CN113779502B - Image processing evidence function estimation method based on correlation vector machine - Google Patents
Image processing evidence function estimation method based on correlation vector machine Download PDFInfo
- Publication number
- CN113779502B CN113779502B CN202110963746.2A CN202110963746A CN113779502B CN 113779502 B CN113779502 B CN 113779502B CN 202110963746 A CN202110963746 A CN 202110963746A CN 113779502 B CN113779502 B CN 113779502B
- Authority
- CN
- China
- Prior art keywords
- formula
- function
- vector
- image
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013598 vector Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000009826 distribution Methods 0.000 claims abstract description 34
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- 238000005457 optimization Methods 0.000 claims abstract description 6
- 230000006870 function Effects 0.000 claims description 44
- 230000002441 reversible effect Effects 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 3
- 238000010801 machine learning Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/17—Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Operations Research (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于相关向量机的图像处理证据函数估计方法。步骤1:将图像内的数据根据修正后的权参数先验形式,利用正态分布中均值与协方差,证明权参数的后验分布是正态分布;步骤2:将图像内的数据根据多变量泰勒公式、似然函数与权重的先验分布的乘积对权参数做积分得到证据函数的具体表达式,即边缘似然函数;步骤3:基于步骤2图像内的数据的边缘似然函数,利用矩阵微积分、矩阵代数以及最优化的方法最大化含有超参数的证据函数,从而得到图像的各个超参数的优化迭代算法。本发明用以解决图像处理中似然函数与权重的先验分布的乘积对权参数做积分求得证据函数的过程中,不得不面对复杂的积分,比较难计算的问题。
The invention discloses an image processing evidence function estimation method based on a correlation vector machine. Step 1: Use the mean and covariance in the normal distribution to prove that the posterior distribution of the weight parameters is a normal distribution according to the corrected prior form of the data in the image; Step 2: Use the data in the image according to multiple The product of the variable Taylor formula, the likelihood function and the prior distribution of the weight is integrated with the weight parameter to obtain the specific expression of the evidence function, that is, the marginal likelihood function; step 3: the marginal likelihood function based on the data in the image in step 2, Using matrix calculus, matrix algebra, and optimization methods to maximize the evidence function containing hyperparameters, an iterative algorithm for optimizing each hyperparameter of the image is obtained. The present invention is used to solve the problem that the product of the likelihood function and the prior distribution of the weight is integrated with the weight parameter to obtain the evidence function in the image processing, and the problem of having to face complex integrals and relatively difficult calculations.
Description
技术领域Technical Field
本发明属于图像处理领域,具体涉及一种基于相关向量机的图像处理证据函数估计方法。The invention belongs to the field of image processing, and in particular relates to an image processing evidence function estimation method based on a correlation vector machine.
背景技术Background Art
在图像处理领域与相关向量机相关的证据函数的估计过程中,需要证明后验分布是正态分布,并且求正态分布的均值与协方差,目前传统方法不得不寻找完全平方项,这样的方法不但难操作,而且缺少逻辑。同时目前在图像处理领域的相关向量机相关的证据函数原理中,权参数的先验分布是一些均值为零的正态分布的乘积,这缺少一般性。In the process of estimating the evidence function related to the correlation vector machine in the field of image processing, it is necessary to prove that the posterior distribution is a normal distribution and find the mean and covariance of the normal distribution. The current traditional method has to find the perfect square term, which is not only difficult to operate, but also lacks logic. At the same time, in the evidence function principle related to the correlation vector machine in the field of image processing, the prior distribution of the weight parameter is the product of some normal distributions with a mean of zero, which lacks generality.
在似然函数与权重的先验分布的乘积对权参数做积分求得证据函数的过程中,不得不面对复杂的积分,比较难计算。如何找到一种图像处理的新方法与逻辑框架来更简单更有逻辑的求图像处理的相关积分,更有效地最大化证据函数,目前这方面研究还比较少。In the process of integrating the weight parameter by multiplying the likelihood function by the prior distribution of the weight to obtain the evidence function, we have to face complex integrals that are difficult to calculate. How to find a new image processing method and logical framework to more simply and logically calculate the relevant integrals of image processing and more effectively maximize the evidence function? There is still relatively little research in this area.
发明内容Summary of the invention
本发明提供一种基于相关向量机的图像处理证据函数估计方法,用以解决图像处理中似然函数与权重的先验分布的乘积对权参数做积分求得证据函数的过程中,不得不面对复杂的积分,比较难计算的问题。The present invention provides an image processing evidence function estimation method based on a correlation vector machine, which is used to solve the problem of complex integration and difficult calculation in the process of integrating the weight parameter to obtain the evidence function by multiplying the likelihood function with the prior distribution of the weight in image processing.
本发明通过以下技术方案实现:The present invention is achieved through the following technical solutions:
一种基于相关向量机的图像处理证据函数估计方法,所述证据函数估计方法包括以下步骤:An image processing evidence function estimation method based on a relevance vector machine, the evidence function estimation method comprising the following steps:
步骤1:将图像内的数据根据修正后的权参数先验形式,利用正态分布中均值与协方差,证明权参数的后验分布是正态分布;Step 1: The data in the image are converted into the modified prior form of the weight parameters, and the mean and covariance in the normal distribution are used to prove that the posterior distribution of the weight parameters is a normal distribution;
步骤2:将图像内的数据根据多变量泰勒公式、似然函数与权重的先验分布的乘积对权参数做积分得到证据函数的具体表达式,即边缘似然函数;Step 2: Integrate the weight parameter by multivariate Taylor formula, the likelihood function and the product of the prior distribution of the weight to obtain the specific expression of the evidence function, i.e., the marginal likelihood function.
步骤3:基于步骤2图像内的数据的边缘似然函数,利用矩阵微积分、矩阵代数以及最优化的方法最大化含有超参数的证据函数,从而得到图像的各个超参数的优化迭代算法。Step 3: Based on the marginal likelihood function of the data in the image in step 2, matrix calculus, matrix algebra and optimization methods are used to maximize the evidence function containing hyperparameters, thereby obtaining an optimized iterative algorithm for each hyperparameter of the image.
进一步的,所述步骤1具体为,当其中x为标量,A为n×n可逆对称矩阵,Tr(·)为矩阵的迹、Tr(xyT)=xTy,其中Tr(·)为矩阵的迹,x为向量,y为向量;算子定义为且其中k∈N;Furthermore, the step 1 is specifically, when where x is a scalar, A is an n×n reversible symmetric matrix, Tr(·) is the trace of the matrix, Tr(xy T )=x T y, where Tr(·) is the trace of the matrix, x is a vector, y is a vector; the operator Defined as and where k∈N;
令h=(h1,h2)T与其中h1为向量h的第一个分量,h2为向量h的第二个分量,x1为向量x的第一个分量,x2为向量x的第二个分量,Let h = (h 1 ,h 2 ) T and Where h1 is the first component of vector h, h2 is the second component of vector h, x1 is the first component of vector x, x2 is the second component of vector x,
可得与 Available and
当算子作用在x,得到When the operator Acting on x, we get
则依据算子对x作用的公式,可得According to the operator The formula for the effect on x is:
其中h=(h1,h2)T与 Where h = (h 1 ,h 2 ) T and
利用可得use Available
若f:B(w,r)→R被定义为f(w)=wTAw+wTb+c;其中A是n×n可逆对称矩阵,b与w是n维列向量,c是一个标量;f(w)的泰勒在的泰勒展开式为If f:B(w,r)→R is defined as f(w)=w T Aw+w T b+c; where A is an n×n reversible symmetric matrix, b and w are n-dimensional column vectors, and c is a scalar; the Taylor equation of f(w) is The Taylor expansion of
H的第(i,j)元素由定义;The (i,j)th element of H is given by definition;
机器学习中的的线性回归模型的一般形式为The general form of the linear regression model in machine learning is
其中φi(x)为输入变量的非线性基函数,w0为偏差参数,x为图像数据向量;Where φ i (x) is the nonlinear basis function of the input variable, w 0 is the deviation parameter, and x is the image data vector;
定义φ0(x)=1,从而(1)式可重写为Define φ 0 (x) = 1, so that equation (1) can be rewritten as
其中w=(w0,…,wM-1)T与φ(x)=(φ0(x),…,φM-1(x))T;Where w=(w 0 ,…,w M-1 ) T and φ(x)=(φ 0 (x),…, φ M-1 (x)) T ;
目标函数是带有加性高斯噪声的确定性函数y(x,w),即The objective function is a deterministic function y(x,w) with additive Gaussian noise, that is
t=y(x,w)+ε (3)t=y(x,w)+ε (3)
其中ε是0均值,精度为β的正态随机变量,从而获得where ε is a normal random variable with mean 0 and precision β, thus obtaining
p(t|x,w,β)=N(t|y(x,w),β-1) (4)。p(t|x,w,β)=N(t|y(x,w),β -1 ) (4).
进一步的,所述步骤1中权参数先验取如下的形式Furthermore, the weight parameter in step 1 is a priori in the following form:
其中α为精度(方差的逆)向量,α=(α1,…,αM)T与γ为均值向量,γ=(γ1,…,γM)T。Where α is the precision (inverse of variance) vector, α = (α 1 , …, α M ) T and γ is the mean vector, γ = (γ 1 , …, γ M ) T .
利用公式(4),获得似然函数Using formula (4), we can obtain the likelihood function
其中,M为所要确定的参数的个数。in, M is the number of parameters to be determined.
相似地,Similarly,
其中α=diag(αi);where α = diag(α i );
获得权参数的后验分布p(w|t,X,α,β,γ)=N(w|m,Σ)也是正态分布,其中The posterior distribution of the weight parameters p(w|t,X,α,β,γ)=N(w|m,Σ) is also a normal distribution, where
m=(A+βΦTΦ)-1(Aγ+βΦTt) (8)m=(A+βΦ T Φ) -1 (Aγ+βΦ T t) (8)
Σ=(A+βΦTΦ)-1 (9)Σ=(A+βΦ T Φ) -1 (9)
其中 in
进一步的,所述步骤2具体为,Furthermore, the step 2 is specifically as follows:
p(t|X,α,β,γ)=∫p(t|X,w,β)p(w|α,γ)dw (10)p(t|X,α,β,γ)=∫p(t|X,w,β)p(w|α,γ)dw (10)
利用公式(6)和公式(7),可得Using formula (6) and formula (7), we can get
其中in
令得到w=(A+βΦTΦ)-1(βΦTt+Aγ)=m,可得make Obtain w=(A+βΦ T Φ) -1 (βΦ T t+Aγ)=m, Available
其中in
利用公式(11)与公式(12),可得Using formula (11) and formula (12), we can get
其中m=(A+βΦTΦ)-1(βΦTt+Aγ),X X=(x1,x2,…,xN)。Where m=(A+βΦ T Φ) -1 (βΦ T t+Aγ), XX=(x 1 ,x 2 ,…,x N ).
进一步的,所述步骤3具体为,Furthermore, the step 3 is specifically as follows:
对公式(13)式取对数可得Taking the logarithm of formula (13) yields
利用公式(9),公式(14)以及可得Using formula (9), formula (14) and Available
因为 because
利用以及公式(15),可得use And formula (15), we can get
由公式(16)可得From formula (16), we can get
其中Σii是后验协方差Σ的主对角线的第i个元素;where Σ ii is the i-th element of the main diagonal of the posterior covariance Σ;
由公式(12),可得According to formula (12), we can get
其中mi是后验均值m的第i个分量;where mi is the i-th component of the posterior mean m;
由公式(17)与公式(18),可得According to formula (17) and formula (18), we can get
由(19)可得从而可得From (19), we can get Thus we can get
其中λi=1-αiΣii;Where λ i =1-α i Σ ii ;
根据公式(9)的Σ的定义以及可得According to the definition of Σ in formula (9) and Available
根据与Tr(xyT)=xTy,可得according to and Tr(xy T )=x T y, we can get
因为(A+βΦTΦ)(A+βΦTΦ)-1=IM,可得Because (A+βΦ T Φ)(A+βΦ T Φ) -1 =I M , we can get
ΦTΦΣ=β-1(IM-AΣ) (23)Φ T ΦΣ=β -1 (I M -AΣ) (23)
根据公式(22)与公式(23),可以得到According to formula (22) and formula (23), we can get
从公式(12)式,可得From formula (12), we can get
从公式(24)与公式(25),可得From formula (24) and formula (25), we can get
从而得到Thus we get
根据公式(12),对γ求导可得令可得γ=m,所以According to formula (12), taking the derivative of γ, we can get make We can get γ=m, so
γi=mi (27)γ i =m i (27)
其中γi为γ的第i个分量,mi为m的第i个分量。Where γi is the i-th component of γ, and mi is the i-th component of m.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明采用更加一般的权参数先验形式,而不是传统的每个权参数服从均值为零的正态分布,参数具有更大取值范围,再由图像数据根据矩阵微积分、矩阵代数以及最优化的方法最大化含有超参数的证据函数,从而有利于提高对图像数据的分辨率。The present invention adopts a more general prior form of weight parameters, rather than the traditional normal distribution with a mean of zero for each weight parameter. The parameters have a larger range of values, and the image data is then used to maximize the evidence function containing hyperparameters according to matrix calculus, matrix algebra and optimization methods, which is beneficial to improving the resolution of the image data.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1本发明的流程示意图。Fig. 1 is a schematic diagram of the process of the present invention.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be described clearly and completely below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
一种基于相关向量机的图像处理证据函数估计方法,所述证据函数估计方法包括以下步骤:An image processing evidence function estimation method based on a relevance vector machine, the evidence function estimation method comprising the following steps:
步骤1:将图像内的数据根据修正后的权参数先验形式,利用正态分布中均值与协方差,证明权参数的后验分布是正态分布;Step 1: The data in the image is converted into the modified prior form of the weight parameter, and the mean and covariance in the normal distribution are used to prove that the posterior distribution of the weight parameter is a normal distribution;
步骤2:将图像内的数据根据多变量泰勒公式、似然函数与权重的先验分布的乘积对权参数做积分得到证据函数的具体表达式,即边缘似然函数;Step 2: Integrate the weight parameter by multivariate Taylor formula, the likelihood function and the product of the prior distribution of the weight to obtain the specific expression of the evidence function, i.e., the marginal likelihood function.
步骤3:基于步骤2图像内的数据的边缘似然函数,利用矩阵微积分、矩阵代数以及最优化的方法最大化含有超参数的证据函数,从而得到图像的各个超参数的进行优化迭代算法。Step 3: Based on the marginal likelihood function of the data in the image in step 2, matrix calculus, matrix algebra and optimization methods are used to maximize the evidence function containing hyperparameters, thereby obtaining an iterative optimization algorithm for each hyperparameter of the image.
进一步的,所述步骤1具体为,当其中x为标量,A为n×n可逆对称矩阵,Tr(×)为矩阵的迹、Tr(xyT)=xTy,其中Tr(·)为矩阵的迹,x为向量,y为向量;算子定义为且其中k∈N;Furthermore, the step 1 is specifically, when Where x is a scalar, A is an n×n reversible symmetric matrix, Tr(×) is the trace of the matrix, Tr(xy T )=x T y, where Tr(·) is the trace of the matrix, x is a vector, y is a vector; the operator Defined as and where k∈N;
令h=(h1,h2)T与其中h1为向量h的第一个分量,h2为向量h的第二个分量,x1为向量x的第一个分量,x2为向量x的第二个分量,Let h = (h 1 ,h 2 ) T and Where h1 is the first component of vector h, h2 is the second component of vector h, x1 is the first component of vector x, x2 is the second component of vector x,
可得与 Available and
当算子作用在x,得到When the operator Acting on x, we get
则依据算子对x作用的公式x(这个x去掉),可得According to the operator The formula x acting on x (remove this x) gives
其中h=(h1,h2)T与 Where h = (h 1 ,h 2 ) T and
利用可得use Available
若f:B(w,r)→R被定义为f(w)=wTAw+wTb+c;其中A是n×n可逆对称矩阵,b与w是n维列向量,c是一个标量;f(w)的泰勒在的泰勒展开式为If f:B(w,r)→R is defined as f(w)=w T Aw+w T b+c; where A is an n×n reversible symmetric matrix, b and w are n-dimensional column vectors, and c is a scalar; the Taylor equation of f(w) is The Taylor expansion of
H的第(i,j)元素由定义;The (i,j)th element of H is given by definition;
机器学习中的的线性回归模型的一般形式为The general form of the linear regression model in machine learning is
其中φi(x)为输入变量的非线性基函数,w0为偏差参数,x为图像数据向量;Where φ i (x) is the nonlinear basis function of the input variable, w 0 is the deviation parameter, and x is the image data vector;
定义φ0(x)=1,从而(1)式可重写为Define φ 0 (x) = 1, so that equation (1) can be rewritten as
其中w=(w0,…,wM-1)T与φ(x)=(φ0(x),…,φM-1(x))T;Where w=(w 0 ,…,w M-1 ) T and φ(x)=(φ 0 (x),…, φ M-1 (x)) T ;
目标函数是带有加性高斯噪声的确定性函数y(x,w),即The objective function is a deterministic function y(x,w) with additive Gaussian noise, that is
t=y(x,w)+ε (3)t=y(x,w)+ε (3)
其中ε是0均值,精度为β的正态随机变量,从而获得where ε is a normal random variable with mean 0 and precision β, thus obtaining
p(t|x,w,β)=N(t|y(x,w),β-1) (4)。p(t|x,w,β)=N(t|y(x,w),β -1 ) (4).
进一步的,所述步骤1中权参数先验取如下的形式Furthermore, the weight parameter in step 1 is a priori in the following form:
其中α为精度(方差的逆)向量,α=(α1,…,αM)T与γ为均值向量,γ=(γ1,…,γM)T。Where α is the precision (inverse of variance) vector, α = (α 1 , …, α M ) T and γ is the mean vector, γ = (γ 1 , …, γ M ) T .
利用公式(4),获得似然函数Using formula (4), we can obtain the likelihood function
其中,M为所要确定的参数的个数。in, M is the number of parameters to be determined.
相似地,Similarly,
其中α=diag(αi);where α = diag(α i );
获得权参数的后验分布p(w|t,X,α,β,γ)=N(w|m,Σ)也是正态分布,其中The posterior distribution of the weight parameters p(w|t,X,α,β,γ)=N(w|m,Σ) is also a normal distribution, where
m=(A+βΦTΦ)-1(Aγ+βΦTt) (8)m=(A+βΦ T Φ) -1 (Aγ+βΦ T t) (8)
Σ=(A+βΦTΦ)-1 (9)Σ=(A+βΦ T Φ) -1 (9)
其中 in
在证明之前,先看如下内容:Before proving this, let’s look at the following:
正态分布取正态分布的负指数为normal distribution Take the negative exponent of the normal distribution as
令可以获得x=μ,这暗示f(x)的驻点是该正态分布的均值,同时f(x)的二阶梯度就是协方差的逆。make We can obtain x = μ, which implies that the stationary point of f(x) is the mean of the normal distribution, and The second-order gradient of f(x) is the inverse of the covariance.
下面证明p(w|t,X,α,β,γ)是正态分布;The following proves that p(w|t,X,α,β,γ) is normally distributed;
由公式(6)与公式(7),得到p(t|X,w,β)p(w|α,γ)乘积的负指数为From formula (6) and formula (7), we can get the negative exponent of the product p(t|X,w,β)p(w|α,γ) is
令因此,make therefore,
m=w=(A+βΦTΦ)-1(Aγ+βΦTt),m=w=(A+βΦ T Φ) -1 (Aγ+βΦ T t),
又因为所以Σ=(A+βΦTΦ)-1,得证。Also because Therefore, Σ=(A+βΦ T Φ) -1 , proved.
进一步的,所述步骤2具体为,Furthermore, the step 2 is specifically as follows:
p(t|X,α,β,γ)=∫p(t|X,w,β)p(w|α,γ)dw (10)p(t|X,α,β,γ)=∫p(t|X,w,β)p(w|α,γ)dw (10)
利用公式(6)和公式(7),可得Using formula (6) and formula (7), we can get
其中in
令得到w=(A+βΦTΦ)-1(βΦTt+Aγ)=m,可得make Obtain w=(A+βΦ T Φ) -1 (βΦ T t+Aγ)=m, Available
其中in
利用公式(11)与公式(12),可得Using formula (11) and formula (12), we can get
其中m=(A+βΦTΦ)-1(βΦTt+Aγ),X=(x1,x2,…,xN)。Where m=(A+βΦ T Φ) -1 (βΦ T t+Aγ), X=(x 1 ,x 2 ,…,x N ).
进一步的,所述步骤3具体为。Furthermore, the step 3 is specifically as follows.
对公式(13)式取对数可得Taking the logarithm of formula (13) yields
利用公式(9),公式(14)以及可得Using formula (9), formula (14) and Available
因为 because
利用以及公式(15),可得use And formula (15), we can get
由公式(16)可得From formula (16), we can get
其中Σii是后验协方差Σ的主对角线的第i个元素;where Σ ii is the i-th element of the main diagonal of the posterior covariance Σ;
由公式(12),可得According to formula (12), we can get
其中mi是后验均值m的第i个分量;where mi is the i-th component of the posterior mean m;
由公式(17)与公式(18),可得According to formula (17) and formula (18), we can get
由(19)可得从而可得From (19), we can get Thus we can get
其中λi=1-αiΣii,;Where λ i =1-α i Σ ii ,;
根据公式(9)的Σ的定义以及可得According to the definition of Σ in formula (9) and Available
根据与Tr(xyT)=xTy,可得according to and Tr(xy T )=x T y, we can get
因为(A+βΦTΦ)(A+βΦTΦ)-1=IM,可得Because (A+βΦ T Φ)(A+βΦ T Φ) -1 =I M , we can get
ΦTΦΣ=β-1(IM-AΣ) (23)Φ T ΦΣ=β -1 (I M -AΣ) (23)
根据公式(22)与公式(23),可以得到According to formula (22) and formula (23), we can get
从公式(12)式,可得From formula (12), we can get
从公式(24)与公式(25),可得From formula (24) and formula (25), we can get
从而得到Thus we get
根据公式(12),对γ求导可得令可得γ=m,所以According to formula (12), taking the derivative of γ, we can get make We can get γ=m, so
γi=mi (27)γ i =m i (27)
其中γi为γ的第i个分量,mi为m的第i个分量。Where γi is the i-th component of γ, and mi is the i-th component of m.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110963746.2A CN113779502B (en) | 2021-08-20 | 2021-08-20 | Image processing evidence function estimation method based on correlation vector machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110963746.2A CN113779502B (en) | 2021-08-20 | 2021-08-20 | Image processing evidence function estimation method based on correlation vector machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113779502A CN113779502A (en) | 2021-12-10 |
CN113779502B true CN113779502B (en) | 2023-08-29 |
Family
ID=78838587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110963746.2A Active CN113779502B (en) | 2021-08-20 | 2021-08-20 | Image processing evidence function estimation method based on correlation vector machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113779502B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102254193A (en) * | 2011-07-16 | 2011-11-23 | 西安电子科技大学 | Relevance vector machine-based multi-class data classifying method |
CN103258213A (en) * | 2013-04-22 | 2013-08-21 | 中国石油大学(华东) | Vehicle model dynamic identification method used in intelligent transportation system |
CN104732215A (en) * | 2015-03-25 | 2015-06-24 | 广西大学 | Remote-sensing image coastline extracting method based on information vector machine |
CN106709918A (en) * | 2017-01-20 | 2017-05-24 | 成都信息工程大学 | Method for segmenting images of multi-element student t distribution mixed model based on spatial smoothing |
CN108197435A (en) * | 2018-01-29 | 2018-06-22 | 绥化学院 | Localization method between a kind of multiple characters multi-region for containing error based on marker site genotype |
CN108228535A (en) * | 2018-01-02 | 2018-06-29 | 佛山科学技术学院 | A kind of optimal weighting parameter evaluation method of unequal precision measurement data fusion |
CN111914865A (en) * | 2019-05-08 | 2020-11-10 | 天津科技大学 | Probability main component analysis method based on random core |
CN112053307A (en) * | 2020-08-14 | 2020-12-08 | 河海大学常州校区 | A method for linear reconstruction of X-ray images |
US10867171B1 (en) * | 2018-10-22 | 2020-12-15 | Omniscience Corporation | Systems and methods for machine learning based content extraction from document images |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8250003B2 (en) * | 2008-09-12 | 2012-08-21 | Microsoft Corporation | Computationally efficient probabilistic linear regression |
-
2021
- 2021-08-20 CN CN202110963746.2A patent/CN113779502B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102254193A (en) * | 2011-07-16 | 2011-11-23 | 西安电子科技大学 | Relevance vector machine-based multi-class data classifying method |
CN103258213A (en) * | 2013-04-22 | 2013-08-21 | 中国石油大学(华东) | Vehicle model dynamic identification method used in intelligent transportation system |
CN104732215A (en) * | 2015-03-25 | 2015-06-24 | 广西大学 | Remote-sensing image coastline extracting method based on information vector machine |
CN106709918A (en) * | 2017-01-20 | 2017-05-24 | 成都信息工程大学 | Method for segmenting images of multi-element student t distribution mixed model based on spatial smoothing |
CN108228535A (en) * | 2018-01-02 | 2018-06-29 | 佛山科学技术学院 | A kind of optimal weighting parameter evaluation method of unequal precision measurement data fusion |
CN108197435A (en) * | 2018-01-29 | 2018-06-22 | 绥化学院 | Localization method between a kind of multiple characters multi-region for containing error based on marker site genotype |
US10867171B1 (en) * | 2018-10-22 | 2020-12-15 | Omniscience Corporation | Systems and methods for machine learning based content extraction from document images |
CN111914865A (en) * | 2019-05-08 | 2020-11-10 | 天津科技大学 | Probability main component analysis method based on random core |
CN112053307A (en) * | 2020-08-14 | 2020-12-08 | 河海大学常州校区 | A method for linear reconstruction of X-ray images |
Non-Patent Citations (1)
Title |
---|
A Logical Framework of the Evidence Function Approximation Associated with Relevance Vector Machine;Dawei Zou等;Mathematical Problems in Engineering;第2020卷;第1页-10页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113779502A (en) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lian | Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces | |
Vogel et al. | Self-supervised quantization of pre-trained neural networks for multiplierless acceleration | |
Jeon et al. | Locally polynomial Hilbertian additive regression | |
Pesteh et al. | Favorable properties of interior point method and generalized correntropy in power system state estimation | |
Fang et al. | Improved Bounded Matrix Completion for Large-Scale Recommender Systems. | |
CN116089653A (en) | A Video Retrieval Model Based on Scene Information | |
Gao et al. | Optimal decorrelated score subsampling for generalized linear models with massive data | |
CN113779502B (en) | Image processing evidence function estimation method based on correlation vector machine | |
Peng et al. | Global optimality condition and fixed point continuation algorithm for non-Lipschitz ℓ p regularized matrix minimization | |
Silin et al. | Bayesian inference for spectral projectors of the covariance matrix | |
Lin et al. | An ADMM algorithm for matrix completion of partially known state covariances | |
CN114974421A (en) | Single-cell transcriptome sequencing data interpolation method and system based on diffusion-noise reduction | |
Duan et al. | An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton-Jacobi equation | |
Lu et al. | Sparse and low-rank matrix quantile estimation with application to quadratic regression | |
CN109657693A (en) | A kind of classification method based on joint entropy and transfer learning | |
Dong et al. | Variational Bayesian and generalized approximate message passing-based sparse Bayesian learning model for image reconstruction | |
Alexandrovich et al. | Nonparametric identification and maximum likelihood estimation for hidden Markov model | |
Sun et al. | Distributed non-convex regularization for generalized linear regression | |
Liu et al. | Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent | |
Gupta et al. | Hardware architecture for eigenvalues computation using the modified jacobi algorithm on fpga | |
Shen et al. | An efficient implementation for kernel-based regularized system Identification with periodic input signals | |
Lin et al. | ADMM penalty parameter selection with krylov subspace recycling technique for sparse coding | |
Liu | Nonparametric time-varying panel data models with heterogeneity | |
Girotti | Riemann–Hilbert approach to gap probabilities for the Bessel process | |
Chaouch et al. | Statistical inference for models driven by 𝑛-th order fractional Brownian motion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |