5载体。
本发明提供含有以上设计的pCAMBIA1300载体。
本发明提供含有以上pCAMBIA1300载体的大肠杆菌和农杆菌工程菌。
本发明提供利用农杆菌将重组的pCAMBIA1300载体转化到rve5-2突变体中,并筛选得到回补植株。具体方法如下:
(1)构建工程菌:将构建好的pCAMBIA-RVE5载体通过热激法转化到农杆菌菌株GV3101中,通过卡那霉素和利福平筛选,获得含有此pCAMBIA-RVE5载体的基因工程菌。
(2)农杆菌稳定转化拟南芥花序并筛选得到回补植株:挑取多个含有pCAMBIA-RVE5载体的农杆菌,接种到含有利福平和卡那霉素的5ml YEP液体培养基中,30°培养至OD值在0.6-1.0后,将菌液转入含有抗生素的400ml YEP液体培养基中,30℃培养过夜。次日离心收集菌液,并用侵染液重悬菌体。用于转化拟南芥。挑选长势良好且处于盛花期的拟南芥,剪去果荚,将花序浸泡在侵染液中,5min后取出平放在托盘中,黑暗培养过夜,次日,将拟南芥放正,继续正常光照培养直至收种。将T1代种子放入到含有潮霉素的筛选板中,鉴定能够在筛选板上正常生长的阳性苗,获得回补株系。
(3)鉴定回补株系:设计引物鉴定是否含有目的载体,为引物序列为:
M1300-R:GTAAAACGACGGCCAGT(SEQ ID NO.9)
RVE5-Genomic-F3:GTCCCTACTCTGAGCCTTTGTTG(SEQ ID NO.10)
分别提取回补株系的DNA,利用RVE5-Genomic-F和M1300-R引物,进行扩增。具体为:在95℃预变性5min;在95℃变性30sec,60℃退火30sec,72℃延伸1min,在第2-第4步循环30cycle。将PCR产物进行琼脂糖凝胶电泳检测条带,挑选出有条带的株系。
与现有技术相比,本发明具有如下优点:
本发明提供一种利用基因RVE5改变拟南芥开花时间和在温和高温下下胚轴生长速度的应用。相较于野生型,rve5-2突变体长日照条件下晚花,在温和高温下有明显的下胚轴伸长的表型,当RVE5基因组DNA回补到rve5-2突变体后,晚花表型和温和高温下下胚轴明显伸长的表型消失。本发明显示RVE5基因在调控拟南芥开花时间和温和高温下植物生长速度方面发挥重要作用。
附图说明
图1为RVE5基因组结构图,其中,外显子用黑框表示,内含子用粗线条表示;
图2为RVE5蛋白结构图,其中,MYB-like domain用黑框表示;
图3为rve5-2突变体及2个回补株系的开花时间表型及叶片数统计
图4为rve5-2突变体及3个回补株系的下胚轴表型及长度统计;
图5为野生型和rve5-2突变体中差异表达基因韦恩图;
图6为野生型和rve5-2突变体中特异表达基因的GO分析;
图7为RVE5蛋白水平检测、与RVE5相结合的靶标的CHIP-SEQ分析;
图8为能与RVE5相结合的生物钟相关基因的结合峰分布图;
图9为CHIP-qPCR实验检验在不同温度下RVE5与启动子的结合情况;
图10为对照野生型和rve5-2突变体中的生物钟相关基因的表达情况;
图11为EMSA和ITC实验验证RVE5能够与ELF4启动子结合;
图12为RVE5亚细胞定位实验;
图13为RVE5转录活性检测;
图14为双荧光报告实验验证RVE5抑制PRR5和ELF4启动子活性。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
以下实施例中未注明具体条件的实验方法,均按照常规步骤进行,所用材料和试剂均为市售商品。
实施例1:利用rve5-2突变体及回补材料,探究RVE5基因在调控开花时间和温和高温下拟南芥下胚轴生长中的应用
以下实施案例采用拟南芥哥伦比亚型(Arabidopsis thaliana.cv.Columbia)为例。扩增出RVE5的基因组序列并连接到pCAMBIA1300载体,通过农杆菌花序侵染法稳定转化rve5-2,筛选获得能够稳定遗传的回补材料。具体方法如下:
(1)pCAMBIA-RVE5载体构建
设计并合成扩增出RVE5的基因组所需的正反引物序列,其序列碱基为:
RVE5-Genomic-F:GGGGTACCTAGTTCCACTCAGTTCACATGGC(SEQ ID NO.7)
RVE5-Genomic-R:GCGTCGACCCGGAAACCTGATCAAACCCT(SEQ ID NO.8)
利用RVE5-Genomic-F/R,以野生型拟南芥DNA为模板,使用KOD酶扩增RVE5基因组DNA,具体为:在95℃预变性5min;在95℃变性30sec,60℃退火30sec,68℃延伸4min,在第2-第4步循环35cycle。将扩增的双链连接到pCAMBIA1300载体中,获得pCAMBIA-RVE5载体。
(2)pCAMBIA-RVE5载体转化农杆菌
将构建好的pCAMBIA-RVE5载体通过热激法转化到农杆菌菌株GV3101中,通过卡那霉素和利福平筛选,获得含有此pCAMBIA-RVE5载体的基因工程菌。
(3)农杆菌稳定转化拟南芥花序
A:侵染液配方:2.2g/L MS培养基+50g/L蔗糖+10μg/L6-BA+200μl/LSilweet-77,pH5.7
B:农杆菌转化拟南芥花序方法
挑取多个含有pCAMBIA-RVE5载体的农杆菌,接种到含有利福平和卡那霉素的5mlYEP液体培养基中,30°培养至OD值在0.6-1.0后,将菌液转入含有抗生素的400ml YEP液体培养基中,30℃培养过夜。次日离心收集菌液,并用侵染液重悬菌体。用于转化拟南芥。挑选长势良好且处于盛花期的拟南芥,剪去果荚,将花序浸泡在侵染液中,5min后取出平放在托盘中,黑暗培养过夜,次日,将拟南芥放正,继续正常光照培养直至收种。将将T1代种子放入到含有潮霉素的筛选板中,待阳性苗长大后移入土中,继续生长。
(4)鉴定回补株系:设计引物鉴定是否含有目的载体,为引物序列为:
M1300-R:GTAAAACGACGGCCAGT(SEQ ID NO.9)
RVE5-Genomic-F3:GTCCCTACTCTGAGCCTTTGTTG(SEQ ID NO.10)
分别提取回补株系的DNA,利用RVE5-Genomic-F和M1300-R引物,进行扩增。具体为:在95℃预变性5min;在95℃变性30sec,60℃退火30sec,72℃延伸1min,在第2-第4步循环30cycle。将PCR产物进行琼脂糖凝胶电泳检测条带,挑选出有条带的株系。
(5)探究RVE5在调控拟南芥开花时间中的功能
本发明提供一种利用基因RVE5改变拟南芥开花时间的应用。rve5-2突变体在长日照条件下有明显的晚花表型,当RVE5基因组DNA回补到rve5-2突变体后,晚花的表型消失,开花时间和叶片数与野生型基本一致。具体见图3所示。
图3为rve5-2突变体及2个回补株系(COM)的开花表型及开花时叶片数统计。图例:WT、rve5-2突变体及回补材料22℃从播种到开花,分别统计开花时间和叶片数。误差线表示的标准差(n=36)。
(6)探究RVE5在温和高温下拟南芥下胚轴伸长中的功能
本发明提供一种利用基因RVE5改变在温和高温下拟南芥下胚轴表型的应用。rve5-2突变体在温和高温下有明显的下胚轴伸长的表型,当RVE5基因组DNA回补到rve5-2突变体后,下胚轴明显伸长的表型消失,下胚轴长度与野生型基本一致。具体见图4所示。
图4为rve5-2突变体及3个回补株系(COM)的下胚轴表型及长度统计。图例:WT、rve5-2突变体及回补材料22℃生长3天后,再分别进行22℃、29℃处理,4天后拍照(A)并用ImageJ软件统计下胚轴长度(B),统计学分析方法为单因素方差分析,误差线表示的标准差(n=22)。
(7)探究RVE5调控开花时间和高温响应下生长的分子机理
图5为野生型和rve5-2突变体中差异表达基因韦恩图。图例:将22℃生长5天野生型和rve5-2突变体,进行22℃、29℃处理12h,取样进行RNA-Seq分析。维恩图显示的是各材料间上调(Increased)和下调(Decreased)的基因数目。筛选差异表达的标准log2FC>=1,p-value<0.05。
图6为野生型和rve5-2突变体中特异表达基因的GO分析。图例:对WT与rve5-2突变体中特异上调的基因(A,B);与WT与rve5-2突变体中特异下调的基因(C,D)进行GO富集分析,纵坐标表示基因功能,横坐标表示RichFactor,RichFactor越大,表示富集的程度越大。
图7为RVE5蛋白水平检测、与RVE5相结合的靶标基因的CHIP-SEQ分析。图例A:将RVE5-MYC过表达材料22℃生长7天后,分别进行22℃、29℃处理3h、6h、9h、12h、24h,取材,提取总蛋白,用anti-MYC检测在不同温度下外源蛋白积累水平,tubulin为内参。图例B-D:能够与RVE5结合靶标的ChIP-Seq分析;图B为ChIP-Seq信号的分布图,图C-D为能够与RVE5结合的motifs。
图8为能与RVE5直接结合的生物钟相关基因的结合峰分布图。图例:将RVE5-MYC过表达材料22℃生长13天后,29℃处理12h,取材并用甲醛固定,进行ChIP-Seq实验。蓝色、红色分别代表input-DNA(1个重复)、ChIP-DNA(3个重复)。基因结构图中,外显子用蓝框表示,内含子用蓝线表示,黑箭头表示转录方向。
图9为CHIP-qPCR实验检验在不同温度下RVE5与启动子的结合情况。图例:将RVE5-MYC过表达材料22℃生长13天后,分别进行22℃、29℃处理12h、36h,取材并用甲醛固定,进行ChIP-qPCR实验。anti-MYC抗体用于免疫沉淀反应,anti-GST抗体的作为阴性对照。将沉淀下来的DNA分别进行Q-PCR实验。以TA3为内参,每个样品有三个生物学重复,误差线表示标准误差(n=3)。
图10为对照野生型和rve5-2突变体中的生物钟相关基因的表达情况。图例:将22℃生长5天野生型和rve5-2突变体,进行22℃、29℃处理48h,每4小时取样一次,以野生型22℃0h的基因表达量为对照,用2-ΔΔCt法计算基因的相对表达量,以PP2A为内参,每个样品有三个生物学重复,误差线表示标准误差(n=3)。
图11为EMSA和ITC实验验证RVE5能够与ELF4启动子序列结合。图例A:纯化带有MBP-tag的RVE5融合蛋白与ELF4启动子进行凝胶迁移实验,空MBP为阴性对照,用不同浓度的未标记的探针及有突变形式的标记探针进行竞争实验。图B:等温滴定量热实验。使用VP-ITC仪,将300μMELF4启动子的EE-element(5′-ATAAATATCTTT-3′)分别滴定到25μM的MBP-RVE5蛋白中。用Origin软件获得解离常数Kd、Ka
图12为RVE5亚细胞定位实验。将含有YFP、RVE5-YFP的农杆菌分别注射烟草,3天后,取烟草叶片置于激光共聚焦显微镜下观察。用含有RVE5-YFP的农杆菌侵染拟南芥花序,筛选鉴定获得稳定表达的拟南芥,将其放在1/2MS固体培养基上生长,7天后,取根观察RVE5的定位,标尺为50μm。
图13为RVE5转录活性检测。图例A:将RVE5构建到pGBKT7载体上,转化酵母AH109感受态,分别让酵母在-Trp、-Trp-His-Ade的营养缺陷型培养基上生长,30℃培养箱培养3d后观察酵母的生长情况。CO-BD作为阳性对照。图例B和C为Effector-Reporter双荧光报告实验,Effector为LexA-RVE5,Reporter为35S:OlexA-pCAMBIA1300,分别转化农杆菌感受态,注射烟草叶片,3天后检测LUC和REN值,纵坐标为LUC/REN,误差线表示标准误差(n=5)。
图14为Effector-Reporter双荧光报告实验验证RVE5抑制PRR5、ELF4启动子的活性。图例A和C:Effector为35S:RVE5/CCA1-PSKM,Reporter为35S:PRR5/ELF4-pGreenII0800-pCAMBIA1300,分别转化农杆菌感受态,注射烟草叶片,3天后检测LUC和REN值,纵坐标为LUC/REN。误差线表示标准误差。图例B和D:分别western验证Effector的蛋白表达量,用anti-MYC抗体进行检测,内参为RbcS。
序列表
<110> 浙江大学
<120> 时钟基因RVE5在调控植物生长和开花时间中的应用
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 4104
<212> DNA
<213> Arabidopsis thaliana
<400> 1
tagttccact cagttcacat ggcttcactt agttttggtt atttgatata ggtaggtgct 60
tagcacttag ttgtcactcc ttccctgctc tcattttggt cattgactta gtgaacttgg 120
ttcattattt cccatttgtc atgtctacag cagtgtaatc cgattaaaaa agattaattt 180
gaccttcagt gacttatgaa atggtgattt accttagttc attcgtaaca acaacttgtt 240
aaactgaaat tacgaaattt cataagtagg tatggtcaag aatttgagga aaggaggatt 300
gaacattgcg tttcttttct cttaggtctt tgaattttct tttatgaagt ctctaataaa 360
aaacaatctt tcttactctg acaggagtta taaggaattg ctagccaagt gcaatcagct 420
gggaagaggc gaagcacgat cttctgagaa acttgaaaaa gctttggaaa agatagaaaa 480
actaaaggtg tgtgttttgg tgtttatctc gatcttcttt gtgtcttcta tatctggctc 540
ttattatgtt tattctatga ccagaaacga atgagggaac ttgagttgat aactgaagag 600
agagagaaca gagctctacg ggacataaac gtttcaaaga aatgcagtta cacagaagtt 660
tccgagcctg caatcgagag catgtcttct ttcagaatgc tttcatcaga caacaaagtg 720
gagaaaatct ccacaccacc tggtaaatta gaagaaaagg atggctttac cattcaagga 780
tcatgcttaa ggggaagaga agactccttc gttagcagaa cagactcggt tatagatgta 840
gatgatgatt atgttcctga aaccaacact tctggcatta gagattggaa tactaatatt 900
gaagagaaag gtgataattc catggtgaag gatataaagt tcaacatcag aaaagacccg 960
acatcatcag tgtcacctta cagcaatggt acttttgttg tacatcatga attcaagttc 1020
ttgagtgtag tagtagattg aagattgtcc aatgcaggta gtggaaacat ttggcagtca 1080
agtggaacaa atagaaacct tggtagatgg agcaaacatg gagagagaaa cgaagcaact 1140
ccatcactag gaggttctgt tccaagaaaa gatgatctca tctctattgg acctgatggt 1200
aaaggtggta gaatcaaagt gctgagatct aaaccccaaa tttctgtgag ttttacattc 1260
ttcttcagtt tctcctctca ttaatttcca ctaccttgcc taatgtgttg atatctgtgc 1320
atagaaaacc aatgcaagct caggaagtgg taagagattc aagcttggaa ctaaaacaag 1380
tggctcgtcc tctcaaggtt gtcttcagat agaacactat ttcggaaaaa ctaatcgcta 1440
aattttcgac aatgtaactt tttgttgggg ctagtaaaca cttgtagtta aagaatgaag 1500
attaatacta ctatttaaat agtggattag tgataaacaa aaattagtag ttactagcca 1560
aaacgtgaga gcttctccgt cctcgagatc gtctccacgc ggacatcttt atagccgttg 1620
attcttggtt taagtgataa cactagttta aggcgtcagt ggtatagtct gggtactaga 1680
gcaacgagac cctaacacgt gtaaaggaaa caatattatg ctcctgaaat tacaattcta 1740
cccctctgtt cttcagccac aaaaaaaaac tggcgaagtc aaaatctttt gacagtgaaa 1800
ggacctttga agaagaagaa tcgcgatttc gagctctatg gtgtccgtaa accctagacc 1860
taagggtttt ccagttttcg attcctcgaa tatgagttta ccaagctccg atggatttgg 1920
ttcgattccg gccacgggac ggaccagtac ggtgtcgttt tctgaggatc cgacgacgaa 1980
gattcggaag ccgtacacaa tcaagaagtc gagagagaat tggacagatc aagagcacga 2040
taaatttcta gaagctcttc acttgtacgt gtaattgtca ctcaattgtg tgtttcgttt 2100
aagaaaattt cacaagtttc gagatttgat tgttttcgtt tgattacaga ttcgataggg 2160
attggaagaa aatagaagcc tttgttggat caaaaacagt agttcaggtt taatttgaag 2220
accatcttac tattattctc tgtattgttt ttgaaaatga ttgtgtgttg atgatgttta 2280
agagtaataa tggcagatac gaagccacgc tcagaaatac tttctcaaag ttcagaagag 2340
tggtgctaac gaacatcttc cacctcctcg acctaagagg aaagcgagtc atccttatcc 2400
tataaaggct cctaaaaatg gtgacttttg atcatcttct tactctgttt tcttctttgc 2460
tttaatcatt ttctaatgat ttgttatgct gctgcagttg cttatacctc tctcccgtct 2520
tcgagtacat taccgttgct tgagcctggt tatttgtata gctctgattc gaagtcattg 2580
atgggaaacc aggctgtttg tgcatctacc tcttcttcgt ggaatcatga atcgacaaat 2640
ctgccaaaac cggtgattga aggtaggttt tactagtggt tatgctttca gttgatgaga 2700
ttttgagtta gttgtatttg tgaatcgtgt taacaatggg gtgtaatgaa tttgtgatag 2760
tagaggaacc gggagtctcg gccacggctc ctctcccaaa taatcgctgc agacaggaag 2820
atacagagag ggtacgagca gtgacaaagc caaataacga agaaagttgt gaaaagccac 2880
atagaggtaa gacttgttat cttgttacat tatgtgtttt tctagtagac atctttgaga 2940
tttacgctga caatggagct gttttaatgc agtgatgccg aattttgctg aagtttacag 3000
cttcattgga agtgtcttcg atcccaacac atcaggccac ctccagagat taaagcagat 3060
ggatccaata aatatggaaa cggtatgaga cacgtttaat cagactcagt ccctactctg 3120
agcctttgtt gaaaaattca atcctgatga taataaagaa gcttctttga tattgtttct 3180
ttttgataca tcaggttctt ttactgatgc aaaacctgtc tgtaaatctg acaagtcccg 3240
agtttgcaga gcaagtaagt agtaatctca ttcccactct caatgaaata ctgaaagatt 3300
aatactttct tggtggatat caagtaattt cgtaattatt aatttggtgc tttgatatgt 3360
agaggaggtt gatatcatca tacagcgcta aagctttgaa atagagatag aataaaacaa 3420
taatgtacct tatgtgagat caagagacaa tcatccaagg tctgtatgca ttgcttggat 3480
ttaggcctcg tgttctcact acaggagcag aaccaatcgc aaagactctt agatggctac 3540
tgagttgtgg tttttatgtc tctgtaagtc gcggtggagc acacgtgttt gtcctgtctt 3600
gtgtatgtgt gtatagataa tacaaggttt tgcagagtaa ggtcacagtt agctgcaagt 3660
gagtttggat caatcttaag attaaaaccc tgagagtgag tgtccaaaga gactgtgtaa 3720
tattggtttg gcggtcagca gaagagtttt gaagtgcaca tccagttagt gataacacgg 3780
ttgaagaaaa ggtaaggtta caagtttagt tttgaataat tgtatactca aaaaatatga 3840
atgtataaag aataatcact tgagtcgcct tattccgcct gattaactgt tgcattccac 3900
attgagtgtt ccatctccaa ggaaaacata cacgttcgag cctttttgtg actcacactt 3960
aaatcaaaca gtagcagcaa gagcattcac aaaattacaa tgtctaggga ctgtaagcac 4020
atgatcaaac cactcaactt tccccctaat ttcacaactt tccactcaac ctcatcattg 4080
gttagggttt gatcaggttt ccgg 4104
<210> 2
<211> 912
<212> DNA
<213> Arabidopsis thaliana
<400> 2
atggtgtccg taaaccctag acctaagggt tttccagttt tcgattcctc gaatatgagt 60
ttaccaagct ccgatggatt tggttcgatt ccggccacgg gacggaccag tacggtgtcg 120
ttttctgagg atccgacgac gaagattcgg aagccgtaca caatcaagaa gtcgagagag 180
aattggacag atcaagagca cgataaattt ctagaagctc ttcacttatt cgatagggat 240
tggaagaaaa tagaagcctt tgttggatca aaaacagtag ttcagatacg aagccacgct 300
cagaaatact ttctcaaagt tcagaagagt ggtgctaacg aacatcttcc acctcctcga 360
cctaagagga aagcgagtca tccttatcct ataaaggctc ctaaaaatgt tgcttatacc 420
tctctcccgt cttcgagtac attaccgttg cttgagcctg gttatttgta tagctctgat 480
tcgaagtcat tgatgggaaa ccaggctgtt tgtgcatcta cctcttcttc gtggaatcat 540
gaatcgacaa atctgccaaa accggtgatt gaagtagagg aaccgggagt ctcggccacg 600
gctcctctcc caaataatcg ctgcagacag gaagatacag agagggtacg agcagtgaca 660
aagccaaata acgaagaaag ttgtgaaaag ccacatagag tgatgccgaa ttttgctgaa 720
gtttacagct tcattggaag tgtcttcgat cccaacacat caggccacct ccagagatta 780
aagcagatgg atccaataaa tatggaaacg gttcttttac tgatgcaaaa cctgtctgta 840
aatctgacaa gtcccgagtt tgcagagcaa aggaggttga tatcatcata cagcgctaaa 900
gctttgaaat ag 912
<210> 3
<211> 303
<212> PRT
<213> Arabidopsis thaliana
<400> 3
Met Val Ser Val Asn Pro Arg Pro Lys Gly Phe Pro Val Phe Asp Ser
1 5 10 15
Ser Asn Met Ser Leu Pro Ser Ser Asp Gly Phe Gly Ser Ile Pro Ala
20 25 30
Thr Gly Arg Thr Ser Thr Val Ser Phe Ser Glu Asp Pro Thr Thr Lys
35 40 45
Ile Arg Lys Pro Tyr Thr Ile Lys Lys Ser Arg Glu Asn Trp Thr Asp
50 55 60
Gln Glu His Asp Lys Phe Leu Glu Ala Leu His Leu Phe Asp Arg Asp
65 70 75 80
Trp Lys Lys Ile Glu Ala Phe Val Gly Ser Lys Thr Val Val Gln Ile
85 90 95
Arg Ser His Ala Gln Lys Tyr Phe Leu Lys Val Gln Lys Ser Gly Ala
100 105 110
Asn Glu His Leu Pro Pro Pro Arg Pro Lys Arg Lys Ala Ser His Pro
115 120 125
Tyr Pro Ile Lys Ala Pro Lys Asn Val Ala Tyr Thr Ser Leu Pro Ser
130 135 140
Ser Ser Thr Leu Pro Leu Leu Glu Pro Gly Tyr Leu Tyr Ser Ser Asp
145 150 155 160
Ser Lys Ser Leu Met Gly Asn Gln Ala Val Cys Ala Ser Thr Ser Ser
165 170 175
Ser Trp Asn His Glu Ser Thr Asn Leu Pro Lys Pro Val Ile Glu Val
180 185 190
Glu Glu Pro Gly Val Ser Ala Thr Ala Pro Leu Pro Asn Asn Arg Cys
195 200 205
Arg Gln Glu Asp Thr Glu Arg Val Arg Ala Val Thr Lys Pro Asn Asn
210 215 220
Glu Glu Ser Cys Glu Lys Pro His Arg Val Met Pro Asn Phe Ala Glu
225 230 235 240
Val Tyr Ser Phe Ile Gly Ser Val Phe Asp Pro Asn Thr Ser Gly His
245 250 255
Leu Gln Arg Leu Lys Gln Met Asp Pro Ile Asn Met Glu Thr Val Leu
260 265 270
Leu Leu Met Gln Asn Leu Ser Val Asn Leu Thr Ser Pro Glu Phe Ala
275 280 285
Glu Gln Arg Arg Leu Ile Ser Ser Tyr Ser Ala Lys Ala Leu Lys
290 295 300
<210> 4
<211> 24
<212> DNA
<213> Arabidopsis thaliana
<400> 4
cagagctcta cgggacataa acgt 24
<210> 5
<211> 20
<212> DNA
<213> Arabidopsis thaliana
<400> 5
ctcgaagacg ggagagaggt 20
<210> 6
<211> 23
<212> DNA
<213> T-DNA
<400> 6
atattgacca tcatactcat tgc 23
<210> 7
<211> 31
<212> DNA
<213> Arabidopsis thaliana
<400> 7
ggggtaccta gttccactca gttcacatgg c 31
<210> 8
<211> 29
<212> DNA
<213> Arabidopsis thaliana
<400> 8
gcgtcgaccc ggaaacctga tcaaaccct 29
<210> 9
<211> 17
<212> DNA
<213> pCAMBIA1300
<400> 9
gtaaaacgac ggccagt 17
<210> 10
<211> 23
<212> DNA
<213> Arabidopsis thaliana
<400> 10
gtccctactc tgagcctttg ttg 23

Claims (2)

1.时钟基因RVE5在抑制拟南芥热响应性下胚轴生长的应用,其特征在于,所述的时钟基因RVE5的碱基序列如SEQ ID NO.1所示,通过突变使得RVE5下调或失活。
2.根据权利要求1所述的应用,其特征在于,所述的时钟基因RVE5的编码区的碱基序列如SEQ ID NO.2所示。
CN202111098837.0A 2021-09-18 2021-09-18 时钟基因rve5在调控植物生长和开花时间中的应用 Active CN113788888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111098837.0A CN113788888B (zh) 2021-09-18 2021-09-18 时钟基因rve5在调控植物生长和开花时间中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111098837.0A CN113788888B (zh) 2021-09-18 2021-09-18 时钟基因rve5在调控植物生长和开花时间中的应用

Publications (2)

Publication Number Publication Date
CN113788888A CN113788888A (zh) 2021-12-14
CN113788888B true CN113788888B (zh) 2022-11-11

Family

ID=78878967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111098837.0A Active CN113788888B (zh) 2021-09-18 2021-09-18 时钟基因rve5在调控植物生长和开花时间中的应用

Country Status (1)

Country Link
CN (1) CN113788888B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345217B2 (en) * 1998-09-22 2008-03-18 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US7569389B2 (en) * 2004-09-30 2009-08-04 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics
EP2395093A3 (en) * 2006-12-21 2012-08-01 BASF Plant Science GmbH Plants having enhanced yield-related traits and a method for making the same
CN106282198A (zh) * 2016-08-08 2017-01-04 复旦大学 拟南芥WRKY家族转录因子AtWRKY44基因,蛋白编码序列及其应用
CN109053871B (zh) * 2018-08-09 2020-09-29 中国农业科学院作物科学研究所 AtBIX基因在调控植物开花时间中的应用
CN112794890B (zh) * 2021-03-25 2022-05-27 南京农业大学 一种开花调控蛋白ELF3-β及其编码基因与应用

Also Published As

Publication number Publication date
CN113788888A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
Kumagai et al. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana
Lazaro et al. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering
Bari et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants
Lee et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis
van den Burg et al. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense
Kiss et al. LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes
Schwechheimer et al. Plant transcription factor studies
Finkelstein et al. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor
Yan et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice
Onai et al. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock
Kobayashi et al. Characterization of thermotolerance-related genes in grapevine (Vitis vinifera)
Zheng et al. SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis
Kang et al. A MYB coiled‐coil transcription factor interacts with NSP 2 and is involved in nodulation in L otus japonicus
WO2011083298A1 (en) Temperature sensing in plants
Chen et al. Enhance sucrose accumulation in strawberry fruits by eliminating the translational repression of FabZIPs1. 1
Cardon et al. Expression of coffee florigen CaFT1 reveals a sustained floral induction window associated with asynchronous flowering in tropical perennials
Cai et al. LUX ARRHYTHMO interacts with ELF3a and ELF4a to coordinate vegetative growth and photoperiodic flowering in rice
Russo et al. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation-and distance-independent fashion
CN113788888B (zh) 时钟基因rve5在调控植物生长和开花时间中的应用
CN110527685B (zh) 大豆近日节律性表达启动子GmLCLb2及其应用
CN109797158B (zh) 基因OsNTL3在改良水稻高温抗性方面的应用及获得的水稻高温抗性基因
US20040072289A1 (en) Novel transcriptional factor enhancing the resistance of plants to osmotic stress
Marlin et al. Molecular diversity of the flowering related gene (LEAFY) on shallot (Allium cepa var. aggregatum) and Allium relatives.
Liu et al. Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane
CN105543229B (zh) 水稻几丁质激发子结合基因启动子及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant