CN113781804A - 一种适于进口单放的双向绿波带迭代优化图解方法 - Google Patents

一种适于进口单放的双向绿波带迭代优化图解方法 Download PDF

Info

Publication number
CN113781804A
CN113781804A CN202111096594.7A CN202111096594A CN113781804A CN 113781804 A CN113781804 A CN 113781804A CN 202111096594 A CN202111096594 A CN 202111096594A CN 113781804 A CN113781804 A CN 113781804A
Authority
CN
China
Prior art keywords
intersection
green wave
optimization
phase
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111096594.7A
Other languages
English (en)
Other versions
CN113781804B (zh
Inventor
卢凯
赵一鸣
江书妍
赵文棪
张敏学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111096594.7A priority Critical patent/CN113781804B/zh
Publication of CN113781804A publication Critical patent/CN113781804A/zh
Application granted granted Critical
Publication of CN113781804B publication Critical patent/CN113781804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种适于进口单放的双向绿波带迭代优化图解方法,包括:S1、干道双向绿波协调设计初始综合优化,获得上下限瓶颈交叉口集合;S2、通过调整交叉口相序完成相序再优化,更新上下限瓶颈交叉口集合;S3、判断上下限瓶颈交叉口集合是否满足进行旋转变换条件,通过旋转绿波轨迹特征线完成信号周期再优化,更新上下限瓶颈交叉口集合;S4、判断各种类瓶颈交叉口是否符合相位差再优化条件,通过调整绿灯起始时刻点完成相位差再优化,根据迭代优化判断变量F确定迭代优化过程,生成干道双向绿波协调控制方案。本发明利用初始综合优化以确定初始协调设计方案,通过信号相序、信号周期和相位差的再优化以实现交叉口信号控制参数的解耦与迭代优化。

Description

一种适于进口单放的双向绿波带迭代优化图解方法
技术领域
本发明涉及交通信号控制技术领域,更具体的,涉及一种适于进口单放的双向绿波带迭代优化图解方法。
背景技术
图解法是利用信号配时参数在时距图中的几何映射关系,通过几何作图的方式确定绿波协调设计方案。目前有关图解法的研究也大多只适用于干道交叉口采用进口对称放行方式,但相较于进口对称放行,进口单独放行的适用条件更为广泛,能够利用左直合用车道实时调整直行流向与左转流向的通行能力,适用于进口车道数少、几何条件不对称、对向进口交通量相差较大的信号交叉口,特别是在干道双向绿波协调控制设计中,能够更好地匹配交叉口之间的协调控制约束条件,可适用于交叉口间距长度不一的实际应用场合。
发明内容
本发明的目的是提供一种适于进口单放的双向绿波带迭代优化图解方法,基于时距图几何元素的调整变换,利用初始综合优化以确定初始协调设计方案,通过迭代优化以实现对信号相序、信号周期和相位差的再优化,从而获得干道双向绿波协调设计方案。
为了达到上述目的,本发明采用以下技术方案:
本发明提供的一种适于进口单放的双向绿波带迭代优化图解方法,包括以下步骤:
S1:干道双向绿波协调设计初始综合优化,所述初始综合优化包括确定基准交叉口I1、初始公共信号周期C1、交叉口调整间距Dp和速度优化范围,并设置初始干道绿波速度,根据初始干道绿波速度确定各交叉口的初始相位相序组合、相位差及干道绿波调整速度,获得上下限瓶颈交叉口集合;
S2:设置迭代优化判断变量F,判断上下限瓶颈交叉口集合是否满足相序再优化判定条件,通过调整交叉口相序完成相序再优化,更新上下限瓶颈交叉口集合;
S3:根据上下限瓶颈交叉口集合及正反向绿波带的旋转变化规律判断是否满足进行旋转变换条件,通过旋转绿波轨迹特征线完成信号周期再优化,更新上下限瓶颈交叉口集合;
S4:判断各种类瓶颈交叉口是否符合相位差再优化条件,通过上移或下移相位绿灯起始时刻点完成相位差再优化,根据迭代优化判断变量F确定迭代优化过程,最终生成干道双向绿波协调控制方案。
优选的,步骤S1具体为:
S101、确定基准交叉口I1
若目标协调干道为东西走向,则定义由西往东为协调正向、由东往西为协调反向,西、东、北、南依次对应相位a、b、c、d;若目标干道为南北走向,则定义由北往南为协调正向、由南往北为协调反向,北、南、西、东依次对应相位a、b、c、d;假设目标协调干道上有n个信号交叉口,将交叉口按照协调正向升序命名,选定某个端点交叉口作为基准交叉口I1,将第p个信号交叉口记为交叉口Ip;将交叉口Ip相位a、b、c、d的绿信比依次记为λap、λbp、λcp、λdp,相位时间依次记为tap、tbp、tcp、tdp
将各交叉口相位a的起始时刻点定义为周期起点;根据各交叉口相位a与相位b的位置关系将交叉口相序设置方案分为4种:将a-b-c-d或a-b-d-c记为方案1;将a-c-b-d记为方案2;将a-d-b-c记为方案3;将a-c-d-b或a-d-c-b记为方案4;
S102、确定初始公共信号周期C1
公共信号周期C的取值范围将取决于最小允许公共信号周期Cmin与最大允许公共信号周期Cmax,记为[Cmin,Cmax],将绿波协调设计的初始公共信号周期C1取为公共信号周期允许变化范围的中点:
Figure BDA0003269208540000021
S103、确定交叉口调整间距Dp
在保持路段行驶时间不变的条件下对交叉口间距与行驶车速进行比例调整,调整前后所对应的干道绿波带宽不会发生改变;因此,将通过对交叉口间距进行调整,使得路段绿波设计速度统一转换为干道绿波设计速度V;在交叉口间距调整过程中,交叉口Ip与基准交叉口I1的调整间距Dp由式(2)进行计算:
Figure BDA0003269208540000022
S104、确定速度优化范围;
在保持初始公共信号周期C1不变的情况下,干道绿波调整速度Vw应满足式(3):
Figure BDA0003269208540000023
S105、初始干道绿波速度的设置;
在此在保持初始公共信号周期C1不变的情况下,通过将干道绿波调整速度取值范围等分为3段,分别将每段速度范围的中值V·(Cmin+1/6·ΔC)/C1、V·(Cmin+1/2·ΔC)/C1、V·(Cmin+5/6·ΔC)/C1设置为3个初始干道绿波速度值VI1、VI2、VI3,其中ΔC为公共信号周期优化范围,即最大允许公共信号周期Cmax与最小允许公共信号周期Cmin之差;通过分别搜索和比选不同初始干道绿波速度下的交叉口最佳相序组合方案,实现相序组合、公共信号周期及相位差的初始综合优化;
S106、非基准交叉口正向初始绿灯中心时刻点的确定;
针对第x个初始干道绿波速度值VIx,通过坐标原点作正向绿波轨迹特征线
Figure BDA0003269208540000031
斜率为初始干道绿波速度值VIx的倒数,将正向绿波轨迹特征线
Figure BDA0003269208540000032
与交叉口Ip时间线的交点
Figure BDA0003269208540000033
记为交叉口Ip相位a的初始绿灯中心时刻点;
S107、非基准交叉口反向初始绿灯中心时刻点的确定;
针对初始干道绿波速度值VIx,对于交叉口I1的第i种相序方案,过交叉口I1相位b的绿灯中心时刻点作反向绿波轨迹特征线
Figure BDA0003269208540000034
斜率为初始干道绿波速度值VIx倒数的相反数;将反向绿波轨迹特征线
Figure BDA0003269208540000035
与交叉口Ip时间线的交点经垂直平移若干个初始公共信号周期C1后紧随交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA0003269208540000036
的时刻点
Figure BDA0003269208540000037
记为交叉口Ip相位b的初始绿灯中心时刻点;
S108、非基准交叉口正反向绿灯中心时刻点的初始优化;
当交叉口I1与交叉口Ip分别选择其第i种与第k种相序方案时,保证交叉口Ip相位a的调整后绿灯中心时刻点
Figure BDA0003269208540000038
与交叉口Ip相位b的调整后绿灯中心时刻点
Figure BDA0003269208540000039
的中点与调整前交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA00032692085400000310
与交叉口Ip相位b的初始绿灯中心时刻点
Figure BDA00032692085400000311
的中点重合;
S109、各交叉口初始相序方案的确定;
考虑到应使各交叉口相位a、b的偏移量均等,故在交叉口I1的4种相序方案中选取干道偏移量ΔyIi最小的方案i*作为交叉口I1的初始相序方案,该方案所对应的各交叉口最佳相序方案即为其初始相序方案;干道偏移量ΔyIi应满足式(5),相序方案i*所对应的干道偏移量
Figure BDA00032692085400000314
应满足式(6):
ΔyIi=max(ΔyI(i,2),ΔyI(i,3)...ΔyI(i,n),0)-min(ΔyI(i,2),ΔyI(i,3)...ΔyI(i,n),0) (5)
Figure BDA00032692085400000315
S110、绿波轨迹特征线及干道调整速度的更新;
计算相序方案i*下各交叉口相位a的初始绿灯中心时刻点偏移距离等效调整量
Figure BDA00032692085400000316
如式(7)所示;根据偏移距离等效调整量
Figure BDA00032692085400000318
计算相序方案i*总的偏移距离等效调整量
Figure BDA00032692085400000317
如式(8)所示;在交叉口In相位a的初始绿灯中心时刻点
Figure BDA00032692085400000312
上叠加相序方案i*总的偏移距离等效调整量
Figure BDA00032692085400000319
生成调整点OA,其纵坐标记为yA
Figure BDA00032692085400000313
Figure BDA0003269208540000041
其中,
Figure BDA00032692085400000422
为Ip相位a的初始绿灯中心时刻点等效调整系数;连接坐标轴原点与调整点OA形成线
Figure BDA0003269208540000042
计算线
Figure BDA0003269208540000043
所对应的干道调整速度
Figure BDA0003269208540000044
如式(9)所示:
Figure BDA0003269208540000045
判断线
Figure BDA0003269208540000046
所对应的干道调整速度
Figure BDA0003269208540000047
是否在干道绿波调整速度优化范围内;若在,将线
Figure BDA0003269208540000048
赋予正向调整绿波轨迹特征线
Figure BDA0003269208540000049
将干道调整速度
Figure BDA00032692085400000410
赋予干道绿波调整速度
Figure BDA00032692085400000411
若不在,则保持正向绿波轨迹特征线不变,即正向调整绿波轨迹特征线
Figure BDA00032692085400000412
与正向绿波轨迹特征线
Figure BDA00032692085400000413
相同,干道绿波调整速度
Figure BDA00032692085400000414
与初始干道绿波速度VIx相等;
S111、干道绿波调整速度的初始优化;
分别计算不同初始干道绿波速度如VI1、VI2、VI3所对应的交叉口最佳相序组合方案及其双向绿波带宽总和,选取对应带宽最大的相序组合方案为初始优化方案,将对应的调整速度设置为干道绿波初始优化速度V0
优选的,步骤S107中,当交叉口I1选择第i种相序方案时,将交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA00032692085400000415
超前于交叉口Ip相位b的初始绿灯中心时刻点
Figure BDA00032692085400000416
的时长记为tI(i,p),定义正反向协调相位之间的间隙时间为ΔtI(i,p),其大小满足式(4):
Figure BDA00032692085400000417
优选的,步骤S108中,当交叉口I1选择第i种相序方案时,将交叉口Ip选择第k种相序方案所产生的双向绿波带宽偏移量记为Δb(i,p,k),所对应的交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA00032692085400000418
与交叉口Ip相位a的调整后绿灯中心时刻点
Figure BDA00032692085400000419
纵坐标之差记为纵向偏移距离ΔyI(i,p),通过比较正反向协调相位之间的间隙时间ΔtI(i,p)与相位c绿灯时间tcp和相位d绿灯时间tdp之间的关系,判断交叉口Ip的最佳初始相序方案,并计算纵向偏移距离ΔyI(i,p)
优选的,步骤S2具体为:
S201、在每一轮的迭代优化过程中,首先初始化布尔型迭代优化判断变量F=0;然后依次执行相序再优化、信号周期再优化和相位差再优化步骤,若当前方案满足任意一种再优化条件,则令迭代优化判断变量F=1,并通过判断进入下一轮迭代优化,若当前方案不满足任何一种再优化条件,即迭代优化判断变量F保持为0,则迭代优化过程终止,输出迭代优化后的相序组合、公共信号周期和相位差的最优设计方案;
S202、若交叉口Ip为正向绿波带的上限瓶颈交叉口,则其对应的瓶颈节点记为
Figure BDA00032692085400000420
若交叉口Ip为正向绿波带的下限瓶颈交叉口,则其对应的瓶颈节点记为
Figure BDA00032692085400000421
若交叉口Ip为反向绿波带的上限瓶颈交叉口,则其对应的上限瓶颈节点记为
Figure BDA0003269208540000051
若交叉口Ip为反向绿波带的下限瓶颈交叉口,则其对应的上限瓶颈节点记为
Figure BDA0003269208540000052
将第m次相序再优化判定所得的正向绿波带的上限瓶颈交叉口纳入集合
Figure BDA0003269208540000053
正向绿波带的下限瓶颈交叉口纳入集合
Figure BDA0003269208540000054
反向绿波带的上限瓶颈交叉口纳入集合
Figure BDA0003269208540000055
反向绿波带的下限瓶颈交叉口纳入集合
Figure BDA0003269208540000056
并将集合中各元素按交叉口编号升序排序;
在第m次相序再优化判定中,根据集合
Figure BDA0003269208540000057
Figure BDA0003269208540000058
包含交叉口情况判断是否存在交叉口Ij满足相序再优化条件,若满足再优化判定条件及要求,则按照交叉口编号从小到大依次为满足条件的交叉口进行相序再优化,并注意在相序调整过程中保证交叉口相位a、b的绿灯中心时刻点的中点不变,且遵循逐步优化原则进行再优化设计,即在每一次相序优化调整过程中优先选择协调相位间隙时间调整量较小的可选优化方案;若不满足再优化判定条件及要求,则结束本轮相序再优化过程。
优选的,步骤S202中,所述相序再优化判定条件及要求为:
条件1:若
Figure BDA0003269208540000059
即存在交叉口Ij同时为正向绿波带的上限瓶颈交叉口与反向绿波带的下限瓶颈交叉口;
若交叉口Ij相序为a-b-c-d或a-b-d-c,则令其第m次相序再优化判定变量kP(m,j)=0;若交叉口Ij相序为a-c-b-d,当tcj≤tdj时,将交叉口Ij的相序调整为a-b-c-d,当tcj>tdj时,将交叉口Ij的相序调整为a-d-b-c;若交叉口Ij相序为a-d-b-c,当tcj<tdj时,将交叉口Ij的相序调整为a-c-b-d,当tcj≥tdj时,将交叉口Ij的相序调整为a-b-c-d;若交叉口Ij相序为a-c-d-b或a-d-c-b,当tcj≤tdj时,将交叉口Ij的相序调整为a-d-b-c,当tcj>tdj时,将交叉口Ij的相序调整为a-c-b-d;
根据以上相序调换情况,计算调整后的正向绿波带宽
Figure BDA00032692085400000510
与反向绿波带宽
Figure BDA00032692085400000511
计算交叉口Ij第m次相序再优化判定变量kP(m,j)的取值如式(10)所示:
Figure BDA00032692085400000512
若交叉口Ij第m次相序再优化判定变量kP(m,j)=0,则不变更该交叉口的相序设置情况,继续对满足条件1的下一个交叉口进行相序再优化判断,直至所有满足条件1的交叉口的相序再优化判定变量均为零,则继续对满足条件2的交叉口进行相序再优化判断;若交叉口Ij第m次相序再优化判定变量kP(m,j)=1,则根据优化调整结果更新交叉口Ij的相序设置、干道的正向绿波带宽
Figure BDA00032692085400000513
与反向绿波带宽
Figure BDA00032692085400000514
以及瓶颈交叉口集合
Figure BDA00032692085400000515
并将迭代优化判断变量F=1,结束本次判断后重新开始第m+1次交叉口相序再优化判断;
条件2:
Figure BDA0003269208540000061
即存在交叉口Ij同时为正向绿波带的下限瓶颈交叉口与反向绿波带的上限瓶颈交叉口;
若交叉口Ij相序为a-b-c-d或a-b-d-c,当tcj≤tdj时,将交叉口Ij的相序调整为a-c-b-d,当tcj>tdj时,将交叉口Ij的相序调整为a-d-b-c;若交叉口Ij相序为a-c-b-d,当tcj<tdj时,将交叉口Ij的相序调整为a-d-b-c,当tcj≥tdj时,将交叉口Ij的相序调整为a-c-d-b或a-d-c-b;若交叉口Ij相序为a-d-b-c,当tcj≤tdj时,将交叉口Ij的相序调整为a-c-d-b或a-d-c-b,当tcj>tdj时,将交叉口Ij的相序调整为a-c-b-d;若交叉口Ij相序为a-c-d-b或a-d-c-b时,则令其交叉口Ij第m次相序再优化判定变量kP(m,j)=0;
同样,根据以上相序调换情况,计算调整后的正向绿波带宽
Figure BDA0003269208540000062
与反向绿波带宽
Figure BDA0003269208540000063
计算交叉口Ij第m次相序再优化判定变量kP(m,j)的取值如式(10)所示;
若交叉口Ij第m次相序再优化判定变量kP(m,j)=0,则不变更该交叉口的相序设置情况,继续对满足条件2的下一个交叉口进行相序再优化判断,直至所有满足条件2的交叉口的相序再优化判定变量均为零,则结束相序再优化判断;若交叉口Ij第m次相序再优化判定变量kP(m,j)=1,则根据优化调整结果更新交叉口Ij的相序设置、干道的正向绿波带宽
Figure BDA0003269208540000064
与反向绿波带宽
Figure BDA0003269208540000065
以及瓶颈交叉口集合
Figure BDA0003269208540000066
并将迭代优化判断变量F=1,结束本次判断后重新开始第m+1次交叉口相序再优化判断。
优选的,步骤S3具体为:
S301、在信号周期再优化过程中,假定经过第m次绿波轨迹特征线旋转变换后得到的正向绿波带宽与反向绿波带宽为
Figure BDA0003269208540000067
上下限绿波轨迹特征线为
Figure BDA0003269208540000068
上下限瓶颈交叉口集合为
Figure BDA0003269208540000069
S302、绿波轨迹特征线旋转优化判断;
若当前集合
Figure BDA00032692085400000610
以及
Figure BDA00032692085400000611
Figure BDA00032692085400000612
满足以下情况之一,则进行第m次信号周期再优化;
情况1:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,且反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游;假定
Figure BDA00032692085400000613
均满足j<l,且
Figure BDA00032692085400000614
均满足g>h,减小干道绿波调整速度使得双向绿波总带宽增大;
情况2:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,且反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游;假定
Figure BDA00032692085400000615
均满足j>l,且
Figure BDA00032692085400000616
均满足g<h,增大干道绿波调整速度使得双向绿波总带宽增大;
情况3:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure BDA0003269208540000071
假定
Figure BDA0003269208540000072
Figure BDA0003269208540000073
均满足j<l,且
Figure BDA0003269208540000074
减小干道绿波调整速度使得双向绿波总带宽增大;
情况4:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的上游,且
Figure BDA0003269208540000075
假定
Figure BDA0003269208540000076
Figure BDA0003269208540000077
均满足j>l,且
Figure BDA0003269208540000078
增大干道绿波调整速度使得双向绿波总带宽增大;
情况5:反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,正向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure BDA0003269208540000079
假定
Figure BDA00032692085400000710
Figure BDA00032692085400000711
均满足g<h,且
Figure BDA00032692085400000712
增大干道绿波调整速度使得双向绿波总带宽增大;
情况6:反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,正向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的上游,且
Figure BDA00032692085400000713
假定
Figure BDA00032692085400000714
Figure BDA00032692085400000715
均满足g>h,且
Figure BDA00032692085400000716
减小干道绿波调整速度使得双向绿波总带宽增大;
S303、确定正反向绿波带上下限旋转点;
对于正向绿波带的上下限旋转点,当增大干道绿波调整速度时,选取交叉口
Figure BDA00032692085400000717
交叉口
Figure BDA00032692085400000718
保证
Figure BDA00032692085400000719
均满足j≤g、l≥h,以交叉口Ij的上限瓶颈节点
Figure BDA00032692085400000720
与交叉口Il的下限瓶颈节点
Figure BDA00032692085400000721
分别作为正向绿波带的上下限旋转点;当减小干道绿波调整速度时,选取交叉口
Figure BDA00032692085400000722
交叉口
Figure BDA00032692085400000723
保证
Figure BDA00032692085400000724
均满足j≥g、l≤h,以交叉口Ij的上限瓶颈节点
Figure BDA00032692085400000725
与交叉口Il的下限瓶颈节点
Figure BDA00032692085400000726
分别作为正向绿波带的上下限旋转点;
对于反向绿波带的上下限旋转点,当增大干道绿波调整速度时,选取交叉口
Figure BDA00032692085400000727
交叉口
Figure BDA00032692085400000728
保证
Figure BDA00032692085400000729
均满足q≥s、r≤e,以交叉口Iq的上限瓶颈节点
Figure BDA00032692085400000730
与交叉口Ir的下限瓶颈节点
Figure BDA00032692085400000731
分别作为反向绿波带的上下限旋转点;当减小干道绿波调整速度时,选取交叉口
Figure BDA00032692085400000732
交叉口
Figure BDA00032692085400000733
保证
Figure BDA00032692085400000734
均满足q≤s、r≥e,以交叉口Iq的上限瓶颈节点
Figure BDA00032692085400000735
与交叉口Ir的下限瓶颈节点
Figure BDA00032692085400000736
分别作为反向绿波带的上下限旋转点;
S304、确定旋转角度;
分别以正反向绿波带的上下限旋转点作为端点,计算与其它交叉口特征时刻点所构成的旋转角度,综合确定旋转变换后的干道绿波调整速度;
假设交叉口If被正向绿波带的上限绿波轨迹特征线
Figure BDA00032692085400000737
穿过的相位a的绿灯结束时刻点为
Figure BDA0003269208540000081
交叉口If被正向绿波带的下限绿波轨迹特征线
Figure BDA0003269208540000082
穿过的相位a的绿灯起始时刻点为
Figure BDA0003269208540000083
交叉口If被反向绿波带的上限绿波轨迹特征线
Figure BDA0003269208540000084
穿过的相位b的绿灯结束时刻点为
Figure BDA0003269208540000085
交叉口If被反向绿波带的下限绿波轨迹特征线
Figure BDA0003269208540000086
穿过的相位b的绿灯起始时刻点为
Figure BDA0003269208540000087
连接点
Figure BDA0003269208540000088
Figure BDA0003269208540000089
构成的旋转线
Figure BDA00032692085400000810
所对应的调整速度
Figure BDA00032692085400000811
为:
Figure BDA00032692085400000812
连接点
Figure BDA00032692085400000813
Figure BDA00032692085400000814
构成的旋转线
Figure BDA00032692085400000815
所对应的调整速度
Figure BDA00032692085400000816
为:
Figure BDA00032692085400000817
连接点
Figure BDA00032692085400000818
Figure BDA00032692085400000819
构成的旋转线
Figure BDA00032692085400000820
所对应的调整速度
Figure BDA00032692085400000821
为:
Figure BDA00032692085400000822
连接点
Figure BDA00032692085400000823
Figure BDA00032692085400000824
构成的旋转线
Figure BDA00032692085400000825
所对应的调整速度
Figure BDA00032692085400000826
为:
Figure BDA00032692085400000827
式中,
Figure BDA00032692085400000828
分别为点
Figure BDA00032692085400000829
Figure BDA00032692085400000830
的纵坐标;
S305、更新上下限瓶颈交叉口集合;
根据干道绿波调整速度Vm在旋转点进行旋转变换,得到更新的正反向绿波带的上下限绿波轨迹特征线,在进入第m+1次旋转变换前,根据上下限绿波轨迹特征线
Figure BDA00032692085400000831
Figure BDA00032692085400000832
确定正反向绿波带的上下限瓶颈交叉口集合,并对应更新为集合
Figure BDA00032692085400000833
Figure BDA00032692085400000834
S306、最佳公共信号周期计算;
每一次完成绿波轨迹特征线旋转变换后,根据优化的干道绿波调整速度VB,利用时距图中时间与速度的反比关系,更新计算出干道绿波设计速度V所对应的最佳公共信号周期CB,如式(15)所示:
Figure BDA00032692085400000835
优选的,步骤S301中,在进行第m次旋转变换前,首先需要根据集合
Figure BDA00032692085400000836
Figure BDA00032692085400000837
判断是否满足进行旋转变换的条件,若满足,则根据满足条件确定绿波轨迹特征线的旋转角度,完成此次旋转变换,并将迭代优化判断变量F=1,进入第m+1次旋转变换优化过程;若不满足,则停止旋转变换,完成本轮信号周期再优化。
优选的,步骤S304中,为了确定旋转角度,需要依次连接符合要求的时刻点构成旋转线,并判断旋转线所对应的调整速度是否处于绿波调整速度范围,将符合条件的调整速度纳入第m次旋转变换的可选车速集合SVm;对于减小干道绿波调整速度的情况1、3、6,选取可选车速集合SVm中的最大值作为第m次绿波轨迹特征线旋转变换所确定的干道绿波调整速度Vm;对于增大干道绿波调整速度的情况2、4、5,选取可选车速集合SVm中的最小值作为第m次绿波轨迹特征线旋转变换所确定的干道绿波调整速度Vm不同情况下符合要求的连接点。
优选的,步骤S4具体为:
S401、将坐标系原点所在时刻点定义为相位差零点,在交叉口相位差再优化的第m次优化判断中,将交叉口Ip第一个相位a的绿灯起始时刻点与相位差零点的时间差定义为交叉口Ip的相位差O(m,p);将正反向绿波带的上下限瓶颈交叉口分别纳入集合
Figure BDA0003269208540000091
Figure BDA0003269208540000092
