CN113777608B - 基于多普勒中心估计的机载sar预处理方法 - Google Patents

基于多普勒中心估计的机载sar预处理方法 Download PDF

Info

Publication number
CN113777608B
CN113777608B CN202111097747.XA CN202111097747A CN113777608B CN 113777608 B CN113777608 B CN 113777608B CN 202111097747 A CN202111097747 A CN 202111097747A CN 113777608 B CN113777608 B CN 113777608B
Authority
CN
China
Prior art keywords
sar
doppler frequency
doppler
echo
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111097747.XA
Other languages
English (en)
Other versions
CN113777608A (zh
Inventor
曹蕊
王勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111097747.XA priority Critical patent/CN113777608B/zh
Publication of CN113777608A publication Critical patent/CN113777608A/zh
Application granted granted Critical
Publication of CN113777608B publication Critical patent/CN113777608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9064Inverse SAR [ISAR]

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

基于多普勒中心估计的机载SAR预处理方法,本发明涉及机载SAR预处理方法。本发明的目的是为了解决现有机载SAR成像方法存在的SAR图像二维散焦和处理效率慢的问题。过程为:一、获得距离压缩后的机载SAR回波数据;二、初始化子数据块个数;三、若k≤K,则执行四;否则,执行十;四、获取子数据块;五、求解共轭相乘矩阵;六、得到相关函数;七、得到自相关函数;八、求解回波的多普勒频率估计值;九、令k=k+1,并返回三;十、求解SAR平台运动引起的多普勒频率理论值;十一、得到ISAR平台运动引起的多普勒频率估计值;十二、得到拟合曲线;十三、获得最优成像数据段。本发明用于机载SAR预处理领域。

Description

基于多普勒中心估计的机载SAR预处理方法
技术领域
本发明涉及机载SAR预处理方法。
背景技术
机载合成孔径雷达(synthetic aperture radar,SAR)对海面舰船目标成像在海域监测领域起着重要作用。SAR成像场景通常为雷达运动、目标不动,而在对海面舰船目标成像期间,舰船目标往往存在平动和摆动运动,使得雷达图像中舰船的像二维散焦,降低了图像质量,影响后续的目标分类、识别精度。
目前提出的机载SAR成像算法或联合逆合成孔径雷达(inverse syntheticaperture radar,ISAR)处理技术能在一定程度上提高图像质量,但这些算法都是处理舰船被观测期间内全部回波数据,故具有以下缺陷:(1)回波数据包含了舰船在观测期间内的全部运动,导致成像投影平面不断变化,造成图像散焦;(2)对全部回波数据进行处理,计算量大,影响成像效率。因此,有必要在SAR成像前实施预处理,减轻舰船目标运动对成像的影响,提高图像质量,同时,减少处理数据量,提升成像效率。考虑到回波的多普勒中心变化可以反映单个散射点的多普勒频率变化,进而反映出目标运动情况,故可依据回波多普勒中心频率估计结果进行SAR预处理。
发明内容
本发明的目的是为了解决现有机载SAR成像方法存在的SAR图像二维散焦和处理效率慢的问题,而提出基于多普勒中心估计的机载SAR预处理方法。
基于多普勒中心估计的机载SAR预处理方法具体过程为:
步骤一、获取机载SAR回波数据,采用距离-多普勒算法中的距离维匹配滤波对获取的机载SAR回波数据进行距离压缩,获得距离压缩后的机载SAR回波数据,记距离压缩后的机载SAR回波数据为srb(m,n);
其中,m为回波的脉冲序号,n为快时间序号;m=1,2,…,Na,Na为脉冲数,n=1,2,…,Nr,Nr为快时间采样点数;
步骤二、初始化子数据块序号k=1,设置子数据块脉冲数Na0,1<Na0<Na;子数据块个数为
Figure BDA0003269676260000011
式中,
Figure BDA0003269676260000012
为向下取整函数;
步骤三、比较k与K,若k≤K,则执行步骤四;否则,执行步骤十;
步骤四、沿方位向取Na0个脉冲,获取子数据块
Figure BDA0003269676260000021
子数据块
Figure BDA0003269676260000022
包含Na0个脉冲信号;
式中,m0为子数据块的脉冲序号,m0=1,2,…,Na0
步骤五、将子数据块
Figure BDA0003269676260000023
中前一个脉冲信号的共轭与后一个脉冲相乘,求解共轭相乘矩阵s(m1,n);
步骤六、将共轭相乘矩阵s(m1,n)沿方位向求和,取平均值,得到相关函数;
步骤七、将相关函数沿距离向求和,取平均值,得到自相关函数;
步骤八、基于自相关函数,求解回波的多普勒频率估计值fdc(k);
步骤九、令k=k+1,并返回步骤三;
步骤十、当舰船目标静止时,整个成像过程视为SAR成像,求解SAR平台运动引起的多普勒频率理论值
Figure BDA0003269676260000024
步骤十一、当舰船目标运动时,整个成像过程既有SAR成像又有ISAR成像,回波的多普勒频率估计值为fdc(k);基于回波的多普勒频率估计值fdc(k)和由SAR平台运动引起的多普勒频率理论值
Figure BDA0003269676260000025
得到ISAR平台运动引起的多普勒频率估计值
Figure BDA0003269676260000026
步骤十二、对
Figure BDA0003269676260000027
进行曲线拟合,得到拟合曲线
Figure BDA0003269676260000028
步骤十三、记符合
Figure BDA0003269676260000029
的起止脉冲序号为ms和me,获得最优成像数据段
Figure BDA00032696762600000210
即完成了SAR预处理过程;
式中,mopt=1,2,…,me-ms+1为最优成像数据段的脉冲序号,δ为阈值。
本发明的有益效果为:
考虑到舰船目标运动带来的相位影响和成像投影平面变化,导致成像结果中舰船的像出现二维散焦现象,本发明提出一种基于多普勒中心估计的机载SAR预处理方法。在机载SAR对运动舰船目标成像场景中,本发明提出的SAR预处理方法利用回波多普勒频率与SAR平台运动引起的多普勒频率间差异,获取运动舰船目标引起的多普勒频率,通过选取ISAR平台引起的多普勒频率小的部分,即舰船目标运动对成像影响小的部分,得到最优成像数据段,完成SAR预处理过程。通过SAR预处理,能够有效减轻舰船目标运动对成像的影响,提高雷达图像质量,解决现有机载SAR成像方法带来的SAR图像二维散焦的问题,为后续的目标分类和识别提供保障;同时,SAR预处理选取出最优成像数据段,与直接进行成像处理相比,有效减少了计算量,提升成像处理效率。
附图说明
图1为本发明基于多普勒中心估计的机载SAR预处理方法流程图;
图2a为实施例一、二中使用的舰船散射点模型正视图,以舰船中心为原点O,以正东方向为X轴,正北方向为Y轴,垂直海平面方向为Z轴,建立直角坐标系O-XYZ;
图2b为实施例一、二中使用的舰船散射点模型侧视图;
图2c为实施例一、二中使用的舰船散射点模型俯视图;
图2d为实施例一、二中使用的舰船散射点模型三维视图;
图3为实施例一中SAR预处理前的CS图像,CS为chirp scaling;
图4为实施例二中本发明方法回波多普勒频率估计结果;
图5为实施例二中本发明方法ISAR平台引起的多普勒频率估计结果;
图6为实施例二中本发明方法所得的SAR预处理后的CS图像;
图7为实施例三中SAR预处理前的CS图像;
图8为实施例四中本发明方法回波多普勒频率估计结果;
图9为实施例四中本发明方法ISAR平台引起的多普勒频率估计结果;
图10为实施例四中本发明方法所得的SAR预处理后的CS图像。
具体实施方式
具体实施方式一:结合图1说明本实施方式,本实施方式基于多普勒中心估计的机载SAR预处理方法具体过程为:
步骤一、获取机载SAR回波数据,采用距离-多普勒(range Doppler,RD)算法中的距离维匹配滤波对获取的机载SAR回波数据进行距离压缩,获得距离压缩后的机载SAR回波数据,记距离压缩后的机载SAR回波数据为srb(m,n);
其中,m为回波的脉冲序号,n为快时间序号;m=1,2,…,Na,Na为脉冲数,n=1,2,…,Nr,Nr为快时间采样点数;
步骤二、初始化子数据块序号k=1,设置子数据块脉冲数Na0,1<Na0<Na;子数据块个数为
Figure BDA0003269676260000041
式中,
Figure BDA0003269676260000042
为向下取整函数;
步骤三、比较k与K,若k≤K,则执行步骤四;否则,执行步骤十;
步骤四、沿方位向取Na0个脉冲,获取子数据块
Figure BDA0003269676260000043
子数据块
Figure BDA0003269676260000044
包含Na0个脉冲信号;
式中,m0为子数据块的脉冲序号,m0=1,2,…,Na0
步骤五、将子数据块
Figure BDA0003269676260000045
中前一个脉冲信号的共轭与后一个脉冲相乘,求解共轭相乘矩阵s(m1,n);
步骤六、将共轭相乘矩阵s(m1,n)沿方位向求和,取平均值,得到相关函数;
步骤七、将相关函数沿距离向求和,取平均值,得到自相关函数;
步骤八、基于自相关函数,求解回波的多普勒频率估计值fdc(k);
步骤九、令k=k+1,并返回步骤三;
步骤十、当舰船目标静止时,整个成像过程可视为SAR成像,求解SAR平台运动引起的多普勒频率理论值
Figure BDA0003269676260000046
步骤十一、当舰船目标运动时,整个成像过程既有SAR成像又有ISAR成像,回波的多普勒频率估计值为fdc(k);基于回波的多普勒频率估计值fdc(k)和由SAR平台运动引起的多普勒频率理论值
Figure BDA0003269676260000047
得到ISAR平台运动引起的多普勒频率估计值
Figure BDA0003269676260000048
回波的多普勒频率就是总的多普勒频率,是SAR和ISAR平台引起的多普勒频率估计值;
步骤十二、对
Figure BDA0003269676260000049
进行曲线拟合,可采用傅里叶拟合,得到拟合曲线
Figure BDA00032696762600000410
步骤十三、取
Figure BDA00032696762600000411
部分,该部分表征目标运动对成像影响较小,能够提高图像质量,记符合
Figure BDA00032696762600000412
的起止脉冲序号为ms和me,获得最优成像数据段
Figure BDA0003269676260000051
即完成了SAR预处理过程,后续可进行其他成像处理;
式中,mopt=1,2,…,me-ms+1为最优成像数据段的脉冲序号,δ为阈值。
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤四中子数据块
Figure BDA0003269676260000052
的表达式为:
子数据块
Figure BDA0003269676260000053
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述步骤五中共轭相乘矩阵s(m1,n)的表达式为:
Figure BDA0003269676260000054
式中,m1为共轭相乘矩阵s(m1,tr)的脉冲序号,m1=1,2,…,Na0-1,[·]H为共轭函数。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述步骤六中相关函数的具体表达式为:
Figure BDA0003269676260000055
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述步骤七中自相关函数的具体表达式为:
Figure BDA0003269676260000056
其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述步骤八中回波的多普勒频率估计值fdc(k)的具体表达式为:
fdc(k)=angle(Rb)/(2πPRT)
式中,angle(·)为取相位函数,PRT(pulse repetition time)为脉冲重复周期。
其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,所述步骤十中由SAR平台运动引起的多普勒频率理论值的计算方式为:
Figure BDA0003269676260000061
式中,Vr为载机飞行速度,sgn[·]为符号函数,θ为斜视角,λ为波长。
其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是,所述斜视角
Figure BDA0003269676260000062
式中,Rs为雷达正视目标时目标中心与雷达间的斜距。
其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是,所述步骤十一中基于回波的多普勒频率估计值fdc(k)和由SAR平台运动引起的多普勒频率理论值
Figure BDA0003269676260000063
得到ISAR平台运动引起的多普勒频率估计值;具体过程为:
由目标运动引起的多普勒频率可由回波的多普勒频率减去SAR平台引起的多普勒频率得到,ISAR平台引起的多普勒频率为
Figure BDA0003269676260000064
式中,
Figure BDA0003269676260000065
为ISAR平台运动引起的多普勒频率估计值。
回波的多普勒频率就是总的多普勒频率,是SAR和ISAR平台引起的多普勒频率估计值。
其它步骤及参数与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是,所述步骤十二中拟合曲线
Figure BDA0003269676260000066
表达式为:
Figure BDA0003269676260000067
式中,a0、ai、bi为拟合系数,ω为基波频率,p为拟合阶数。
ω、p、a0、ai、bi的值是根据参与拟合的值m和
Figure BDA0003269676260000073
确定的。
其它步骤及参数与具体实施方式一至九之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例结合chirp scaling(CS)算法对机载SAR仿真数据成像,所得雷达图像为未进行SAR预处理结果,用以对比SAR预处理后的效果。
仿真所用的散射点模型为一个舰船模型,舰船模型的正视图、侧视图、俯视图和三维视图如图2a、2b、2c和2d所示,仿真所用雷达系统参数如表1所示,舰船目标的三维摆动参数如表2所示。
表1 雷达系统仿真参数
Figure BDA0003269676260000071
表2 舰船目标三维摆动参数
Figure BDA0003269676260000072
图3给出了未进行SAR预处理时的CS图像,可以看到SAR图像的距离和方位维散焦严重,图像熵值为10.4735。未进行SAR预处理情况下,CS算法需要处理的脉冲数为4664,成像时间段为0s至23.3150s,计算量较大。
实施例二:
采用以下实施例验证本发明的有益效果:
本实施例用本发明方法结合chirp scaling(CS)算法对机载SAR仿真数据成像,所得雷达图像为进行SAR预处理后的结果,用以对比SAR预处理前的效果。
仿真所用的舰船散射点模型、雷达系统参数和舰船运动参数与图2a、2b、2c、2d、表1和表2一致。
图4给出了回波多普勒频率fdc的估计值、拟合结果以及SAR平台引起的多普勒频率理论值
Figure BDA0003269676260000081
可以看到矩形区域具有fdc十分接近
Figure BDA0003269676260000082
的特征,说明在该成像时间段由目标运动引起的影响较小。图5给出了ISAR平台引起的多普勒频率估计值、拟合结果以及最优开始和结束成像时刻,图中阴影区域代表
Figure BDA0003269676260000083
选取
Figure BDA0003269676260000084
拟合结果中符合条件
Figure BDA0003269676260000085
的成像时间段,最优开始和结束成像时刻如图中虚线所示。
图6为SAR预处理后的CS图像,可以看到SAR图像的距离和方位维聚焦效果良好,图像质量得以提高。从图像熵值上看,预处理后的图像熵值为10.3203,比预处理前小,也能说明提出的SAR预处理算法的有效性。经过SAR预处理,CS算法需要处理的脉冲数为1606,成像时间段为7.4210s至15.4500s,计算量明显减小。
实施例三:
本实施例结合chirp scaling(CS)算法对机载SAR实测数据成像,所得雷达图像为未进行SAR预处理结果,用以对比SAR预处理后的效果。
所用数据为机载SAR对海面舰船目标录取的回波数据,雷达系统参数如表3所示。
表3 雷达系统仿真参数
Figure BDA0003269676260000086
图7给出了未进行SAR预处理时的CS图像,可以看到SAR图像的距离和方位维具有一定程度散焦,图像熵值为8.6847。未进行SAR预处理情况下,CS算法需要处理的脉冲数为10240,成像时间段为0s至20.478s,计算量很大。
实施例四:
采用以下实施例验证本发明的有益效果:
本实施例用本发明方法结合chirp scaling(CS)算法对机载SAR实测数据成像,所得雷达图像为进行SAR预处理后的结果,用以对比SAR预处理前的效果。
所用数据为机载SAR对海面舰船目标录取的回波数据,雷达系统参数与表一致。
图8给出了回波多普勒频率fdc的估计值、拟合结果以及SAR平台引起的多普勒频率理论值
Figure BDA0003269676260000087
可以看到矩形区域具有fdc十分接近
Figure BDA0003269676260000088
的特征,说明在该成像时间段由目标运动引起的影响较小。图9给出了ISAR平台引起的多普勒频率估计值、拟合结果以及最优开始和结束成像时刻,图中阴影区域代表
Figure BDA0003269676260000091
选取
Figure BDA0003269676260000092
拟合结果中符合条件
Figure BDA0003269676260000093
的成像时间段,最优开始和结束成像时刻如图中虚线所示。
图10为SAR预处理后的CS图像,可以看到SAR图像的距离和方位维聚焦效果良好,船体细节部分更加清晰,图像质量得以提高。从图像熵值上看,预处理后的图像熵值为8.3891,比预处理前小,也能说明提出的SAR预处理算法的有效性。经过SAR预处理,CS算法需要处理的脉冲数为1916,成像时间段为2.420s至6.253s,计算量明显减小。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (9)

1.基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述方法具体过程为:
步骤一、获取机载SAR回波数据,采用距离-多普勒算法中的距离维匹配滤波对获取的机载SAR回波数据进行距离压缩,获得距离压缩后的机载SAR回波数据,记距离压缩后的机载SAR回波数据为srb(m,n);
其中,m为回波的脉冲序号,n为快时间序号;m=1,2,…,Na,Na为脉冲数,n=1,2,…,Nr,Nr为快时间采样点数;
步骤二、初始化子数据块序号k=1,设置子数据块脉冲数Na0,1<Na0<Na;子数据块个数为
Figure FDA0003596263710000011
1≤k≤K;
式中,
Figure FDA0003596263710000012
为向下取整函数;
步骤三、比较k与K,若k≤K,则执行步骤四;否则,执行步骤十;
步骤四、沿方位向取Na0个脉冲,获取子数据块
Figure FDA0003596263710000013
子数据块
Figure FDA0003596263710000014
包含Na0个脉冲信号;
式中,m0为子数据块的脉冲序号,m0=1,2,…,Na0
步骤五、将子数据块
Figure FDA0003596263710000015
中前一个脉冲信号的共轭与后一个脉冲相乘,求解共轭相乘矩阵s(m1,n);
步骤六、将共轭相乘矩阵s(m1,n)沿方位向求和,取平均值,得到相关函数;
步骤七、将相关函数沿距离向求和,取平均值,得到自相关函数;
步骤八、基于自相关函数,求解回波的多普勒频率估计值fdc(k);
步骤九、令k=k+1,并返回步骤三;
步骤十、当舰船目标静止时,整个成像过程视为SAR成像,求解SAR平台运动引起的多普勒频率理论值
Figure FDA0003596263710000016
步骤十一、当舰船目标运动时,整个成像过程既有SAR成像又有ISAR成像,回波的多普勒频率估计值为fdc(k);基于回波的多普勒频率估计值fdc(k)和由SAR平台运动引起的多普勒频率理论值
Figure FDA0003596263710000017
得到ISAR平台运动引起的多普勒频率估计值
Figure FDA0003596263710000018
步骤十二、对
Figure FDA0003596263710000021
进行曲线拟合,得到拟合曲线
Figure FDA0003596263710000022
步骤十三、记符合
Figure FDA0003596263710000023
的起止脉冲序号为ms和me,获得最优成像数据段
Figure FDA0003596263710000024
即完成了SAR预处理过程;
式中,mopt=1,2,…,me-ms+1为最优成像数据段的脉冲序号,δ为阈值;
所述步骤十中由SAR平台运动引起的多普勒频率理论值的计算方式为:
Figure FDA0003596263710000025
式中,Vr为载机飞行速度,sgn[·]为符号函数,θ为斜视角,λ为波长。
2.根据权利要求1所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤四中子数据块
Figure FDA0003596263710000026
的表达式为:
子数据块
Figure FDA0003596263710000027
3.根据权利要求2所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤五中共轭相乘矩阵s(m1,n)的表达式为:
Figure FDA0003596263710000028
式中,m1为共轭相乘矩阵s(m1,tr)的脉冲序号,m1=1,2,…,Na0-1,[·]H为共轭函数。
4.根据权利要求3所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤六中相关函数的具体表达式为:
Figure FDA0003596263710000029
5.根据权利要求4所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤七中自相关函数的具体表达式为:
Figure FDA00035962637100000210
6.根据权利要求5所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤八中回波的多普勒频率估计值fdc(k)的具体表达式为:
fdc(k)=angle(Rb)/(2πPRT)
式中,angle(·)为取相位函数,PRT为脉冲重复周期。
7.根据权利要求6所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述斜视角
Figure FDA0003596263710000031
式中,Rs为雷达正视目标时目标中心与雷达间的斜距。
8.根据权利要求7所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤十一中基于回波的多普勒频率估计值fdc(k)和由SAR平台运动引起的多普勒频率理论值
Figure FDA0003596263710000032
得到ISAR平台运动引起的多普勒频率估计值;具体过程为:
Figure FDA0003596263710000033
式中,
Figure FDA0003596263710000034
为ISAR平台运动引起的多普勒频率估计值。
9.根据权利要求8所述基于多普勒中心估计的机载SAR预处理方法,其特征在于:所述步骤十二中拟合曲线
Figure FDA0003596263710000035
表达式为:
Figure FDA0003596263710000036
式中,a0、ai、bi为拟合系数,ω为基波频率,p为拟合阶数。
CN202111097747.XA 2021-09-18 2021-09-18 基于多普勒中心估计的机载sar预处理方法 Active CN113777608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111097747.XA CN113777608B (zh) 2021-09-18 2021-09-18 基于多普勒中心估计的机载sar预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111097747.XA CN113777608B (zh) 2021-09-18 2021-09-18 基于多普勒中心估计的机载sar预处理方法

Publications (2)

Publication Number Publication Date
CN113777608A CN113777608A (zh) 2021-12-10
CN113777608B true CN113777608B (zh) 2022-05-31

Family

ID=78852261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111097747.XA Active CN113777608B (zh) 2021-09-18 2021-09-18 基于多普勒中心估计的机载sar预处理方法

Country Status (1)

Country Link
CN (1) CN113777608B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610492A (zh) * 2016-12-27 2017-05-03 哈尔滨工业大学 基于rd算法的时频域混合校正距离徙动的sar成像方法
CN108107430A (zh) * 2017-11-09 2018-06-01 北京理工大学 一种基于分数阶傅立叶变换的舰船目标isar成像方法
CN111598115A (zh) * 2019-02-21 2020-08-28 兰州交通大学 一种基于交叉皮质神经网络模型的sar影像融合方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042283B1 (fr) * 2015-10-09 2019-07-19 Thales Methode de traitement d'une image radar de type sar et methode de detection de cible associee
CN111551934A (zh) * 2020-05-07 2020-08-18 东南大学 一种用于无人机载sar成像的运动补偿自聚焦方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610492A (zh) * 2016-12-27 2017-05-03 哈尔滨工业大学 基于rd算法的时频域混合校正距离徙动的sar成像方法
CN108107430A (zh) * 2017-11-09 2018-06-01 北京理工大学 一种基于分数阶傅立叶变换的舰船目标isar成像方法
CN111598115A (zh) * 2019-02-21 2020-08-28 兰州交通大学 一种基于交叉皮质神经网络模型的sar影像融合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于混合式SAR/ISAR的舰船目标成像技术研究;阚学超;《中国优秀硕士学位论文全文数据库》;20180215;论文第4章第4.3节 *
复杂运动目标SAR/ISAR成像算法研究;曹蕊;《中国优秀硕士学位论文全文数据库》;20210115;论文第5章 *

Also Published As

Publication number Publication date
CN113777608A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN109035152B (zh) 一种合成孔径雷达图像非局部均值滤波方法
Martorella et al. ISAR based technique for refocusing non-cooperative targets in SAR images
Hajduch et al. Airborne high-resolution ISAR imaging of ship targets at sea
US6088295A (en) Feature imaging and adaptive focusing for synthetic aperture processor
KR101652395B1 (ko) 기동표적에 대한 isar 영상의 수직거리 스케일링 기법
CN102590812A (zh) 基于调频连续波的sar实时成像方法
CN109324315B (zh) 基于双层次块稀疏性的空时自适应处理雷达杂波抑制方法
CN114384520B (zh) 一种机动平台对海面船只精细化雷达成像方法
Kim Focusing of high range resolution profiles of moving targets using stepped frequency waveforms
CN110456351B (zh) 基于时变幅值lfm信号参数估计的机动目标isar成像方法
CN110133648B (zh) 一种选取逆合成孔径雷达船只成像时窗的方法
CN109655819B (zh) 一种基于实孔径多普勒波束锐化的杂波抑制三维成像方法
CN111781595A (zh) 基于匹配搜索和多普勒解模糊的复杂机动群目标成像方法
Lee et al. Classification of ISAR images using variable cross-range resolutions
CN108107427A (zh) 基于超分辨技术的机载/弹载阵列雷达前视成像方法
CN114371478A (zh) 基于单天线系统的机载雷达对舰船目标三维成像方法
CN113777608B (zh) 基于多普勒中心估计的机载sar预处理方法
CN112836707B (zh) 一种isar图像空中目标长度特征提取方法
Al-Rawi et al. Algorithms for the detection of first bottom returns and objects in the water column in sidescan sonar images
CN101846741B (zh) 一种逆合成孔径雷达成像数据段选择方法
Rice et al. Model based ISAR ship classification
CN113156435A (zh) 一种基于嵌入式gpu的弹载sar前侧视时域成像方法
CN113805176B (zh) 基于锐度分析和成像投影平面选取的最优成像时间段选取方法
Cao et al. An improved clean algorithm for isar
Li et al. Doppler keystone transform for SAR imaging of moving targets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant