CN113781259B - 一种风电场测风塔数据插补方法及系统 - Google Patents

一种风电场测风塔数据插补方法及系统 Download PDF

Info

Publication number
CN113781259B
CN113781259B CN202111058640.4A CN202111058640A CN113781259B CN 113781259 B CN113781259 B CN 113781259B CN 202111058640 A CN202111058640 A CN 202111058640A CN 113781259 B CN113781259 B CN 113781259B
Authority
CN
China
Prior art keywords
data
missing
interpolation
wind
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111058640.4A
Other languages
English (en)
Other versions
CN113781259A (zh
Inventor
朱志成
包大恩
岳捷
郭海思
孟元
陈晓军
陈欣
乔帅
史书睿
周冉冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyuan Beijing New Energy Engineering Technology Co ltd
Original Assignee
Zhongneng Power Tech Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongneng Power Tech Development Co Ltd filed Critical Zhongneng Power Tech Development Co Ltd
Priority to CN202111058640.4A priority Critical patent/CN113781259B/zh
Publication of CN113781259A publication Critical patent/CN113781259A/zh
Application granted granted Critical
Publication of CN113781259B publication Critical patent/CN113781259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2462Approximate or statistical queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2474Sequence data queries, e.g. querying versioned data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Wind Motors (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种风电场测风塔数据插补方法及系统,该方法包括判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补。本申请提供的风电场测风塔数据插补方法,综合了多元时间序列数据分析、大数据人工智能数据分析、工况辨识及深度学习的基础上形成。利用多元时间序列数据分析、大数据人工智能数据分析、工况辨识和深度学习算法对缺失的测风塔数据进行实时插补,方法切实可行,结论合理,有助于提升风电场测风塔数据完整度,有效降低因数据缺失导致的电网考核,为后续基于数据的分析应用奠定了基础。

Description

一种风电场测风塔数据插补方法及系统
技术领域
本发明涉及风电场数据处理技术领域,特别是涉及一种利用多元时间序列数据分析、大数据人工智能数据分析、工况辨识及深度学习的基础上的对风电场测风塔数据插补方法及系统。
背景技术
近年来风电装机快速增长,新能源发电占比逐渐提高,新能源发电特别是风力发电的发展受到了广泛的关注。发展风电成为了减少国民经济对化石能源的依赖、解决能源生产与消费之间的矛盾和减少温室气体排放保持生态平衡的重要途径。随着资源与环境双重压力的持续增大,发展风力发电已成为我国甚至是国际未来能源利用的发展方向。
在风电场运行过程中,测风塔作为风电场的基础数据设备,其数据具有重要功能,对风电场的风功率预测业务、气象数据分析等有重要意义。但是测风塔因光电转化器异常、传感器故障、光纤环网通讯故障、数据采集接口故障、采集软硬件宕机等情况影响,极易造成测风塔数据不完整、数据错误等问题,数据的质量问题对风电场数据监视、风功率预测业务处理和数据分析带来了一定的隐患。
发明内容
本发明提供了一种风电场测风塔数据插补方法及系统。
本发明提供了如下方案:
一种风电场测风塔数据插补方法,包括:
判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;
判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补。
优选地:所述环境类数据包括测风塔10米的环境温度数据、测风塔10米的环境湿度数据、测风塔10米的环境压强数据。
优选地:利用环境类数据作为基础,通过时间序列选取气象数据中最新批次的预报数据找到相关性最高的2组数据作为插补基础数据;
选取所述插补基础数据中在需插补的数据时间段内的环境数据计算均值用来对该时间段内的环境类数据进行实时插补。
优选地:所述利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补,包括:
建立基于PCA的机器学习模型,综合时间序列,分别选取测风塔临近机组中的最大风向追踪区、恒转速区。
优选地:选取测风塔临近的风机机组数据中在数据缺失时段的同一工况下的数据;
对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;
将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据对基础类数据进行实时插补。
优选地:所述对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;包括:
利用循环神经网络作为EM算法的生成器和判别器。
优选地:所述基于气象预测数据结合Weather Research and Forecasting模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补,包括:
判断最新批次的气象数据是否正常获取,若最新批次气象数据获取失败,则选取上一批次气象数据作为基础数据;
利用WRF模式选取出最新数据后,制定NCEP集合预报的统计修正方案,根据数据结果对测风塔基础数据进行实时插补。
优选地:选取上一批次气象数据作为基础数据;包括:
WRF模式包括若干可独立执行自身功能的模块,所述模块包括对气象网格场进行前处理及地形匹配的WRF Preprocessing System、对观测数据进行同化的WRF DataAssimilation以及由对网格场进行初始化的real和执行模式积分的Advanced ResearchWRF model两部分组成的模式主体。
一种风电场测风塔数据插补系统,包括:
环境类数据插补单元,用于判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;
基础类数据插补单元,用于判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补。
优选地:环境类插补基础数据处理子单元,用于利用环境类数据作为基础,通过时间序列选取气象数据中最新批次的预报数据找到相关性最高的2组数据作为插补基础数据;选取所述插补基础数据中在需插补的数据时间段内的环境数据计算均值用来对该时间段内的环境类数据进行实时插补;
基础类缺失数据回归重建子单元,用于选取测风塔临近的风机机组数据中在数据缺失时段的同一工况下的数据;对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据对基础类数据进行实时插补。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
通过本发明,可以实现一种风电场测风塔数据插补方法及系统,在一种实现方式下,该方法可以包括判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补。本申请提供的风电场测风塔数据插补方法,综合了多元时间序列数据分析、大数据人工智能数据分析、工况辨识及深度学习的基础上形成。利用多元时间序列数据分析、大数据人工智能数据分析、工况辨识和深度学习算法对缺失的测风塔数据进行实时插补,方法切实可行,结论合理,有助于提升风电场测风塔数据完整度,有效降低因数据缺失导致的电网考核,为后续基于数据的分析应用奠定了基础。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种风电场测风塔数据插补方法的流程图;
图2是本发明实施例提供的基于WRF模式环境类数据(气压)插补结果曲线图;
图3是本发明实施例提供的基于WRF模式环境类数据(温度)插补结果曲线图;
图4是本发明实施例提供的基于WRF模式环境类数据(湿度)插补结果曲线图;
图5是本发明实施例提供的基于NCEP集合预报处理模块示意图;
图6是本发明实施例提供的基于PCA模型(风向)插补结果曲线图;
图7是本发明实施例提供的基于PCA模型(风速)插补结果曲线图;
图8是本发明实施例提供的基于WRF模式模型示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
在多元时间序列中,由于经过数据采集、传输、接口等原因造成数据缺失,为提升数据质量,将缺失的数据进行实时插补,为后续基于数据的分析应用奠定了基础。
将缺失分为环境类数据和基础类数据,其中环境类数据分为:环境温度、环境湿度、环境压强。
测风塔基础类数据的内部状态参数,如下表1所示。
表1 常用测风塔基础类数据
10米风速 10米风向 30米风速 30米风向
50米风速 50米风向 70米风速 70米风向
轮毂高度风速 轮毂高度风向
本申请利用多元时间序列数据分析、大数据人工智能数据分析、工况辨识及深度学习的基础上形成的风电场测风塔运行数据插补方法,方法切实可行,结论合理,有助于提升风电场测风塔数据完整度,对后续数据分析挖掘提供了准确可靠的数据基础。
实施例
参见图1,为本发明实施例提供的一种风电场测风塔数据插补方法,如图1所示,该方法可以包括:
判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;
判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补。
所述环境类数据包括测风塔10米的环境温度数据、测风塔10米的环境湿度数据、测风塔10米的环境压强数据。
利用环境类数据作为基础,通过时间序列选取气象数据中最新批次的预报数据找到相关性最高的2组数据作为插补基础数据;
选取所述插补基础数据中在需插补的数据时间段内的环境数据计算均值用来对该时间段内的环境类数据进行实时插补。
所述利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补,包括:
建立基于PCA的机器学习模型,综合时间序列,分别选取测风塔临近机组中的最大风向追踪区、恒转速区。
选取测风塔临近的风机机组数据中在数据缺失时段的同一工况下的数据;
对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;
将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据对基础类数据进行实时插补。
所述对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;包括:
利用循环神经网络作为EM算法的生成器和判别器。
所述基于气象预测数据结合Weather Research and Forecasting模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补,包括:
判断最新批次的气象数据是否正常获取,若最新批次气象数据获取失败,则选取上一批次气象数据作为基础数据;具体的,WRF模式包括若干可独立执行自身功能的模块,所述模块包括对气象网格场进行前处理及地形匹配的WRF Preprocessing System、对观测数据进行同化的WRF Data Assimilation以及由对网格场进行初始化的real和执行模式积分的Advanced Research WRF model两部分组成的模式主体。
利用WRF模式选取出最新数据后,制定NCEP集合预报的统计修正方案,根据数据结果对测风塔基础数据进行实时插补。
为了验证前面提出的方法的有效性和合理行,采取某风电场某测风塔的数据进行分析验证。具体方法步骤如下所示:
步骤1:将数据缺失分为环境类数据(环境温度、环境湿度、环境压强)缺失和基础类数据(10米、30米、50米、70米、轮毂高度风速和风向等)缺失。
首先,判断环境类数据是否缺失,若有缺失的话,利用数据缺失时间段的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法进行数据实时插补。具体包括如下步骤:
步骤1.1:利用环境类数据作为基础,通过时间序列选取气象数据中,最新批次的预报数据。找到相关性最高的2组数据作为插补基础数据。
设环境类数据{xt},其中t=1,2,3,...,n,假如需要插补i时刻到(i+m)时刻连续m个缺失值,选取数据到i时刻到(i+m)时刻m个数据,并分别计算m个时序数据的相关性得到相关性最高的2组环境类数据。
步骤1.2:将相似性最高的两台机组在需插补的数据时间段内的环境数据计算均值用来插补该时间段内环境类数据。
分别选取A机组和B机组i时刻到(i+m)时刻连续m个缺失值,{xA|i≤A≤(i+m)}和{xB|i≤B≤(i+m)},插补的m的时间序列数据为
步骤2:在测风塔基础数据中利用基于气象预测数据(WRF)模式,用NCEP集合预报的统计修正方案,对测风塔基础类数据进行插补。包含的数据有:
10米风向、30米风向、50米风向、70米风向、轮毂高度风向(使用最高层数据替代)
当只缺失一层数据时,如10米风向、30米风向、50米风向未缺失,70米风向缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对已有数据10米、30米、50米的风向数据分析,结合机器学习模型,得到插补数据的系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到70米的风向数据。其他层数据缺失同理计算。
当缺失两层数据时,如10米风向、30米风向未缺失,50米风向、70米风向缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对未缺失数据10米、30米风向数据分析,结合机器学习模型,得到插补数据的两个系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到50米、70米的风向数据。其他层数据缺失同理计算。
当缺失三层数据时,如10米风向未缺失,30米风向、50米风向、70米风向缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对未缺失数据10米风向数据分析,结合机器学习模型,得到插补数据的三个系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到30米、50米、70米的风向数据。其他层数据缺失同理计算。
当缺失四层数据时,如10米风向、30米风向、50米风向、70米风向缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对预测气象数据分析,结合机器学习模型,得到插补数据的四个系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到10米、30米、50米、70米的风向数据。其他层数据缺失同理计算。
10米风速、30米风速、50米风速、70米风速、轮毂高度风速(使用最高层数据替代)
当只缺失一层数据时,如10米风速、30米风速、50米风速未缺失,70米风速缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对已有数据10米、30米、50米的风速数据分析,结合机器学习模型,得到插补数据的系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到70米的风速数据。其他层数据缺失同理计算。
当缺失两层数据时,如10米风速、30米风速未缺失,50米风速、70米风速缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对未缺失数据10米、30米风速数据分析,结合机器学习模型,得到插补数据的两个系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到50米、70米的风速数据。其他层数据缺失同理计算。
当缺失三层数据时,如10米风速未缺失,30米风速、50米风速、70米风速缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对未缺失数据10米风速数据分析,结合机器学习模型,得到插补数据的三个系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到30米、50米、70米的风速数据。其他层数据缺失同理计算。
当缺失四层数据时,如10米风速、30米风速、50米风速、70米风速缺失,结合WRF模式,用NCEP集合预报的统计修正方案,通过对预测气象数据分析,结合机器学习模型,得到插补数据的四个系数,用所得系数乘以通过NCEP集合修正后的气象数据,得到10米、30米、50米、70米的风速数据。其他层数据缺失同理计算。
步骤3:判断临近风机机组数据是否缺失,若有缺失的,利用WRF模式,用NCEP集合预报的统计修正方案,同时参照机器学习等模型对测风塔基础类数据进行插补。具体包括如下步骤:
步骤3.1:判断最新批次的气象数据是否正常获取,如果无缺失,则进行下一环节。
步骤3.2:若最新批次气象数据获取失败,则可以选取上一批次气象数据作为基础数据。具体方法为:
基于(WRF)模式,WRF可由若干可独立执行自身功能的模块组成,其主要模块包括对气象网格场进行前处理及地形匹配的WRF Preprocessing System(WPS)、对观测数据进行同化的WRF Data Assimilation(WRFDA)、以及由对网格场进行初始化的real和执行模式积分的Advanced Research WRF(ARW)model两部分组成的模式主体。
利用WRF数据选取出最新数据后,NCEP集合预报的统计修正方案,优化数据质量,从而根据数据结果对测风塔基础数据进行实时插补。
最新气象数据选取当前批次为风速0.2m/s,风向173°。
风速多项式拟合函数为:
y=0.0891x5-1.7303x4+53.1521x3-419.0549x2+1103.3069x-1727.9022
风向多项式拟合函数为:
y=-0.1251x5+10.2699x4-201.1834x3+1032.3349x2-2355.6282x+9098.4123
步骤4:建立基于PCA的机器学习模型,综合时间序列,分别对测风塔临近机组中的最大风向追踪区、恒转速区等。
基于GAN的模式运行工况辨识模型输入为:风速、风向。
表2 GAN模式生成的数据运行工况的多维特征点
多维特征点 风速(m·s-1) 风向(°)
工况1 7.08 136
工况2 11.32 163
工况3 16.91 176
步骤5:在相同工况下选取对应数据,建立基于ICA人工智能模型进行数据插补,具体方法为:
步骤5.1:选取需测风塔数据插补的风机机组在数据时段的同一工况下数据。
设机测风塔基础类缺失的数据{xt},其中t=1,2,3,...,n。
在数据缺失时段的同一工况下的其中k=1,2,3,...,n。
步骤5.2:对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建。模型输入的是含有缺失值的时间序列数据,输出是完整的时间序列数据,考虑数据的时间属性,利用循环神经网络(Recurrent Neural Network,RNN)作为EM的生成器和判别器。
模型数据输入是:其中k=1,2,3,...,n
EM算法生成器输出的数据:{xk},其中k=1,2,3,...,n
步骤5.3:将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据。
插补的数据为:{xk},其中k=1,2,3,...,n。
总之,本申请提供的风电场测风塔数据插补方法,综合了多元时间序列数据分析、大数据人工智能数据分析、工况辨识及深度学习的基础上形成。利用多元时间序列数据分析、大数据人工智能数据分析、工况辨识和深度学习算法对缺失的测风塔数据进行实时插补,方法切实可行,结论合理,有助于提升风电场测风塔数据完整度,有效降低因数据缺失导致的电网考核,为后续基于数据的分析应用奠定了基础。
本申请实施例还可以提供一种风电场测风塔数据插补系统,该系统包括:
环境类数据插补单元,用于判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;
基础类数据插补单元,用于判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补。
具体的,环境类插补基础数据处理子单元,用于利用环境类数据作为基础,通过时间序列选取气象数据中最新批次的预报数据找到相关性最高的2组数据作为插补基础数据;选取所述插补基础数据中在需插补的数据时间段内的环境数据计算均值用来对该时间段内的环境类数据进行实时插补;
基础类缺失数据回归重建子单元,用于选取测风塔临近的风机机组数据中在数据缺失时段的同一工况下的数据;对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据对基础类数据进行实时插补。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (3)

1.一种风电场测风塔数据插补方法,其特征在于,包括:
判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;
判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补;
所述环境类数据包括测风塔10米的环境温度数据、测风塔10米的环境湿度数据、测风塔10米的环境压强数据;利用环境类数据作为基础,通过时间序列选取气象数据中最新批次的预报数据找到相关性最高的2组数据作为插补基础数据;
选取所述插补基础数据中在需插补的数据时间段内的环境数据计算均值用来对该时间段内的环境类数据进行实时插补;
所述利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补,包括:
建立基于PCA的机器学习模型,综合时间序列,分别选取测风塔临近机组中的最大风向追踪区、恒转速区;
选取测风塔临近的风机机组数据中在数据缺失时段的同一工况下的数据;
对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;利用循环神经网络作为EM算法的生成器和判别器;
将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据对基础类数据进行实时插补;
所述基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补,包括:
判断最新批次的气象数据是否正常获取,若最新批次气象数据获取失败,则选取上一批次气象数据作为基础数据;
利用WRF模式选取出最新数据后,制定NCEP集合预报的统计修正方案,根据数据结果对测风塔基础数据进行实时插补;
选取上一批次气象数据作为基础数据;包括:
所述WRF模式包括若干可独立执行自身功能的模块,所述模块包括对气象网格场进行前处理及地形匹配的天气预报模式预处理系统(WRF Preprocessing System)、对观测数据进行同化的天气预报模式数据同化模块(WRF Data Assimilation)以及由对网格场进行初始化的real和执行模式积分的改进的天气预报模式模型(Advanced Research WRF model)两部分组成的模式主体。
2.一种基于权利要求1所述方法的风电场测风塔数据插补系统,其特征在于,包括:
环境类数据插补单元,用于判断测风塔的环境类数据是否缺失,若环境类数据有缺失则利用数据缺失时间段内的气象预测数据作为基础数据,基于多元时间序列与大数据人工智能方法对环境类数据进行实时插补;
基础类数据插补单元,用于判断测风塔的基础类数据是否缺失,若基础类数据有缺失则判断测风塔临近的风机机组数据是否存在且符合逻辑,若存在且符合逻辑则利用测风塔临近的风机机组数据基于时间序列和机器学习方法对基础类数据进行实时插补;若测风塔临近的风机机组数据存在缺失,则基于气象预测数据结合WRF模式采用NCEP集合预报的统计修正方案,实现对测风塔基础数据缺失时段的基础类数据进行实时插补。
3.根据权利要求2所述的风电场测风塔数据插补系统,其特征在于,环境类插补基础数据处理子单元,用于利用环境类数据作为基础,通过时间序列选取气象数据中最新批次的预报数据找到相关性最高的2组数据作为插补基础数据;选取所述插补基础数据中在需插补的数据时间段内的环境数据计算均值用来对该时间段内的环境类数据进行实时插补;
基础类缺失数据回归重建子单元,用于选取测风塔临近的风机机组数据中在数据缺失时段的同一工况下的数据;对选取的临近风机机组数据建立基于EM算法对缺失数据进行回归重建;将数据缺失时间所生成的插补数据乘以对应系数作为需要插补的缺失数据对基础类数据进行实时插补。
CN202111058640.4A 2021-09-10 2021-09-10 一种风电场测风塔数据插补方法及系统 Active CN113781259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111058640.4A CN113781259B (zh) 2021-09-10 2021-09-10 一种风电场测风塔数据插补方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111058640.4A CN113781259B (zh) 2021-09-10 2021-09-10 一种风电场测风塔数据插补方法及系统

Publications (2)

Publication Number Publication Date
CN113781259A CN113781259A (zh) 2021-12-10
CN113781259B true CN113781259B (zh) 2023-12-01

Family

ID=78842180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111058640.4A Active CN113781259B (zh) 2021-09-10 2021-09-10 一种风电场测风塔数据插补方法及系统

Country Status (1)

Country Link
CN (1) CN113781259B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031378A (ja) * 2004-07-15 2006-02-02 Nippon Hoso Kyokai <Nhk> 時系列データ補完装置、その方法及びそのプログラム
CN105184072A (zh) * 2015-08-31 2015-12-23 中国华能集团清洁能源技术研究院有限公司 数据插补的方法和装置
CN107239856A (zh) * 2017-05-31 2017-10-10 华北电力大学 一种风向数据插补方法
CN108710689A (zh) * 2018-05-22 2018-10-26 中国华能集团清洁能源技术研究院有限公司 一种风电场气象数据管理系统及方法
CN111881420A (zh) * 2020-08-05 2020-11-03 华北电力大学 一种风电机组运行数据插补方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11113337B2 (en) * 2016-09-08 2021-09-07 Indian Institute Of Technology Bombay Method for imputing missed data in sensor data sequence with missing data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031378A (ja) * 2004-07-15 2006-02-02 Nippon Hoso Kyokai <Nhk> 時系列データ補完装置、その方法及びそのプログラム
CN105184072A (zh) * 2015-08-31 2015-12-23 中国华能集团清洁能源技术研究院有限公司 数据插补的方法和装置
CN107239856A (zh) * 2017-05-31 2017-10-10 华北电力大学 一种风向数据插补方法
CN108710689A (zh) * 2018-05-22 2018-10-26 中国华能集团清洁能源技术研究院有限公司 一种风电场气象数据管理系统及方法
CN111881420A (zh) * 2020-08-05 2020-11-03 华北电力大学 一种风电机组运行数据插补方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Effects of 2-m air temperature assimilation and a new near-surface observation operator on the NCEP Gridpoint statistical-interpolation system;Lee, Seung-Jae 等;ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES;第47卷(第4期);353-376 *
复杂山地下测风塔缺失测风数据插补订正方法的比较分析;张雪婷;陈正洪;许杨;孙朋杰;;风能(01);84-88 *
数值模拟在风电场设计中的应用研究;丛明;;风能(09);56-59 *
考虑测风数据缺失的短期风电功率预测算法;曾杰;陈晓科;;可再生能源(02);144-149 *
风电场缺失测风数据插补方法的分析;王远 等;可再生能源;第30卷(第3期);14-17+21 *

Also Published As

Publication number Publication date
CN113781259A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN112257941B (zh) 基于改进型Bi-LSTM的光伏电站短期功率预测方法
CN109002915B (zh) 基于Kmeans-GRA-Elman模型的光伏电站短期功率预测方法
CN111881420B (zh) 一种风电机组运行数据插补方法
CN114004139B (zh) 一种光伏发电功率预测方法
CN110533331B (zh) 一种基于输电线路数据挖掘的故障预警方法和系统
CN113657662B (zh) 一种基于数据融合的降尺度风电功率预测方法
CN115345076B (zh) 一种风速订正处理方法及装置
CN112989693A (zh) 一种基于ssa-gru-msar的风电功率预测方法
CN113052386A (zh) 基于随机森林算法的分布式光伏日发电量预测方法和装置
CN112580874A (zh) 一种基于随机森林算法和tcn的短期风电功率预测方法
CN112801332B (zh) 一种基于灰度共生矩阵的短期风速预测方法
Chen et al. Research on wind power prediction method based on convolutional neural network and genetic algorithm
CN109190845B (zh) 一种两阶段动态优化短期风电功率预测方法
CN117060407B (zh) 一种基于相似日划分的风电集群功率预测方法及系统
CN113781259B (zh) 一种风电场测风塔数据插补方法及系统
Kaushik et al. Performance Analysis of Regression Models in Solar PV Forecasting
Chen et al. A data interpolation method for missing irradiance data of photovoltaic power station
CN115544895A (zh) 光伏电站年出力保证率模型优化方法
CN116050072A (zh) 一种基于随机采样一致性的风电机组理论功率曲线识别方法和装置
CN115764861A (zh) 一种基于机器学习的风光一体化功率预测方法
CN114239920A (zh) 一种风电功率短期预测方法
CN111027816B (zh) 一种基于数据包络分析的光伏发电效率计算方法
Dou et al. Day-Ahead Correction of Numerical Weather Prediction Solar Irradiance Forecasts Based on Similar Day Analysis
Wang et al. Comparison of Artificial Intelligence-Based Power Curve Cleaning Algorithms for Wind Farms
Chen et al. Photovoltaic Power Prediction Method Based on Fluctuating Weather Identification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240304

Address after: F17, Block C, International Investment Building, No. 6-9, Fuchengmen North Street, Xicheng District, Beijing 100,034

Patentee after: Longyuan (Beijing) New Energy Engineering Technology Co.,Ltd.

Country or region after: China

Address before: Room 700, floor 7, east half, building 14, East Zone 3, No. 20, Chegongzhuang West Road, Haidian District, Beijing 100089

Patentee before: ZHONGNENG POWER-TECH DEVELOPMENT Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right