并将集合中各元素按交叉口编号升序排序;将正反向绿波带的上下限绿波轨迹特征线依次记为
Figure BDA0003269208540000093
根据瓶颈交叉口种类和交叉口相位差再优化判定矩阵,判断当前种类瓶颈交叉口是否符合相位差再优化条件,若符合,上移或下移相位a绿灯起始时刻点实现优化,更新所有满足条件的交叉口Ij的相位差O(m,j),完成交叉口相位差的第m次再优化,并将迭代优化判断变量F=1,再重新开始第m+1次再优化判断;若不符合,继续进行第m次中下一种类型瓶颈交叉口的相位差再优化优化判断,直至瓶颈交叉口集合中所有交叉口均无法进行相位差再优化,则停止本轮相位差再优化;
S402、交叉口相位差再优化判定矩阵;
在第m次交叉口相位差再优化判断过程中,对于瓶颈交叉口Ij构建一个2×2的相位差优化判定矩阵
Figure BDA0003269208540000094
在判定矩阵M(m,j)中,元素a1,1、a1,2分别表示交叉口Ij是否为正向、反向绿波带的上限瓶颈交叉口;元素a2,1、a2,2分别表示交叉口Ij是否为正向、反向绿波带的下限瓶颈交叉口;元素ay,z取1表示是瓶颈交叉口,否则取0;
S403、正向绿波带上限瓶颈交叉口优化判定;
Figure BDA0003269208540000095
的相位差再优化判定矩阵M(m,j)均为
Figure BDA0003269208540000096
则通过适当增大所有正向绿波带上限瓶颈交叉口的相位差增大总的绿波带宽;将正向绿波带上限瓶颈交叉口Ij相位a的上移容许量记为
Figure BDA0003269208540000097
相位b的上移容许量记为
Figure BDA0003269208540000098
更新交叉口Ij的相位差O(m,j)如式(16)所示:
Figure BDA0003269208540000101
更新所有满足条件的交叉口相位差、瓶颈交叉口集合、正反向绿波带宽以及上下限绿波轨迹特征线;
当正向绿波带上限瓶颈交叉口优化判断条件不满足时,令正向绿波带上限瓶颈交叉口判定变量
Figure BDA0003269208540000102
为0,进入下一种类型瓶颈交叉口的优化判定;
S404、正向绿波带下限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure BDA0003269208540000103
的M(m,j)均为
Figure BDA0003269208540000104
则通过适当减小所有正向绿波带下限瓶颈交叉口的相位差增大总的绿波带宽;将正向绿波带下限瓶颈交叉口Ij相位a的下移容许量记为
Figure BDA0003269208540000105
相位b的下移容许量记为
Figure BDA0003269208540000106
更新交叉口Ij的相位差O(m,j)如式(17)所示:
Figure BDA0003269208540000107
当正向绿波带下限瓶颈交叉口优化判断条件不满足时,令正向绿波带下限瓶颈交叉口判定变量
Figure BDA0003269208540000108
为0,进入下一种类型瓶颈交叉口的优化判定;
S405、反向绿波带上限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure BDA0003269208540000109
的M(m,j)均为
Figure BDA00032692085400001010
则通过适当增大所有反向绿波带上限瓶颈交叉口的相位差增大总的绿波带宽;将反向绿波带上限瓶颈交叉口Ij相位a的上移容许量记为
Figure BDA00032692085400001011
相位b的上移容许量记为
Figure BDA00032692085400001012
更新交叉口Ij的相位差O(m,j)如式(18)所示:
Figure BDA00032692085400001013
当反向绿波带上限瓶颈交叉口优化判断条件不满足时,令反向绿波带上限瓶颈交叉口判定变量
Figure BDA00032692085400001014
为0,进入下一种类型瓶颈交叉口的优化判定;
S406、反向绿波带下限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure BDA00032692085400001015
的M(m,j)均为
Figure BDA00032692085400001016
则通过适当减小所有反向绿波带下限瓶颈交叉口的相位差增大总的绿波带宽;将反向绿波带下限瓶颈交叉口Ij相位a的下移容许量记为
Figure BDA00032692085400001017
相位b的下移容许量记为
Figure BDA00032692085400001018
更新交叉口Ij的相位差O(m,j)如式(19)所示:
Figure BDA00032692085400001019
当反向绿波带下限瓶颈交叉口优化判断条件不满足时,令反向绿波带下限瓶颈交叉口判定变量
Figure BDA00032692085400001020
为0,结束相位差再优化判定;
S407、依次执行相序再优化、信号周期再优化和相位差再优化步骤后,若此时迭代优化判断变量F=1,进入下一轮迭代优化,返回步骤S2,若此时迭代优化判断变量F=0,则迭代优化过程终止,输出迭代优化后的相序组合、公共信号周期和相位差的最佳设计方案。
与现有技术相比,本发明的有益效果如下:
1)本发明明确了初始综合优化步骤,根据协调正反向初始绿灯中心时刻点的相对位置关系实现了交叉口信号相序与相位差的初始优化,通过更新绿波轨迹特征线与干道调整速度实现了干道公共信号周期的初始优化。
2)本发明明确了迭代优化步骤,建立了面向瓶颈交叉口的相序再优化判定条件,实现了对于交叉口信号相序的渐进优化;建立了绿波轨迹特征线旋转与绿波带宽变化之间的数学关系,给出了双向绿波总带宽增大的特征线旋转优化规则,实现了基于速度旋转变换的公共信号周期迭代优化;给出了面向各类瓶颈交叉口的绿波带宽优化判定条件,实现了对绿波带瓶颈交叉口相位差的整体再优化。
3)本发明给出了一种设计流程清晰、优化空间连续、求解速度快的适于进口单放的双向绿波带迭代优化图解方法,具备优越的工程应用价值。
附图说明
图1是一种适于进口单放的双向绿波带迭代优化图解方法流程图;
图2a)-图2b)本发明交叉口间距调整前后的示意图;
图3a)-图3b)是本发明时间与速度按反比例关系调整前后的示意图;
图4是本发明分段式速度并行搜索示意图;
图5a)-图5d)是本发明交叉口I1在相序方案1-方案4下反向绿波轨迹特征线示意图;
图6a)-图6d)是本发明交叉口Ip在交叉口I1取相序方案1-方案4下绿波带宽偏移量示意图;
图7a)-图7b)是本发明条件1下交叉口Ip相序为a-c-b-d时相位c和相位d不同绿灯时间关系对应的相序再优化示意图;
图8a)-图8b)是本发明增大和减小干道绿波调整速度时绿波轨迹特征线旋转优化情况1示意图;
图9a)-图9b)是本发明增大和减小干道绿波调整速度时绿波轨迹特征线旋转优化情况3示意图;
图10a)-图10b)是本发明增大和减小干道绿波调整速度时对应的正向绿波带上下限旋转点示意图;
图11a)-图11b)是本发明不同旋转情况下对应的旋转角度确定示意图;
图12a)-图12b)是本发明正向绿波带上限瓶颈交叉口相位差优化前后的示意图;
图13a)-图13d)是本实施例初始干道绿波速度值取VI1时交叉口I1在相序方案1-方案4下非基准交叉口反向初始绿灯中心时刻点示意图;
图14a)-图14d)是本实施例初始干道绿波速度值取VI1时交叉口I1在相序方案1-方案4下各交叉口最佳初始相序示意图;
图15是本实施例初始干道绿波速度值取VI1时初始相序优化绿波轨迹特征线的更新示意图;
图16a)-图16b)是本实施例第1次信号周期再优化绿波轨迹特征线旋转变换前后的示意图;
图17a)-图17b)是本实施例第一次交叉口相位差再优化前后的示意图;
图18是本实施例最终干道绿波协调效果时距图。
具体实施方式
下面结合附图和具体实施方式对本发明做详细描述。
某一南北向协调干道上共有5个信号交叉口,相邻交叉口间距由北往南依次为500m、380m、420m、140m,绿波带速度为10m/s。各交叉口信号配时设计的绿信比分配情况如表1。
表1各交叉口信号配时设计绿信比分配
Figure BDA0003269208540000121
如图1所示的一种适于进口单放的双向绿波带迭代优化图解方法,包括以下步骤:
步骤S1、干道双向绿波协调设计初始综合优化,包括确定基准交叉口I1、初始公共信号周期C1、交叉口调整间距Dp和速度优化范围,并设置初始干道绿波速度,根据初始干道绿波速度确定各交叉口的初始相位相序组合、相位差及干道绿波调整速度,获得上下限瓶颈交叉口集合,具体步骤如下:
S101、确定基准交叉口I1
若目标协调干道为东西走向,则定义由西往东为协调正向、由东往西为协调反向,西、东、北、南依次对应相位a、b、c、d;若目标干道为南北走向,则定义由北往南为协调正向、由南往北为协调反向,北、南、西、东依次对应相位a、b、c、d;假设目标协调干道上有n个信号交叉口,将交叉口按照协调正向升序命名,选定某个端点交叉口作为基准交叉口I1,将第p(2≤p≤n)个信号交叉口记为交叉口Ip;将交叉口Ip(1≤p≤n)相位a、b、c、d的绿信比依次记为λap、λbp、λcp、λdp,相位时间依次记为tap、tbp、tcp、tdp,为表述方便,在此假定相位的有效绿灯时间与绿灯时间及相位时间近似相等;
将各交叉口相位a的起始时刻点定义为周期起点;根据各交叉口相位a与相位b的位置关系可将交叉口相序设置方案分为4种:将a-b-c-d或a-b-d-c记为方案1;将a-c-b-d记为方案2;将a-d-b-c记为方案3;将a-c-d-b或a-d-c-b记为方案4;
本实施例中,以由北往南的方向作为协调正向,将由北往南直行车队经过的第一个交叉口定义为基准交叉口I1,沿协调正向依次将干道上的第p(2≤p≤n)个信号交叉口标记为交叉口Ip
S102、确定初始公共信号周期C1
公共信号周期C的取值范围将取决于最小允许公共信号周期Cmin与最大允许公共信号周期Cmax,可记为[Cmin,Cmax],将绿波协调设计的初始公共信号周期C1取为公共信号周期允许变化范围的中点:
Figure BDA0003269208540000131
本实施例中,公共信号周期C的取值范围为[90,110]s;初始公共信号周期C1取为100s。
S103、确定交叉口调整间距Dp
已知交叉口Ip与交叉口Ip+1(1≤p≤n-1)的实际间距为dp,路段绿波设计速度为vp;在保持路段行驶时间不变的条件下对交叉口间距与行驶车速进行比例调整,调整前后所对应的干道绿波带宽不会发生改变,如图2a)-图2b)所示;因此,本文将通过对交叉口间距进行调整,使得路段绿波设计速度统一转换为干道绿波设计速度V;在交叉口间距调整过程中,交叉口Ip与基准交叉口I1的调整间距Dp可由式(2)进行计算:
Figure BDA0003269208540000132
本实施例中,由于干道各路段绿波设计速度均设置为10m/s,故无需对交叉口间距进行调整。
S104、确定速度优化范围;
在时距图中时间与速度成反比例关系,当保持公共信号周期C与干道绿波设计速度V的乘积不变时,所对应的双向绿波带宽与信号周期的比值保持不变,即双向绿波协调优化效果保持不变,如图3a)-图3b)所示;因此,在保持初始公共信号周期C1不变的情况下,干道绿波调整速度Vw应满足式(3):
Figure BDA0003269208540000141
本实施例中,根据干道绿波设计速度(V=10m/s)与公共信号周期取值范围(C∈[90,110]s),可以确定干道绿波调整速度Vw的优化范围为[9,11]m/s。
S105、初始干道绿波速度的设置;
在对交叉口信号相序与相位差进行初始优化时,为了避免出现由于仅设置单个初始干道绿波速度而导致优化设计陷入局部最优的问题,可以考虑将初始干道绿波速度分为多值进行并行优化搜索;在此在保持初始公共信号周期C1不变的情况下,通过将干道绿波调整速度取值范围等分为3段,分别将每段速度范围的中值V·(Cmin+1/6·ΔC)/C1、V·(Cmin+1/2·ΔC)/C1、V·(Cmin+5/6·ΔC)/C1设置为3个初始干道绿波速度值VI1、VI2、VI3,其中ΔC为公共信号周期优化范围,即最大允许公共信号周期Cmax与最小允许公共信号周期Cmin之差,如图4所示;通过分别搜索和比选不同初始干道绿波速度下的交叉口最佳相序组合方案,可以实现相序组合、公共信号周期及相位差的初始综合优化;
本实施例中,保持初始公共信号周期C1不变,将干道绿波调整速度取值范围[9,11]m/s等分为3段,分别将每段速度范围的中值9.3m/s、10m/s、10.7m/s设置为3个初始干道绿波速度值VI1、VI2、VI3,再搜索和比选不同初始干道绿波速度下的交叉口最佳相序组合方案。
S106、非基准交叉口正向初始绿灯中心时刻点的确定;
首先需要确定协调正向初始绿灯中心时刻点,即非基准交叉口相位a的初始绿灯中心时刻点;例如,针对第x个初始干道绿波速度值VIx,通过坐标原点作正向绿波轨迹特征线
Figure BDA0003269208540000142
斜率为初始干道绿波速度值VIx的倒数,将正向绿波轨迹特征线
Figure BDA0003269208540000143
与交叉口Ip(2≤p≤n)时间线的交点
Figure BDA0003269208540000144
记为交叉口Ip相位a的初始绿灯中心时刻点,如图5a)-图5d)所示。
本实施例中,例如,当初始干道绿波调整速度取为VI1时,从坐标原点作正向绿波轨迹特征线
Figure BDA0003269208540000145
正向绿波轨迹特征线
Figure BDA0003269208540000146
与交叉口Ip(2≤p≤5)时间线交于点
Figure BDA0003269208540000147
记为Ip相位a的初始绿灯中心时刻点,如图13a)-图13d)所示。
S107、非基准交叉口反向初始绿灯中心时刻点的确定;
针对交叉口I1的不同相序设置方案,基于协调正向初始绿灯中心时刻点,可以确定协调反向初始绿灯中心时刻点,即非基准交叉口相位b的初始绿灯中心时刻点;例如,针对初始干道绿波速度值VIx,对于交叉口I1的第i种相序方案,过交叉口I1相位b的绿灯中心时刻点作反向绿波轨迹特征线
Figure BDA0003269208540000151
斜率为初始干道绿波速度值VIx倒数的相反数;将反向绿波轨迹特征线
Figure BDA0003269208540000152
与交叉口Ip(2≤p≤n)时间线的交点经垂直平移若干个初始公共信号周期C1后紧随交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA0003269208540000153
的时刻点
Figure BDA0003269208540000154
记为交叉口Ip相位b的初始绿灯中心时刻点,如图5a)-图5d)所示;
当交叉口I1选择第i种相序方案时,将交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA0003269208540000155
超前于交叉口Ip相位b的初始绿灯中心时刻点
Figure BDA0003269208540000156
的时长记为tI(i,p),定义正反向协调相位之间的间隙时间为ΔtI(i,p),其大小满足式(4):
Figure BDA0003269208540000157
本实施例中,在基准交叉口I1的第i种相序方案下,过交叉口I1相位b的绿灯中心时刻点作反向绿波轨迹特征线
Figure BDA0003269208540000158
确定各交叉口相位b初始绿灯中心时刻点
Figure BDA0003269208540000159
如图14a)-图14d)所示。
S108、非基准交叉口正反向绿灯中心时刻点的初始优化;
为了均衡正反向的协调效果,应对非基准交叉口正反向的初始绿灯中心时刻点进行调整优化,同时以确定非基准交叉口的初始相位差;例如,当交叉口I1与交叉口Ip分别选择其第i种与第k种相序方案时,应保证交叉口Ip相位a的调整后绿灯中心时刻点
Figure BDA00032692085400001510
与交叉口Ip相位b的调整后绿灯中心时刻点
Figure BDA00032692085400001511
的中点与调整前交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA00032692085400001512
与交叉口Ip相位b的初始绿灯中心时刻点
Figure BDA00032692085400001513
的中点重合,如图6a)-图6d)所示;
当交叉口I1选择第i种相序方案时,将交叉口Ip选择第k种相序方案所产生的双向绿波带宽偏移量记为Δb(i,p,k),可以推知,当交叉口Ip依次选择相序方案1、2、3、4时,所对应的带宽偏移量Δb(i,p,k)依次等于
Figure BDA00032692085400001514
当交叉口I1选择第i种相序方案时,将交叉口Ip选择第k种相序方案所对应的交叉口Ip相位a的初始绿灯中心时刻点
Figure BDA00032692085400001515
与交叉口Ip相位a的调整后绿灯中心时刻点
Figure BDA00032692085400001516
纵坐标之差记为纵向偏移距离ΔyI(i,p)。通过比较正反向协调相位之间的间隙时间ΔtI(i,p)与相位c绿灯时间tcp和相位d绿灯时间tdp之间的关系,可以判断交叉口Ip的最佳初始相序方案,并计算纵向偏移距离ΔyI(i,p),如表2所示;
表2最佳相序方案判断规则整合表
Figure BDA00032692085400001517
Figure BDA0003269208540000161
本实施例中,计算I1选取不同相序方案时,I2、I3、I4、I5对应的最小双向绿波带宽偏移量和最佳相序方案如图14所示;
如图14c)所示,当交叉口I1采用相序方案3时,相关计算情况如表3所示。
表3案例中速度取VI1时I1相序方案3下各交叉口最佳相序组合计算表
Figure BDA0003269208540000162
S109、各交叉口初始相序方案的确定;
考虑到应使各交叉口相位a、b的偏移量均等,故在交叉口I1的4种相序方案中选取干道偏移量ΔyIi最小的方案i*作为交叉口I1的初始相序方案,该方案所对应的各交叉口最佳相序方案即为其初始相序方案;干道偏移量ΔyIi应满足式(5),相序方案i*所对应的干道偏移量
Figure BDA0003269208540000164
应满足式(6):
ΔyIi=max(ΔyI(i,2),ΔyI(i,3)...ΔyI(i,n),0)-min(ΔyI(i,2),ΔyI(i,3)...ΔyI(i,n),0) (5)
Figure BDA0003269208540000165
本实施例中,可以计算交叉口I1采用不同相序方案时,干道偏移量分别为ΔyI1=6.84,ΔyI2=7.64,ΔyI3=5.33,ΔyI4=15.98;由于ΔyI3取值最小,故确定交叉口I1的初始相序方案为方案3,a-d-b-c,该类型下对应交叉口I2、I3、I4、I5的最佳相序方案依次为a-d-b-c、a-c-d-b或a-d-c-b、a-c-d-b或a-d-c-b、a-c-b-d。
S110、绿波轨迹特征线及干道调整速度的更新;
计算相序方案i*下各交叉口相位a的初始绿灯中心时刻点偏移距离等效调整量
Figure BDA0003269208540000166
如式(7)所示;根据偏移距离等效调整量
Figure BDA0003269208540000168
计算相序方案i*总的偏移距离等效调整量
Figure BDA0003269208540000167
如式(8)所示;在交叉口In相位a的初始绿灯中心时刻点
Figure BDA0003269208540000163
上叠加相序方案i*总的偏移距离等效调整量ΔyAi*生成调整点OA,其纵坐标记为yA
Figure BDA0003269208540000171
Figure BDA0003269208540000172
其中,
Figure BDA00032692085400001724
为Ip相位a的初始绿灯中心时刻点等效调整系数;连接坐标轴原点与调整点OA形成线
Figure BDA0003269208540000173
计算线
Figure BDA0003269208540000174
所对应的干道调整速度
Figure BDA0003269208540000175
如式(9)所示:
Figure BDA0003269208540000176
判断线
Figure BDA0003269208540000177
所对应的干道调整速度
Figure BDA0003269208540000178
是否在干道绿波调整速度优化范围内;若在,将线
Figure BDA0003269208540000179
赋予正向调整绿波轨迹特征线
Figure BDA00032692085400001710
将干道调整速度
Figure BDA00032692085400001711
赋予干道绿波调整速度
Figure BDA00032692085400001712
若不在,则保持正向绿波轨迹特征线不变,即正向调整绿波轨迹特征线
Figure BDA00032692085400001713
与正向绿波轨迹特征线
Figure BDA00032692085400001714
相同,干道绿波调整速度
Figure BDA00032692085400001715
与初始干道绿波速度VIx相等;
本实施例中,可以计算交叉口交叉口I1取初始相序方案3时,交叉口I2、I3、I4、I5相位a初始绿灯中心时刻点的偏移距离等效调整量ΔyA(3,p)依次为:-5.07,-3.47,3.56,-1.84。计算相序方案3总的偏移距离等效调整量ΔyA3=-0.755,在交叉口I5相位a的初始绿灯中心时刻点
Figure BDA00032692085400001716
上叠加ΔyA3生成调整点OA,连接坐标轴原点与OA,形成线
Figure BDA00032692085400001717
其对应的干道调整速度
Figure BDA00032692085400001718
在干道绿波调整速度优化范围内,因此线
Figure BDA00032692085400001719
赋予正向调整绿波轨迹特征线
Figure BDA00032692085400001720
将干道调整速度
Figure BDA00032692085400001721
赋予干道绿波调整速度
Figure BDA00032692085400001722
如图15所示。
S111、干道绿波调整速度的初始优化;
分别计算不同初始干道绿波速度如VI1、VI2、VI3所对应的交叉口最佳相序组合方案及其双向绿波带宽总和,选取对应带宽最大的相序组合方案为初始优化方案,将对应的调整速度设置为干道绿波初始优化速度V0
本实施例中,分别取初始干道绿波速度为VI2、VI3重复上述步骤,计算得到不同初始干道绿波速度VI1、VI2、VI3所对应的交叉口最佳相序组合方案下及其双向绿波带宽总和分别为51.10s、56.11s、42.03s,选择获得最大带宽的初始干道绿波调整速度VI2对应的相序组合方案为初始优化方案,对应的干道绿波调整速度
Figure BDA00032692085400001723
为干道绿波调整速度V0=9.97m/s。
步骤S2、设置迭代优化判断变量F,判断上下限瓶颈交叉口集合是否满足相序再优化判定条件,通过调整交叉口相序完成相序再优化,更新上下限瓶颈交叉口集合,具体步骤如下:
S201、在每一轮的迭代优化过程中,首先初始化布尔型迭代优化判断变量F=0;然后依次执行相序再优化、信号周期再优化和相位差再优化步骤,若当前方案满足任意一种再优化条件,则令迭代优化判断变量F=1,并通过判断进入下一轮迭代优化,若当前方案不满足任何一种再优化条件,即迭代优化判断变量F保持为0,则迭代优化过程终止,输出迭代优化后的相序组合、公共信号周期和相位差的最优设计方案;
本实施例中,初始化布尔型迭代优化判断变量F=0。
S202、若交叉口Ip为正向绿波带的上限瓶颈交叉口,则其对应的瓶颈节点记为
Figure BDA0003269208540000181
若交叉口Ip为正向绿波带的下限瓶颈交叉口,则其对应的瓶颈节点记为
Figure BDA0003269208540000182
若交叉口Ip为反向绿波带的上限瓶颈交叉口,则其对应的上限瓶颈节点记为
Figure BDA0003269208540000183
若交叉口Ip为反向绿波带的下限瓶颈交叉口,则其对应的上限瓶颈节点记为
Figure BDA0003269208540000184
将第m次相序再优化判定所得的正向绿波带的上限瓶颈交叉口纳入集合
Figure BDA0003269208540000185
正向绿波带的下限瓶颈交叉口纳入集合
Figure BDA0003269208540000186
反向绿波带的上限瓶颈交叉口纳入集合
Figure BDA0003269208540000187
反向绿波带的下限瓶颈交叉口纳入集合
Figure BDA0003269208540000188
并将集合中各元素按交叉口编号升序排序;
在第m次相序再优化判定中,根据集合
Figure BDA0003269208540000189
Figure BDA00032692085400001810
包含交叉口情况判断是否存在交叉口Ij(1≤j≤n)满足相序再优化条件,若满足再优化判定条件及要求,则按照交叉口编号从小到大依次为满足条件的交叉口进行相序再优化,并注意在相序调整过程中保证交叉口相位a、b的绿灯中心时刻点的中点不变,且遵循逐步优化原则进行再优化设计,即在每一次相序优化调整过程中优先选择协调相位间隙时间调整量较小的可选优化方案;若不满足再优化判定条件及要求,则可结束本轮相序再优化过程。所述相序再优化判定条件及要求为
条件1:若
Figure BDA00032692085400001811
即存在交叉口Ij同时为正向绿波带的上限瓶颈交叉口与反向绿波带的下限瓶颈交叉口;
若交叉口Ij相序为a-b-c-d或a-b-d-c,则令其第m次相序再优化判定变量kP(m,j)=0;若交叉口Ij相序为a-c-b-d,当tcj≤tdj时,将交叉口Ij的相序调整为a-b-c-d,如图7a)所示,当tcj>tdj时,将交叉口Ij的相序调整为a-d-b-c,如图7b)所示;若交叉口Ij相序为a-d-b-c,当tcj<tdj时,将交叉口Ij的相序调整为a-c-b-d,当tcj≥tdj时,将交叉口Ij的相序调整为a-b-c-d;若交叉口Ij相序为a-c-d-b或a-d-c-b,当tcj≤tdj时,将交叉口Ij的相序调整为a-d-b-c,当tcj>tdj时,将交叉口Ij的相序调整为a-c-b-d;
根据以上相序调换情况,计算调整后的正向绿波带宽
Figure BDA00032692085400001812
与反向绿波带宽
Figure BDA00032692085400001813
计算交叉口Ij第m次相序再优化判定变量kP(m,j)的取值如式(10)所示:
Figure BDA00032692085400001814
若交叉口Ij第m次相序再优化判定变量kP(m,j)=0,则不变更该交叉口的相序设置情况,继续对满足条件1的下一个交叉口进行相序再优化判断,直至所有满足条件1的交叉口的相序再优化判定变量均为零,则继续对满足条件2的交叉口进行相序再优化判断;若交叉口Ij第m次相序再优化判定变量kP(m,j)=1,则根据优化调整结果更新交叉口Ij的相序设置、干道的正向绿波带宽
Figure BDA0003269208540000191
与反向绿波带宽
Figure BDA0003269208540000192
以及瓶颈交叉口集合
Figure BDA0003269208540000193
Figure BDA0003269208540000194
并将迭代优化判断变量F=1,结束本次判断后重新开始第m+1次交叉口相序再优化判断;
条件2:
Figure BDA0003269208540000195
即存在交叉口Ij同时为正向绿波带的下限瓶颈交叉口与反向绿波带的上限瓶颈交叉口;
若交叉口Ij相序为a-b-c-d或a-b-d-c,当tcj≤tdj时,将交叉口Ij的相序调整为a-c-b-d,当tcj>tdj时,将交叉口Ij的相序调整为a-d-b-c;若交叉口Ij相序为a-c-b-d,当tcj<tdj时,将交叉口Ij的相序调整为a-d-b-c,当tcj≥tdj时,将交叉口Ij的相序调整为a-c-d-b或a-d-c-b;若交叉口Ij相序为a-d-b-c,当tcj≤tdj时,将交叉口Ij的相序调整为a-c-d-b或a-d-c-b,当tcj>tdj时,将交叉口Ij的相序调整为a-c-b-d;若交叉口Ij相序为a-c-d-b或a-d-c-b时,则令其交叉口Ij第m次相序再优化判定变量kP(m,j)=0;
同样,根据以上相序调换情况,计算调整后的正向绿波带宽
Figure BDA0003269208540000196
与反向绿波带宽
Figure BDA0003269208540000197
计算交叉口Ij第m次相序再优化判定变量kP(m,j)的取值如式(10)所示;
若交叉口Ij第m次相序再优化判定变量kP(m,j)=0,则不变更该交叉口的相序设置情况,继续对满足条件2的下一个交叉口进行相序再优化判断,直至所有满足条件2的交叉口的相序再优化判定变量均为零,则结束相序再优化判断;若交叉口Ij第m次相序再优化判定变量kP(m,j)=1,则根据优化调整结果更新交叉口Ij的相序设置、干道的正向绿波带宽
Figure BDA0003269208540000198
与反向绿波带宽
Figure BDA0003269208540000199
以及瓶颈交叉口集合
Figure BDA00032692085400001910
并将迭代优化判断变量F=1,结束本次判断后重新开始第m+1次交叉口相序再优化判断;
本实施例中,根据初始相序优化结果,正向绿波带的上限瓶颈节点有
Figure BDA00032692085400001911
下限瓶颈节点有
Figure BDA00032692085400001912
反向绿波带的上限瓶颈节点有
Figure BDA00032692085400001913
下限瓶颈节点有
Figure BDA00032692085400001914
初始正反向绿波带的上下限瓶颈交叉口集合
Figure BDA00032692085400001915
由于不存在交叉口满足相序再优化判定情况,故可结束第一轮相序再优化过程。
步骤S3、根据上下限瓶颈交叉口集合及正反向绿波带的旋转变化规律判断是否满足进行旋转变换条件,通过旋转绿波轨迹特征线完成信号周期再优化,更新上下限瓶颈交叉口集合,具体步骤如下:
S301、在信号周期再优化过程中,假定经过第m次绿波轨迹特征线旋转变换后得到的正向绿波带宽与反向绿波带宽为
Figure BDA0003269208540000201
上下限绿波轨迹特征线为
Figure BDA0003269208540000202
上下限瓶颈交叉口集合为
Figure BDA0003269208540000203
在进行第m次旋转变换前,首先需要根据集合
Figure BDA0003269208540000204
判断是否满足进行旋转变换的条件。若满足,则根据满足条件确定绿波轨迹特征线的旋转角度,完成此次旋转变换,并将迭代优化判断变量F=1,进入第m+1次旋转变换优化过程;若不满足,则停止旋转变换,完成本轮信号周期再优化;
本实施例中,结束第一轮相序再优化过程后,可以得到信号周期优化的初始正向绿波带宽
Figure BDA0003269208540000205
初始反向绿波带宽
Figure BDA0003269208540000206
正反向绿波带的初始上下限瓶颈交叉口集合
Figure BDA0003269208540000207
S302、绿波轨迹特征线旋转优化判断;
若当前集合
Figure BDA0003269208540000208
以及
Figure BDA0003269208540000209
Figure BDA00032692085400002010
满足以下情况之一,则可以进行第m次信号周期再优化;
情况1:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,且反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游;假定
Figure BDA00032692085400002011
均满足j<l,且
Figure BDA00032692085400002012
均满足g>h,减小干道绿波调整速度可以使得双向绿波总带宽增大,如图8a)-图8b)所示;
情况2:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,且反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游;假定
Figure BDA00032692085400002013
均满足j>l,且
Figure BDA00032692085400002014
均满足g<h,增大干道绿波调整速度可以使得双向绿波总带宽增大;
情况3:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure BDA00032692085400002015
假定
Figure BDA00032692085400002016
Figure BDA00032692085400002017
均满足j<l,且
Figure BDA00032692085400002018
减小干道绿波调整速度可以使得双向绿波总带宽增大,如图9a)-图9b)所示;
情况4:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的上游,且
Figure BDA00032692085400002019
假定
Figure BDA00032692085400002020
Figure BDA00032692085400002021
均满足j>l,且
Figure BDA00032692085400002022
增大干道绿波调整速度可以使得双向绿波总带宽增大;
情况5:反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,正向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure BDA00032692085400002023
假定
Figure BDA00032692085400002024
Figure BDA0003269208540000211
均满足g<h,且
Figure BDA0003269208540000212
增大干道绿波调整速度可以使得双向绿波总带宽增大;
情况6:反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,正向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的上游,且
Figure BDA0003269208540000213
假定
Figure BDA0003269208540000214
Figure BDA0003269208540000215
均满足g>h,且
Figure BDA0003269208540000216
减小干道绿波调整速度可以使得双向绿波总带宽增大;
本实施例中,正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure BDA0003269208540000217
满足绿波轨迹特征线旋转变换情况3,因此通过减小干道绿波调整速度,可以使得双向绿波总带宽增大。
S303、确定正反向绿波带上下限旋转点;
对于正向绿波带的上下限旋转点,当增大干道绿波调整速度时,选取交叉口
Figure BDA0003269208540000218
交叉口
Figure BDA0003269208540000219
保证
Figure BDA00032692085400002110
均满足j≤g、l≥h,以交叉口Ij的上限瓶颈节点
Figure BDA00032692085400002111
与交叉口Il的下限瓶颈节点
Figure BDA00032692085400002112
分别作为正向绿波带的上下限旋转点,如图10a)所示;当减小干道绿波调整速度时,选取交叉口
Figure BDA00032692085400002113
交叉口
Figure BDA00032692085400002114
保证
Figure BDA00032692085400002115
Figure BDA00032692085400002116
均满足j≥g、l≤h,以交叉口Ij的上限瓶颈节点
Figure BDA00032692085400002117
与交叉口Il的下限瓶颈节点
Figure BDA00032692085400002118
分别作为正向绿波带的上下限旋转点,如图10b)所示;
对于反向绿波带的上下限旋转点,当增大干道绿波调整速度时,选取交叉口
Figure BDA00032692085400002119
交叉口
Figure BDA00032692085400002120
保证
Figure BDA00032692085400002121
均满足q≥s、r≤e,以交叉口Iq的上限瓶颈节点
Figure BDA00032692085400002122
与交叉口Ir的下限瓶颈节点
Figure BDA00032692085400002123
分别作为反向绿波带的上下限旋转点;当减小干道绿波调整速度时,选取交叉口
Figure BDA00032692085400002124
交叉口
Figure BDA00032692085400002125
保证
Figure BDA00032692085400002126
Figure BDA00032692085400002127
均满足q≤s、r≥e,以交叉口Iq的上限瓶颈节点
Figure BDA00032692085400002128
与交叉口Ir的下限瓶颈节点
Figure BDA00032692085400002129
分别作为反向绿波带的上下限旋转点;
本实施例中,以上下限瓶颈节点
Figure BDA00032692085400002130
Figure BDA00032692085400002131
分别作为正向绿波带的上下限旋转点,以上下限瓶颈节点
Figure BDA00032692085400002132
Figure BDA00032692085400002133
分别作为反向绿波带的上下限旋转点,如图16a)所示。
S304、确定旋转角度;
在此分别以正反向绿波带的上下限旋转点作为端点,计算与其它交叉口特征时刻点所构成的旋转角度,综合确定旋转变换后的干道绿波调整速度;
假设交叉口If被正向绿波带的上限绿波轨迹特征线
Figure BDA00032692085400002134
穿过的相位a的绿灯结束时刻点为
Figure BDA00032692085400002135
交叉口If被正向绿波带的下限绿波轨迹特征线
Figure BDA00032692085400002136
穿过的相位a的绿灯起始时刻点为
Figure BDA00032692085400002137
交叉口If被反向绿波带的上限绿波轨迹特征线
Figure BDA00032692085400002138
穿过的相位b的绿灯结束时刻点为
Figure BDA0003269208540000221
交叉口If被反向绿波带的下限绿波轨迹特征线
Figure BDA0003269208540000222
穿过的相位b的绿灯起始时刻点为
Figure BDA0003269208540000223
连接点
Figure BDA0003269208540000224
Figure BDA0003269208540000225
构成的旋转线
Figure BDA0003269208540000226
所对应的调整速度
Figure BDA0003269208540000227
为:
Figure BDA0003269208540000228
连接点
Figure BDA0003269208540000229
Figure BDA00032692085400002210
构成的旋转线
Figure BDA00032692085400002211
所对应的调整速度
Figure BDA00032692085400002212
为:
Figure BDA00032692085400002213
连接点
Figure BDA00032692085400002214
Figure BDA00032692085400002215
构成的旋转线
Figure BDA00032692085400002216
所对应的调整速度
Figure BDA00032692085400002217
为:
Figure BDA00032692085400002218
连接点
Figure BDA00032692085400002219
Figure BDA00032692085400002220
构成的旋转线
Figure BDA00032692085400002221
所对应的调整速度
Figure BDA00032692085400002222
为:
Figure BDA00032692085400002223
式中,
Figure BDA00032692085400002224
分别为点
Figure BDA00032692085400002225
Figure BDA00032692085400002226
的纵坐标;
为了确定旋转角度,需要依次连接符合要求的时刻点构成旋转线,并判断旋转线所对应的调整速度是否处于绿波调整速度范围,将符合条件的调整速度纳入第m次旋转变换的可选车速集合SVm;对于减小干道绿波调整速度的情况1、3、6,选取可选车速集合SVm中的最大值作为第m次绿波轨迹特征线旋转变换所确定的干道绿波调整速度Vm,如图11a)所示;对于增大干道绿波调整速度的情况2、4、5,选取可选车速集合SVm中的最小值作为第m次绿波轨迹特征线旋转变换所确定的干道绿波调整速度Vm,如图11b)所示。不同情况下符合要求的连接点选取如表4所示;
表4旋转角度确定规则整合表
Figure BDA00032692085400002227
本实施例中,选取可选车速集合SV1中的最大值9.93m/s作为第1次绿波轨迹特征线旋转变换所确定的干道绿波调整速度V1,如表5所示。
表5第1次旋转角度计算表
Figure BDA0003269208540000231
S305、更新上下限瓶颈交叉口集合;
根据干道绿波调整速度Vm在旋转点进行旋转变换,得到更新的正反向绿波带的上下限绿波轨迹特征线,在进入第m+1次旋转变换前,根据上下限绿波轨迹特征线
Figure BDA0003269208540000232
Figure BDA0003269208540000233
确定正反向绿波带的上下限瓶颈交叉口集合,并对应更新为集合
Figure BDA0003269208540000234
Figure BDA0003269208540000235
本实施例中,经过第1次旋转变换后,更新集合
Figure BDA0003269208540000236
Figure BDA0003269208540000237
令迭代优化判断变量F=1。此时,瓶颈交叉口集合情况不满足任何旋转变换优化的情况,故可结束第一轮绿波轨迹特征线旋转变换,即信号周期再优化过程,如图16b)所示。
S306、最佳公共信号周期计算;
每一次完成绿波轨迹特征线旋转变换后,根据优化的干道绿波调整速度VB,利用时距图中时间与速度的反比关系,可以更新计算出干道绿波设计速度V所对应的最佳公共信号周期CB,如式(15)所示:
Figure BDA0003269208540000238
本实施例中,结束第一轮信号周期再优化过程后,更新干道绿波调整速度VB=9.93m/s。利用时距图中时间与速度的反比关系,根据干道绿波设计速度V可以计算当前最佳公共信号周期CB=99.3s。
步骤S4、判断各种类瓶颈交叉口是否符合相位差再优化条件,通过上移或下移相位绿灯起始时刻点完成相位差再优化,根据迭代优化判断变量F确定迭代优化过程,最终生成干道双向绿波协调控制方案,具体步骤如下:
S401、将坐标系原点所在时刻点定义为相位差零点,在交叉口相位差再优化的第m次优化判断中,将交叉口Ip第一个相位a的绿灯起始时刻点与相位差零点的时间差定义为交叉口Ip的相位差O(m,p);将正反向绿波带的上下限瓶颈交叉口分别纳入集合
Figure BDA0003269208540000241
Figure BDA0003269208540000242
并将集合中各元素按交叉口编号升序排序;将正反向绿波带的上下限绿波轨迹特征线依次记为
Figure BDA0003269208540000243
根据瓶颈交叉口种类和交叉口相位差再优化判定矩阵,判断当前种类瓶颈交叉口是否符合相位差再优化条件,若符合,上移或下移相位a绿灯起始时刻点实现优化,更新所有满足条件的交叉口Ij的相位差O(m,j),完成交叉口相位差的第m次再优化,并将迭代优化判断变量F=1,再重新开始第m+1次再优化判断;若不符合,继续进行第m次中下一种类型瓶颈交叉口的相位差再优化优化判断,直至瓶颈交叉口集合中所有交叉口均无法进行相位差再优化,则停止本轮相位差再优化;
本实施例中,将信号周期再优化后所得信号协调控制结果对应的公共信号周期调整为当前最佳公共信号周期。可得正向绿波带
Figure BDA0003269208540000244
反向绿波带
Figure BDA0003269208540000245
交叉口I1的相位差O(0,1)=85.41s,交叉口I2的相位差O(0,2)=36.74s、交叉口I3的相位差O(0,3)=72.99s、交叉口I4的相位差O(0,4)=13.90s、交叉口I5的相位差O(0,5)=24.83s。此时正向反向绿波带的初始上下限瓶颈交叉口集合
Figure BDA0003269208540000246
Figure BDA0003269208540000247
S402、交叉口相位差再优化判定矩阵;
在第m次交叉口相位差再优化判断过程中,对于瓶颈交叉口Ij可以构建一个2×2的相位差优化判定矩阵
Figure BDA0003269208540000248
在判定矩阵M(m,j)中,元素a1,1、a1,2分别表示交叉口Ij是否为正向、反向绿波带的上限瓶颈交叉口;元素a2,1、a2,2分别表示交叉口Ij是否为正向、反向绿波带的下限瓶颈交叉口;元素ay,z取1表示是瓶颈交叉口,否则取0;
本实施例中,在第1次交叉口相位差优化判断过程中,对于各瓶颈交叉口可得交叉口相位差优化判定矩阵为
Figure BDA0003269208540000249
S403、正向绿波带上限瓶颈交叉口优化判定;
Figure BDA00032692085400002410
的相位差再优化判定矩阵M(m,j)均为
Figure BDA00032692085400002411
则通过适当增大所有正向绿波带上限瓶颈交叉口的相位差可以增大总的绿波带宽;将正向绿波带上限瓶颈交叉口Ij相位a的上移容许量记为
Figure BDA00032692085400002412
相位b的上移容许量记为
Figure BDA00032692085400002413
更新交叉口Ij的相位差O(m,j)如式(16)所示:
Figure BDA0003269208540000251
更新所有满足条件的交叉口相位差、瓶颈交叉口集合、正反向绿波带宽以及上下限绿波轨迹特征线,如图12a)-图12b)所示;
当正向绿波带上限瓶颈交叉口优化判断条件不满足时,令正向绿波带上限瓶颈交叉口判定变量
Figure BDA0003269208540000252
为0,进入下一种类型瓶颈交叉口(正向绿波带下限瓶颈交叉口)的优化判定;
本实施例中,对于正向绿波带上限瓶颈交叉口,由于交叉口I1与I5的相位差优化判定矩阵不符合优化条件,因此,令正向绿波带上限瓶颈交叉口判定变量
Figure BDA0003269208540000253
进入正向绿波带下限瓶颈交叉口的优化判定。
S404、正向绿波带下限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure BDA0003269208540000254
的M(m,j)均为
Figure BDA0003269208540000255
则通过适当减小所有正向绿波带下限瓶颈交叉口的相位差可以增大总的绿波带宽;将正向绿波带下限瓶颈交叉口Ij相位a的下移容许量记为
Figure BDA0003269208540000256
相位b的下移容许量记为
Figure BDA0003269208540000257
更新交叉口Ij的相位差O(m,j)如式(17)所示:
Figure BDA0003269208540000258
当正向绿波带下限瓶颈交叉口优化判断条件不满足时,令正向绿波带下限瓶颈交叉口判定变量
Figure BDA0003269208540000259
为0,进入下一种类型瓶颈交叉口(反向绿波带上限瓶颈交叉口)的优化判定;
本实施例中,对于正向绿波带下限瓶颈交叉口,由于有且仅有交叉口I2,且其相位差优化判定矩阵
Figure BDA00032692085400002510
故将交叉口I2的相位差适当减小可以使得双向总的绿波带宽增大,如图17a)-图17b)所示,其中相位a的下移容许量
Figure BDA00032692085400002511
相位b的
Figure BDA00032692085400002512
可以算出优化后的交叉口I2相位差O(1,2)=36.30s,完成交叉口相位差的第1次再优化过程,并令迭代优化判断变量F=1,进入本轮相位差的第2次再优化判断。
S405、反向绿波带上限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure BDA00032692085400002513
的M(m,j)均为
Figure BDA00032692085400002514
则通过适当增大所有反向绿波带上限瓶颈交叉口的相位差可以增大总的绿波带宽;将反向绿波带上限瓶颈交叉口Ij相位a的上移容许量记为
Figure BDA00032692085400002515
相位b的上移容许量记为
Figure BDA00032692085400002516
更新交叉口Ij的相位差O(m,j)如式(18)所示:
Figure BDA00032692085400002517
当反向绿波带上限瓶颈交叉口优化判断条件不满足时,令反向绿波带上限瓶颈交叉口判定变量
Figure BDA00032692085400002518
为0,进入下一种类型瓶颈交叉口(反向绿波带下限瓶颈交叉口)的优化判定;
本实施例中,在第2次交叉口相位差优化判断过程中,重复步骤S401、S402、S403得到瓶颈交叉口判定变量
Figure BDA00032692085400002519
此时,对于反向绿波带上限瓶颈交叉口,由于交叉口I2与I4的相位差优化判定矩阵不符合优化条件,因此,令反向绿波带上限瓶颈交叉口判定变量
Figure BDA0003269208540000261
进入反向绿波带下限瓶颈交叉口的优化判定。
S406、反向绿波带下限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure BDA0003269208540000262
的M(m,j)均为
Figure BDA0003269208540000263
则通过适当减小所有反向绿波带下限瓶颈交叉口的相位差可以增大总的绿波带宽;将反向绿波带下限瓶颈交叉口Ij相位a的下移容许量记为
Figure BDA0003269208540000264
相位b的下移容许量记为
Figure BDA0003269208540000265
更新交叉口Ij的相位差O(m,j)如式(19)所示:
Figure BDA0003269208540000266
当反向绿波带下限瓶颈交叉口优化判断条件不满足时,令反向绿波带下限瓶颈交叉口判定变量
Figure BDA0003269208540000267
为0,结束相位差再优化判定;
本实施例中,对于反向绿波带下限瓶颈交叉口,由于交叉口I2与I4的相位差优化判定矩阵不符合优化条件,因此,令反向绿波带下限瓶颈交叉口判定变量
Figure BDA0003269208540000268
此时瓶颈交叉口判定变量
Figure BDA0003269208540000269
瓶颈交叉口集合中所有交叉口均无法再进行相位差优化,因此可以结束本轮的交叉口相位差再优化过程。
S407、依次执行相序再优化、信号周期再优化和相位差再优化步骤后,若此时迭代优化判断变量F=1,进入下一轮迭代优化,返回步骤S2,若此时迭代优化判断变量F=0,则迭代优化过程终止,输出迭代优化后的相序组合、公共信号周期和相位差的最佳设计方案。
本实施例中,由于在第一轮再优化过程中迭代优化判断变量F=1,不满足终止迭代优化条件,因此需要返回步骤S2,进行第二轮信号相序、信号周期与相位差的再优化,执行步骤如上所述。迭代优化过程将一直持续,直至完成某一轮再优化过程后迭代优化判断变量F=0。对本案例进行优化设计得到的最佳双向绿波协调控制方案,如图18所示,信号协调控制参数如表6所示。
表6信号协调控制方案
Figure BDA00032692085400002610
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,包括以下步骤:
S1:干道双向绿波协调设计初始综合优化,所述初始综合优化包括确定基准交叉口I1、初始公共信号周期C1、交叉口调整间距Dp和速度优化范围,并设置初始干道绿波速度,根据初始干道绿波速度确定各交叉口的初始相位相序组合、相位差及干道绿波调整速度,获得上下限瓶颈交叉口集合;
S2:设置迭代优化判断变量F,判断上下限瓶颈交叉口集合是否满足相序再优化判定条件,通过调整交叉口相序完成相序再优化,更新上下限瓶颈交叉口集合;
S3:根据上下限瓶颈交叉口集合及正反向绿波带的旋转变化规律判断是否满足进行旋转变换条件,通过旋转绿波轨迹特征线完成信号周期再优化,更新上下限瓶颈交叉口集合;
S4:判断各种类瓶颈交叉口是否符合相位差再优化条件,通过上移或下移相位绿灯起始时刻点完成相位差再优化,根据迭代优化判断变量F确定迭代优化过程,最终生成干道双向绿波协调控制方案。
2.根据权利要求1所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S1具体为:
S101、确定基准交叉口I1
若目标协调干道为东西走向,则定义由西往东为协调正向、由东往西为协调反向,西、东、北、南依次对应相位a、b、c、d;若目标干道为南北走向,则定义由北往南为协调正向、由南往北为协调反向,北、南、西、东依次对应相位a、b、c、d;假设目标协调干道上有n个信号交叉口,将交叉口按照协调正向升序命名,选定某个端点交叉口作为基准交叉口I1,将第p个信号交叉口记为交叉口Ip;将交叉口Ip相位a、b、c、d的绿信比依次记为λap、λbp、λcp、λdp,相位时间依次记为tap、tbp、tcp、tdp
将各交叉口相位a的起始时刻点定义为周期起点;根据各交叉口相位a与相位b的位置关系将交叉口相序设置方案分为4种:将a-b-c-d或a-b-d-c记为方案1;将a-c-b-d记为方案2;将a-d-b-c记为方案3;将a-c-d-b或a-d-c-b记为方案4;
S102、确定初始公共信号周期C1
公共信号周期C的取值范围将取决于最小允许公共信号周期Cmin与最大允许公共信号周期Cmax,记为[Cmin,Cmax],将绿波协调设计的初始公共信号周期C1取为公共信号周期允许变化范围的中点:
Figure FDA0003269208530000011
S103、确定交叉口调整间距Dp
在保持路段行驶时间不变的条件下对交叉口间距与行驶车速进行比例调整,调整前后所对应的干道绿波带宽不会发生改变;因此,将通过对交叉口间距进行调整,使得路段绿波设计速度统一转换为干道绿波设计速度V;在交叉口间距调整过程中,交叉口Ip与基准交叉口I1的调整间距Dp由式(2)进行计算:
Figure FDA0003269208530000021
S104、确定速度优化范围;
在保持初始公共信号周期C1不变的情况下,干道绿波调整速度Vw应满足式(3):
Figure FDA0003269208530000022
S105、初始干道绿波速度的设置;
在此在保持初始公共信号周期C1不变的情况下,通过将干道绿波调整速度取值范围等分为3段,分别将每段速度范围的中值V·(Cmin+1/6·ΔC)/C1、V·(Cmin+1/2·ΔC)/C1、V·(Cmin+5/6·ΔC)/C1设置为3个初始干道绿波速度值VI1、VI2、VI3,其中ΔC为公共信号周期优化范围,即最大允许公共信号周期Cmax与最小允许公共信号周期Cmin之差;通过分别搜索和比选不同初始干道绿波速度下的交叉口最佳相序组合方案,实现相序组合、公共信号周期及相位差的初始综合优化;
S106、非基准交叉口正向初始绿灯中心时刻点的确定;
针对第x个初始干道绿波速度值VIx,通过坐标原点作正向绿波轨迹特征线
Figure FDA0003269208530000023
斜率为初始干道绿波速度值VIx的倒数,将正向绿波轨迹特征线
Figure FDA0003269208530000024
与交叉口Ip时间线的交点
Figure FDA0003269208530000025
记为交叉口Ip相位a的初始绿灯中心时刻点;
S107、非基准交叉口反向初始绿灯中心时刻点的确定;
针对初始干道绿波速度值VIx,对于交叉口I1的第i种相序方案,过交叉口I1相位b的绿灯中心时刻点作反向绿波轨迹特征线
Figure FDA0003269208530000026
斜率为初始干道绿波速度值VIx倒数的相反数;将反向绿波轨迹特征线
Figure FDA0003269208530000027
与交叉口Ip时间线的交点经垂直平移若干个初始公共信号周期C1后紧随交叉口Ip相位a的初始绿灯中心时刻点
Figure FDA0003269208530000028
的时刻点
Figure FDA0003269208530000029
记为交叉口Ip相位b的初始绿灯中心时刻点;
S108、非基准交叉口正反向绿灯中心时刻点的初始优化;
当交叉口I1与交叉口Ip分别选择其第i种与第k种相序方案时,保证交叉口Ip相位a的调整后绿灯中心时刻点
Figure FDA00032692085300000210
与交叉口Ip相位b的调整后绿灯中心时刻点
Figure FDA00032692085300000211
的中点与调整前交叉口Ip相位a的初始绿灯中心时刻点
Figure FDA00032692085300000212
与交叉口Ip相位b的初始绿灯中心时刻点
Figure FDA00032692085300000213
的中点重合;
S109、各交叉口初始相序方案的确定;
考虑到应使各交叉口相位a、b的偏移量均等,故在交叉口I1的4种相序方案中选取干道偏移量ΔyIi最小的方案i*作为交叉口I1的初始相序方案,该方案所对应的各交叉口最佳相序方案即为其初始相序方案;干道偏移量ΔyIi应满足式(5),相序方案i*所对应的干道偏移量
Figure FDA00032692085300000319
应满足式(6):
ΔyIi=max(ΔyI(i,2),ΔyI(i,3)...ΔyI(i,n),0)-min(ΔyI(i,2),ΔyI(i,3)...ΔyI(i,n),0) (5)
Figure FDA00032692085300000320
S110、绿波轨迹特征线及干道调整速度的更新;
计算相序方案i*下各交叉口相位a的初始绿灯中心时刻点偏移距离等效调整量
Figure FDA00032692085300000321
如式(7)所示;根据偏移距离等效调整量
Figure FDA00032692085300000323
计算相序方案i*总的偏移距离等效调整量
Figure FDA00032692085300000322
如式(8)所示;在交叉口In相位a的初始绿灯中心时刻点
Figure FDA0003269208530000031
上叠加相序方案i*总的偏移距离等效调整量
Figure FDA00032692085300000324
生成调整点OA,其纵坐标记为yA
Figure FDA0003269208530000032
Figure FDA0003269208530000033
其中,
Figure FDA00032692085300000325
为Ip相位a的初始绿灯中心时刻点等效调整系数;连接坐标轴原点与调整点OA形成线
Figure FDA0003269208530000034
计算线
Figure FDA0003269208530000035
所对应的干道调整速度
Figure FDA0003269208530000036
如式(9)所示:
Figure FDA0003269208530000037
判断线
Figure FDA0003269208530000038
所对应的干道调整速度
Figure FDA0003269208530000039
是否在干道绿波调整速度优化范围内;若在,将线
Figure FDA00032692085300000310
赋予正向调整绿波轨迹特征线
Figure FDA00032692085300000311
将干道调整速度
Figure FDA00032692085300000312
赋予干道绿波调整速度
Figure FDA00032692085300000313
若不在,则保持正向绿波轨迹特征线不变,即正向调整绿波轨迹特征线
Figure FDA00032692085300000314
与正向绿波轨迹特征线
Figure FDA00032692085300000315
相同,干道绿波调整速度
Figure FDA00032692085300000316
与初始干道绿波速度VIx相等;
S111、干道绿波调整速度的初始优化;
分别计算不同初始干道绿波速度如VI1、VI2、VI3所对应的交叉口最佳相序组合方案及其双向绿波带宽总和,选取对应带宽最大的相序组合方案为初始优化方案,将对应的调整速度设置为干道绿波初始优化速度V0
3.根据权利要求2所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S107中,
当交叉口I1选择第i种相序方案时,将交叉口Ip相位a的初始绿灯中心时刻点
Figure FDA00032692085300000317
超前于交叉口Ip相位b的初始绿灯中心时刻点
Figure FDA00032692085300000318
的时长记为tI(i,p),定义正反向协调相位之间的间隙时间为ΔtI(i,p),其大小满足式(4):
Figure FDA0003269208530000041
4.根据权利要求2所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S108中,
当交叉口I1选择第i种相序方案时,将交叉口Ip选择第k种相序方案所产生的双向绿波带宽偏移量记为Δb(i,p,k),所对应的交叉口Ip相位a的初始绿灯中心时刻点
Figure FDA0003269208530000042
与交叉口Ip相位a的调整后绿灯中心时刻点
Figure FDA0003269208530000043
纵坐标之差记为纵向偏移距离ΔyI(i,p),通过比较正反向协调相位之间的间隙时间ΔtI(i,p)与相位c绿灯时间tcp和相位d绿灯时间tdp之间的关系,判断交叉口Ip的最佳初始相序方案,并计算纵向偏移距离ΔyI(i,p)
5.根据权利要求1所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S2具体为:
S201、在每一轮的迭代优化过程中,首先初始化布尔型迭代优化判断变量F=0;然后依次执行相序再优化、信号周期再优化和相位差再优化步骤,若当前方案满足任意一种再优化条件,则令迭代优化判断变量F=1,并通过判断进入下一轮迭代优化,若当前方案不满足任何一种再优化条件,即迭代优化判断变量F保持为0,则迭代优化过程终止,输出迭代优化后的相序组合、公共信号周期和相位差的最优设计方案;
S202、若交叉口Ip为正向绿波带的上限瓶颈交叉口,则其对应的瓶颈节点记为
Figure FDA0003269208530000044
若交叉口Ip为正向绿波带的下限瓶颈交叉口,则其对应的瓶颈节点记为
Figure FDA0003269208530000045
若交叉口Ip为反向绿波带的上限瓶颈交叉口,则其对应的上限瓶颈节点记为
Figure FDA0003269208530000046
若交叉口Ip为反向绿波带的下限瓶颈交叉口,则其对应的上限瓶颈节点记为
Figure FDA0003269208530000047
将第m次相序再优化判定所得的正向绿波带的上限瓶颈交叉口纳入集合
Figure FDA0003269208530000048
正向绿波带的下限瓶颈交叉口纳入集合
Figure FDA0003269208530000049
反向绿波带的上限瓶颈交叉口纳入集合
Figure FDA00032692085300000410
反向绿波带的下限瓶颈交叉口纳入集合
Figure FDA00032692085300000411
并将集合中各元素按交叉口编号升序排序;
在第m次相序再优化判定中,根据集合
Figure FDA00032692085300000412
Figure FDA00032692085300000413
包含交叉口情况判断是否存在交叉口Ij满足相序再优化条件,若满足再优化判定条件及要求,则按照交叉口编号从小到大依次为满足条件的交叉口进行相序再优化,并注意在相序调整过程中保证交叉口相位a、b的绿灯中心时刻点的中点不变,且遵循逐步优化原则进行再优化设计,即在每一次相序优化调整过程中优先选择协调相位间隙时间调整量较小的可选优化方案;若不满足再优化判定条件及要求,则结束本轮相序再优化过程。
6.根据权利要求5所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S202中,所述相序再优化判定条件及要求为:
条件1:若
Figure FDA00032692085300000414
即存在交叉口Ij同时为正向绿波带的上限瓶颈交叉口与反向绿波带的下限瓶颈交叉口;
若交叉口Ij相序为a-b-c-d或a-b-d-c,则令其第m次相序再优化判定变量kP(m,j)=0;若交叉口Ij相序为a-c-b-d,当tcj≤tdj时,将交叉口Ij的相序调整为a-b-c-d,当tcj>tdj时,将交叉口Ij的相序调整为a-d-b-c;若交叉口Ij相序为a-d-b-c,当tcj<tdj时,将交叉口Ij的相序调整为a-c-b-d,当tcj≥tdj时,将交叉口Ij的相序调整为a-b-c-d;若交叉口Ij相序为a-c-d-b或a-d-c-b,当tcj≤tdj时,将交叉口Ij的相序调整为a-d-b-c,当tcj>tdj时,将交叉口Ij的相序调整为a-c-b-d;
根据以上相序调换情况,计算调整后的正向绿波带宽
Figure FDA0003269208530000051
与反向绿波带宽
Figure FDA0003269208530000052
计算交叉口Ij第m次相序再优化判定变量kP(m,j)的取值如式(10)所示:
Figure FDA0003269208530000053
若交叉口Ij第m次相序再优化判定变量kP(m,j)=0,则不变更该交叉口的相序设置情况,继续对满足条件1的下一个交叉口进行相序再优化判断,直至所有满足条件1的交叉口的相序再优化判定变量均为零,则继续对满足条件2的交叉口进行相序再优化判断;若交叉口Ij第m次相序再优化判定变量kP(m,j)=1,则根据优化调整结果更新交叉口Ij的相序设置、干道的正向绿波带宽
Figure FDA0003269208530000054
与反向绿波带宽
Figure FDA0003269208530000055
以及瓶颈交叉口集合
Figure FDA0003269208530000056
并将迭代优化判断变量F=1,结束本次判断后重新开始第m+1次交叉口相序再优化判断;
条件2:
Figure FDA0003269208530000057
即存在交叉口Ij同时为正向绿波带的下限瓶颈交叉口与反向绿波带的上限瓶颈交叉口;
若交叉口Ij相序为a-b-c-d或a-b-d-c,当tcj≤tdj时,将交叉口Ij的相序调整为a-c-b-d,当tcj>tdj时,将交叉口Ij的相序调整为a-d-b-c;若交叉口Ij相序为a-c-b-d,当tcj<tdj时,将交叉口Ij的相序调整为a-d-b-c,当tcj≥tdj时,将交叉口Ij的相序调整为a-c-d-b或a-d-c-b;若交叉口Ij相序为a-d-b-c,当tcj≤tdj时,将交叉口Ij的相序调整为a-c-d-b或a-d-c-b,当tcj>tdj时,将交叉口Ij的相序调整为a-c-b-d;若交叉口Ij相序为a-c-d-b或a-d-c-b时,则令其交叉口Ij第m次相序再优化判定变量kP(m,j)=0;
同样,根据以上相序调换情况,计算调整后的正向绿波带宽
Figure FDA0003269208530000058
与反向绿波带宽
Figure FDA0003269208530000059
计算交叉口Ij第m次相序再优化判定变量kP(m,j)的取值如式(10)所示;
若交叉口Ij第m次相序再优化判定变量kP(m,j)=0,则不变更该交叉口的相序设置情况,继续对满足条件2的下一个交叉口进行相序再优化判断,直至所有满足条件2的交叉口的相序再优化判定变量均为零,则结束相序再优化判断;若交叉口Ij第m次相序再优化判定变量kP(m,j)=1,则根据优化调整结果更新交叉口Ij的相序设置、干道的正向绿波带宽
Figure FDA00032692085300000510
与反向绿波带宽
Figure FDA0003269208530000061
以及瓶颈交叉口集合
Figure FDA0003269208530000062
并将迭代优化判断变量F=1,结束本次判断后重新开始第m+1次交叉口相序再优化判断。
7.根据权利要求1所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S3具体为:
S301、在信号周期再优化过程中,假定经过第m次绿波轨迹特征线旋转变换后得到的正向绿波带宽与反向绿波带宽为
Figure FDA0003269208530000063
上下限绿波轨迹特征线为
Figure FDA0003269208530000064
上下限瓶颈交叉口集合为
Figure FDA0003269208530000065
S302、绿波轨迹特征线旋转优化判断;
若当前集合
Figure FDA0003269208530000066
以及
Figure FDA0003269208530000067
Figure FDA0003269208530000068
满足以下情况之一,则进行第m次信号周期再优化;
情况1:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,且反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游;假定
Figure FDA0003269208530000069
均满足j<l,且
Figure FDA00032692085300000610
均满足g>h,减小干道绿波调整速度使得双向绿波总带宽增大;
情况2:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,且反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游;假定
Figure FDA00032692085300000611
均满足j>l,且
Figure FDA00032692085300000612
均满足g<h,增大干道绿波调整速度使得双向绿波总带宽增大;
情况3:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure FDA00032692085300000613
假定
Figure FDA00032692085300000614
Figure FDA00032692085300000615
均满足j<l,且
Figure FDA00032692085300000616
减小干道绿波调整速度使得双向绿波总带宽增大;
情况4:正向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,反向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的上游,且
Figure FDA00032692085300000617
假定
Figure FDA00032692085300000618
Figure FDA00032692085300000619
均满足j>l,且
Figure FDA00032692085300000620
增大干道绿波调整速度使得双向绿波总带宽增大;
情况5:反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的上游,正向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的下游,且
Figure FDA00032692085300000621
假定
Figure FDA00032692085300000622
Figure FDA00032692085300000623
均满足g<h,且
Figure FDA00032692085300000624
增大干道绿波调整速度使得双向绿波总带宽增大;
情况6:反向绿波带的上限瓶颈交叉口均位于下限瓶颈交叉口的下游,正向绿波带的上限瓶颈交叉口并不都位于下限瓶颈交叉口的上游,且
Figure FDA00032692085300000625
假定
Figure FDA00032692085300000626
Figure FDA00032692085300000627
均满足g>h,且
Figure FDA00032692085300000628
减小干道绿波调整速度使得双向绿波总带宽增大;
S303、确定正反向绿波带上下限旋转点;
对于正向绿波带的上下限旋转点,当增大干道绿波调整速度时,选取交叉口
Figure FDA0003269208530000071
交叉口
Figure FDA0003269208530000072
保证
Figure FDA0003269208530000073
均满足j≤g、l≥h,以交叉口Ij的上限瓶颈节点
Figure FDA0003269208530000074
与交叉口Il的下限瓶颈节点
Figure FDA0003269208530000075
分别作为正向绿波带的上下限旋转点;当减小干道绿波调整速度时,选取交叉口
Figure FDA0003269208530000076
交叉口
Figure FDA0003269208530000077
保证
Figure FDA0003269208530000078
均满足j≥g、l≤h,以交叉口Ij的上限瓶颈节点
Figure FDA0003269208530000079
与交叉口Il的下限瓶颈节点
Figure FDA00032692085300000710
分别作为正向绿波带的上下限旋转点;
对于反向绿波带的上下限旋转点,当增大干道绿波调整速度时,选取交叉口
Figure FDA00032692085300000711
交叉口
Figure FDA00032692085300000712
保证
Figure FDA00032692085300000713
均满足q≥s、r≤e,以交叉口Iq的上限瓶颈节点
Figure FDA00032692085300000714
与交叉口Ir的下限瓶颈节点
Figure FDA00032692085300000715
分别作为反向绿波带的上下限旋转点;当减小干道绿波调整速度时,选取交叉口
Figure FDA00032692085300000716
交叉口
Figure FDA00032692085300000717
保证
Figure FDA00032692085300000718
均满足q≤s、r≥e,以交叉口Iq的上限瓶颈节点
Figure FDA00032692085300000719
与交叉口Ir的下限瓶颈节点
Figure FDA00032692085300000720
分别作为反向绿波带的上下限旋转点;
S304、确定旋转角度;
分别以正反向绿波带的上下限旋转点作为端点,计算与其它交叉口特征时刻点所构成的旋转角度,综合确定旋转变换后的干道绿波调整速度;
假设交叉口If被正向绿波带的上限绿波轨迹特征线
Figure FDA00032692085300000721
穿过的相位a的绿灯结束时刻点为
Figure FDA00032692085300000722
交叉口If被正向绿波带的下限绿波轨迹特征线
Figure FDA00032692085300000723
穿过的相位a的绿灯起始时刻点为
Figure FDA00032692085300000724
交叉口If被反向绿波带的上限绿波轨迹特征线
Figure FDA00032692085300000725
穿过的相位b的绿灯结束时刻点为
Figure FDA00032692085300000726
交叉口If被反向绿波带的下限绿波轨迹特征线
Figure FDA00032692085300000727
穿过的相位b的绿灯起始时刻点为
Figure FDA00032692085300000728
连接点
Figure FDA00032692085300000729
Figure FDA00032692085300000730
构成的旋转线
Figure FDA00032692085300000731
所对应的调整速度
Figure FDA00032692085300000732
为:
Figure FDA00032692085300000733
连接点
Figure FDA00032692085300000734
Figure FDA00032692085300000735
构成的旋转线
Figure FDA00032692085300000736
所对应的调整速度
Figure FDA00032692085300000737
为:
Figure FDA00032692085300000738
连接点
Figure FDA00032692085300000739
Figure FDA00032692085300000740
构成的旋转线
Figure FDA00032692085300000741
所对应的调整速度
Figure FDA00032692085300000742
为:
Figure FDA00032692085300000743
连接点
Figure FDA00032692085300000744
Figure FDA00032692085300000745
构成的旋转线
Figure FDA00032692085300000746
所对应的调整速度
Figure FDA00032692085300000747
为:
Figure FDA00032692085300000748
式中,
Figure FDA00032692085300000749
分别为点
Figure FDA00032692085300000750
Figure FDA0003269208530000081
的纵坐标;
S305、更新上下限瓶颈交叉口集合;
根据干道绿波调整速度Vm在旋转点进行旋转变换,得到更新的正反向绿波带的上下限绿波轨迹特征线,在进入第m+1次旋转变换前,根据上下限绿波轨迹特征线
Figure FDA0003269208530000082
Figure FDA0003269208530000083
确定正反向绿波带的上下限瓶颈交叉口集合,并对应更新为集合
Figure FDA0003269208530000084
Figure FDA0003269208530000085
S306、最佳公共信号周期计算;
每一次完成绿波轨迹特征线旋转变换后,根据优化的干道绿波调整速度VB,利用时距图中时间与速度的反比关系,更新计算出干道绿波设计速度V所对应的最佳公共信号周期CB,如式(15)所示:
Figure FDA0003269208530000086
8.根据权利要求7所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S301中,在进行第m次旋转变换前,首先需要根据集合
Figure FDA0003269208530000087
判断是否满足进行旋转变换的条件,若满足,则根据满足条件确定绿波轨迹特征线的旋转角度,完成此次旋转变换,并将迭代优化判断变量F=1,进入第m+1次旋转变换优化过程;若不满足,则停止旋转变换,完成本轮信号周期再优化。
9.根据权利要求7所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S304中,为了确定旋转角度,需要依次连接符合要求的时刻点构成旋转线,并判断旋转线所对应的调整速度是否处于绿波调整速度范围,将符合条件的调整速度纳入第m次旋转变换的可选车速集合SVm;对于减小干道绿波调整速度的情况1、3、6,选取可选车速集合SVm中的最大值作为第m次绿波轨迹特征线旋转变换所确定的干道绿波调整速度Vm;对于增大干道绿波调整速度的情况2、4、5,选取可选车速集合SVm中的最小值作为第m次绿波轨迹特征线旋转变换所确定的干道绿波调整速度Vm不同情况下符合要求的连接点。
10.根据权利要求1所述的一种适于进口单放的双向绿波带迭代优化图解方法,其特征在于,步骤S4具体为:
S401、将坐标系原点所在时刻点定义为相位差零点,在交叉口相位差再优化的第m次优化判断中,将交叉口Ip第一个相位a的绿灯起始时刻点与相位差零点的时间差定义为交叉口Ip的相位差O(m,p);将正反向绿波带的上下限瓶颈交叉口分别纳入集合
Figure FDA0003269208530000088
Figure FDA0003269208530000089
并将集合中各元素按交叉口编号升序排序;将正反向绿波带的上下限绿波轨迹特征线依次记为
Figure FDA00032692085300000810
根据瓶颈交叉口种类和交叉口相位差再优化判定矩阵,判断当前种类瓶颈交叉口是否符合相位差再优化条件,若符合,上移或下移相位a绿灯起始时刻点实现优化,更新所有满足条件的交叉口Ij的相位差O(m,j),完成交叉口相位差的第m次再优化,并将迭代优化判断变量F=1,再重新开始第m+1次再优化判断;若不符合,继续进行第m次中下一种类型瓶颈交叉口的相位差再优化优化判断,直至瓶颈交叉口集合中所有交叉口均无法进行相位差再优化,则停止本轮相位差再优化;
S402、交叉口相位差再优化判定矩阵;
在第m次交叉口相位差再优化判断过程中,对于瓶颈交叉口Ij构建一个2×2的相位差优化判定矩阵
Figure FDA0003269208530000091
在判定矩阵M(m,j)中,元素a1,1、a1,2分别表示交叉口Ij是否为正向、反向绿波带的上限瓶颈交叉口;元素a2,1、a2,2分别表示交叉口Ij是否为正向、反向绿波带的下限瓶颈交叉口;元素ay,z取1表示是瓶颈交叉口,否则取0;
S403、正向绿波带上限瓶颈交叉口优化判定;
Figure FDA0003269208530000092
的相位差再优化判定矩阵M(m,j)均为
Figure FDA0003269208530000093
则通过适当增大所有正向绿波带上限瓶颈交叉口的相位差增大总的绿波带宽;将正向绿波带上限瓶颈交叉口Ij相位a的上移容许量记为
Figure FDA0003269208530000094
相位b的上移容许量记为
Figure FDA0003269208530000095
更新交叉口Ij的相位差O(m,j)如式(16)所示:
Figure FDA0003269208530000096
更新所有满足条件的交叉口相位差、瓶颈交叉口集合、正反向绿波带宽以及上下限绿波轨迹特征线;
当正向绿波带上限瓶颈交叉口优化判断条件不满足时,令正向绿波带上限瓶颈交叉口判定变量
Figure FDA0003269208530000097
为0,进入下一种类型瓶颈交叉口的优化判定;
S404、正向绿波带下限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure FDA0003269208530000098
的M(m,j)均为
Figure FDA0003269208530000099
则通过适当减小所有正向绿波带下限瓶颈交叉口的相位差增大总的绿波带宽;将正向绿波带下限瓶颈交叉口Ij相位a的下移容许量记为
Figure FDA00032692085300000910
相位b的下移容许量记为
Figure FDA00032692085300000911
更新交叉口Ij的相位差O(m,j)如式(17)所示:
Figure FDA00032692085300000912
当正向绿波带下限瓶颈交叉口优化判断条件不满足时,令正向绿波带下限瓶颈交叉口判定变量
Figure FDA00032692085300000913
为0,进入下一种类型瓶颈交叉口的优化判定;
S405、反向绿波带上限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure FDA0003269208530000101
的M(m,j)均为
Figure FDA0003269208530000102
则通过适当增大所有反向绿波带上限瓶颈交叉口的相位差增大总的绿波带宽;将反向绿波带上限瓶颈交叉口Ij相位a的上移容许量记为
Figure FDA0003269208530000103
相位b的上移容许量记为
Figure FDA0003269208530000104
更新交叉口Ij的相位差O(m,j)如式(18)所示:
Figure FDA0003269208530000105
当反向绿波带上限瓶颈交叉口优化判断条件不满足时,令反向绿波带上限瓶颈交叉口判定变量
Figure FDA0003269208530000106
为0,进入下一种类型瓶颈交叉口的优化判定;
S406、反向绿波带下限瓶颈交叉口优化判定;
若瓶颈交叉口判定变量
Figure FDA0003269208530000107
的M(m,j)均为
Figure FDA0003269208530000108
则通过适当减小所有反向绿波带下限瓶颈交叉口的相位差增大总的绿波带宽;将反向绿波带下限瓶颈交叉口Ij相位a的下移容许量记为
Figure FDA0003269208530000109
相位b的下移容许量记为
Figure FDA00032692085300001010
更新交叉口Ij的相位差O(m,j)如式(19)所示:
Figure FDA00032692085300001011
当反向绿波带下限瓶颈交叉口优化判断条件不满足时,令反向绿波带下限瓶颈交叉口判定变量
Figure FDA00032692085300001012
为0,结束相位差再优化判定;
S407、依次执行相序再优化、信号周期再优化和相位差再优化步骤后,若此时迭代优化判断变量F=1,进入下一轮迭代优化,返回步骤S2,若此时迭代优化判断变量F=0,则迭代优化过程终止,输出迭代优化后的相序组合、公共信号周期和相位差的最佳设计方案。
CN202111096594.7A 2021-09-18 2021-09-18 一种适于进口单放的双向绿波带迭代优化图解方法 Active CN113781804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111096594.7A CN113781804B (zh) 2021-09-18 2021-09-18 一种适于进口单放的双向绿波带迭代优化图解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111096594.7A CN113781804B (zh) 2021-09-18 2021-09-18 一种适于进口单放的双向绿波带迭代优化图解方法

Publications (2)

Publication Number Publication Date
CN113781804A true CN113781804A (zh) 2021-12-10
CN113781804B CN113781804B (zh) 2022-07-26

Family

ID=78851978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111096594.7A Active CN113781804B (zh) 2021-09-18 2021-09-18 一种适于进口单放的双向绿波带迭代优化图解方法

Country Status (1)

Country Link
CN (1) CN113781804B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114677847A (zh) * 2022-04-13 2022-06-28 华南理工大学 一种基于迭代优化的区域绿波协调方案求解方法
CN115512547A (zh) * 2022-10-08 2022-12-23 南通大学 一种相位方案通用型路网绿波协调控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447131A (zh) * 2008-12-19 2009-06-03 华南理工大学 一种进口单独放行方式下的干道双向绿波协调控制方法
CN103559797A (zh) * 2013-10-21 2014-02-05 华南理工大学 一种相位通用型干道双向绿波协调控制方法
CN103794064A (zh) * 2014-01-16 2014-05-14 同济大学 直观的主干道若干十字路口双向绿波带的实现方法
CN108877246A (zh) * 2018-07-25 2018-11-23 公安部交通管理科学研究所 一种干线双向绿波协调参数的自动计算系统及其计算方法
CN110689737A (zh) * 2019-09-30 2020-01-14 华南理工大学 寻求最大双向绿波带宽的干道协调相位绿灯时间优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447131A (zh) * 2008-12-19 2009-06-03 华南理工大学 一种进口单独放行方式下的干道双向绿波协调控制方法
CN103559797A (zh) * 2013-10-21 2014-02-05 华南理工大学 一种相位通用型干道双向绿波协调控制方法
CN103794064A (zh) * 2014-01-16 2014-05-14 同济大学 直观的主干道若干十字路口双向绿波带的实现方法
CN108877246A (zh) * 2018-07-25 2018-11-23 公安部交通管理科学研究所 一种干线双向绿波协调参数的自动计算系统及其计算方法
CN110689737A (zh) * 2019-09-30 2020-01-14 华南理工大学 寻求最大双向绿波带宽的干道协调相位绿灯时间优化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
卢凯,等: "协调控制数解算法", 《交通运输工程学报》 *
卢凯,等: "进口单独放行方式下的干道双向绿波协调控制数解算法", 《中国公路学报》 *
卢凯,等: "非对称通行条件下的双向绿波协调控制数解算法", 《中国公路学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114677847A (zh) * 2022-04-13 2022-06-28 华南理工大学 一种基于迭代优化的区域绿波协调方案求解方法
CN114677847B (zh) * 2022-04-13 2023-05-23 华南理工大学 一种基于迭代优化的区域绿波协调方案求解方法
CN115512547A (zh) * 2022-10-08 2022-12-23 南通大学 一种相位方案通用型路网绿波协调控制方法
CN115512547B (zh) * 2022-10-08 2024-01-05 南通大学 一种相位方案通用型路网绿波协调控制方法

Also Published As

Publication number Publication date
CN113781804B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN113781804B (zh) 一种适于进口单放的双向绿波带迭代优化图解方法
CN109785619B (zh) 区域交通信号协调优化控制系统及其控制方法
CN108877246B (zh) 一种干线双向绿波协调参数的自动计算系统及其计算方法
CA2224745C (en) Route generation in a vehicle navigation system
CN111081041B (zh) 一种面向交通流向的区域协调控制方法
CN111915894B (zh) 基于深度强化学习的可变车道及交通信号协同控制方法
CN106683450B (zh) 一种城市信号控制交叉口群关键路径识别方法
CN106023611B (zh) 一种两段式干线协调信号控制优化方法
CN110047303B (zh) 提高双向绿波控制中绿波带带宽的相位相序调整方法
CN108538065A (zh) 一种基于自适应迭代学习控制的城市主干道协调控制方法
CN103824446A (zh) 一种子区多交叉口群决策控制方法
CN108389400B (zh) 一种利用交叉口右侧直行车道左转的控制方法
CN112991800B (zh) 基于角度限制和双向搜索的城市路网最短路径获取方法
CN112435498B (zh) 一种基于方向性诱导的城市路网最短路径获取方法
CN111785046B (zh) 带有协调路径优选功能的干道t型交叉口群绿波协调方法
CN109523808A (zh) 一种移位左转交叉口的渠化优化方法
CN114093177B (zh) 一种基于绿波轨迹特征的干道双向绿波协调设计方法
CN113593228A (zh) 一种高速公路瓶颈区域自动驾驶协同控制方法
CN110400472B (zh) 基于交通流距离的道路交叉口交通信号相位设计方法
CN111126687A (zh) 一种交通信号的单点离线优化系统及方法
CN114677847A (zh) 一种基于迭代优化的区域绿波协调方案求解方法
CN112356836A (zh) 一种保障自动驾驶交叉口通行安全的关键冲突点确定方法
CN110969846B (zh) 一种基于双向带宽的和最大的相位差优化方法
CN111739316A (zh) 一种对称放行方式下的干道双向绿波协调作图设计方法
CN113781768B (zh) 一种基于储备通行能力的热点片区交通组织控制协同方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant