CN113769790B - 一种羧基功能化ILs@MOFs复合材料及其制备方法和应用 - Google Patents

一种羧基功能化ILs@MOFs复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113769790B
CN113769790B CN202111091967.1A CN202111091967A CN113769790B CN 113769790 B CN113769790 B CN 113769790B CN 202111091967 A CN202111091967 A CN 202111091967A CN 113769790 B CN113769790 B CN 113769790B
Authority
CN
China
Prior art keywords
composite material
ionic liquid
ligand
carbon dioxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111091967.1A
Other languages
English (en)
Other versions
CN113769790A (zh
Inventor
李玲
罗佳美
陈杰
齐兆洋
叶长燊
王清莲
王晓达
黄智贤
杨臣
邱挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202111091967.1A priority Critical patent/CN113769790B/zh
Publication of CN113769790A publication Critical patent/CN113769790A/zh
Application granted granted Critical
Publication of CN113769790B publication Critical patent/CN113769790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/62Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/64Oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen
    • B01J2540/42Quaternary ammonium groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种羧基功能化ILs@MOFs复合材料及其制备方法和应用。本发明通过Uio型金属有机框架材料的形成和结构特点,利用羧基功能化离子液体的羧基基团与锆及锆金属簇的配位作用,以类配体的形式部分取代Uio型金属有机框架原始配体的方式,将羧基功能化离子液体固载在Uio型金属有机框架材料上。该复合材料除保留了原Uio型金属有机骨架材料的框架结构外,还可以通过调变羧基功能化离子液体的阴离子种类来调控催化剂的活性位点。本发明制备的复合材料能够作为催化剂高效吸附和转化二氧化碳,在二氧化碳和环氧化物的环加成反应中表现出良好的催化活性和稳定性。

Description

一种羧基功能化ILs@MOFs复合材料及其制备方法和应用
技术领域
本发明属于复合材料合成技术领域,具体涉及一种含有羧基的离子液体以类配体的形式通过部分取代金属有机框架的羧基配体来制备功能化复合材料的方法及其在催化二氧化碳和环氧化物环加成反应中的应用。
背景技术
近年来,随着工业的快速发展,越来越多化石燃料的消耗导致大气中二氧化碳含量逐年增加,产生“温室效应”,造成全球变暖,致使地球上原有的生态平衡遭到破坏。为了降低二氧化碳对气候的影响,一方面要通过大力推广节能减排技术,从源头上减少二氧化碳的排放;另一方面要加强二氧化碳资源化利用,变废为宝。近年来,二氧化碳的捕集与转化逐渐成为研究热点[S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2Emissions and Climate Change from Existing Energy Infrastructure, Science,329 (2010) 1330-1333.]。二氧化碳在生产、生活中占有重要的地位(碳酸饮料,舞台烟雾等),也是重要的化工原料,常用于合成各种化工产品,例如:碳酸酯、甲醇、乙酸、环状碳酸酯、可降解聚合物等[T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbondioxide, Chemical Reviews, 107 (2007) 2365-2387.]。其中由二氧化碳和环氧化物环加成反应生成的环状碳酸酯可进一步用来生产润滑脂、电池电解液、化妆品添加剂、碳酸二甲酯等化工产品。该反应副反应少且反应原料价格低廉、原子利用率高,符合“原子经济”和“绿色化学”的双重要求。但是二氧化碳资源化利用过程中也存在着很多限制因素:一方面,工业废气中二氧化碳的浓度低,富集困难;另一方面,二氧化碳具有较高的化学稳定性和动力学惰性。因此,设计合成一种能有效活化二氧化碳的催化剂,是将二氧化碳资源化利用的研究重点。而对于二氧化碳和环氧化物的环加成反应,环氧化物的开环是一个缓慢过程,决定了整个反应的反应速率。因此,设计合成一种既能有效吸附和活化二氧化碳,又能有利促进环氧化物开环的催化剂,是二氧化碳和环氧化物环加成反应生成环状碳酸酯不可或缺的。
离子液体是指完全由阴阳离子组成的熔融盐。其阳离子是有机阳离子,体积相对较大,而阴离子为无机阴离子,体积相对较小,这种体积差异和对称性不匹配导致阴阳离子之间的静电势降低,从而具有了低熔点的特性,因此离子液体在室温下呈现液态。常见的阳离子类型主要是季铵盐类、季磷盐类、咪唑类和吡啶类等,阴离子的主要类型是Cl-1、Br-1、PF6 -1、HSO4 -1等。可以通过共价键键合等方式对阴阳离子进行设计和调变,从而合成具备不同功能的离子液体。但是,离子液体作为催化剂往往与反应体系形成均相体系或者液液两相体系,从而给催化剂的回收、分离和重复使用带来了诸多困难。这就促使离子液体固载化的研究成为现今的一个研究热点。
金属有机骨架材料是一种由金属或者金属簇与含有羧基等配位基团的有机配体通过配位键的方式组装而成的框架材料,其具有规则的网格结构,超高的孔隙率、比表面积,规则的孔道结构,结构性质可调,低的结晶密度以及种类多样等特点,因而被认为是理想的多孔材料。将离子液体与金属有机框架材料相结合制备新型多功能复合材料既有离子液体优点又有金属有机框架材料优良结构特点。目前,有研究者通过浸渍法、毛细血管法等方式将结合。例如,Arshad Aijaz等[ A. Aijaz, T. Akita, H. Yang, Q. Xu, Fromionic-liquid@metal-organic framework composites to heteroatom-decoratedlarge-surface area carbons: superior CO2 and H-2 uptake, ChemicalCommunications, 50 (2014) 6498-6501.]通过在金属-有机框架内浸渍离子液体(ILs),成功地制备了高比表面积均匀氮(N)和硼氮(BN)修饰的纳米孔炭材料(MIL-100(Al))。该催化剂通过简单物理吸附方式,使用过程中存在稳定性差、活性位点易流失等弊端。本发明提出的一种羧基功能化咪唑鎓离子液体原位合成功能化Uio型金属有机框架材料的方法:将羧基功能化咪唑鎓离子液体作为类配体,在合成过程中通过部分取代金属有机骨架材料中原配体,实现功能化离子液体与金属有机骨架材料的配位结合,所制备的离子液体固载金属有机骨架材料具有比表面积大、催化活性高、稳定性好等特点。
发明内容
本发明的主要目的在于提供一种羧基功能化咪唑鎓离子液体通过部分取代羧基配体的方式原位合成功能化Uio型金属有机框架材料(羧基功能化ILs@MOFs复合材料)的制备方法及催化二氧化碳和环氧化物环加成反应的应用。
本发明采用如下技术方案:
一种溶剂热法制备羧基功能化ILs@MOFs复合材料的方法,其方法步骤如下:
(1)将ZrCl4均匀溶解在42~50 ml DMF和3~4 ml 乙酸溶液中,超声约10~30 min后加入有机配体和离子液体类配体,继续超声10~30 min,放入水热合成反应釜中,在110~150℃的烘箱中反应24~36 h;
(2)将步骤(1)反应釜自然冷却至室温后取出液体离心,将沉淀物溶于DMF中,在25~45℃下洗涤2~5 h,反复洗涤3~5次之后离心,将沉淀物溶于甲醇中,在25~45℃下洗涤2~5h,反复洗涤3~5次;
(3)将步骤(2)过滤后的产物在70~110℃烘箱下干燥,即得功能化 (x)ILs@MOFs复合材料。
一种(x)ILs@MOFs复合材料催化二氧化碳和环氧化物环加成反应的应用,其方法如下:首先在高压反应釜中加入转子、一定比例的上述(x)ILs@MOFs材料和环氧化物,再向反应釜充入一定压力的二氧化碳。在温度90~130℃和转速200~400 r/min下反应30~180min,反应结束后将反应釜置于冰水浴中冷却至0℃,释放出釜内多余气体,取出并通过一定方式分离复合材料和产物。复合材料分别用DMF和甲醇进行洗涤3~5次后循环使用。
所述的溶剂热法制备的羧基功能化(x)ILs@MOFs复合材料方法中的有机配体为:
所述的溶剂热法制备的羧基功能化(x)ILs@MOFs复合材料方法中的离子液体类配体为:
所述的溶剂热法制备的羧基功能化(x)ILs@MOFs复合材料方法中的x为:离子液体类配体加入量占总配体(有机配体和离子液体类配体之和)加入量的摩尔分数,为33%~67%。
所述的溶剂热法制备的羧基功能化(x)ILs@MOFs复合材料方法中的ZrCl4与加入的总配体的摩尔量之比为0.5~2:1。
所述的环氧化物加入量与羧基功能化ILs@MOFs复合材料加入量的摩尔比为1:100~3:100。
所述的ILs@MOFs复合材料和产物分离方式为简单的离心分离。
本发明的优点是:成功合成了一种羧基功能化ILs@MOFs复合材料,并应用于催化二氧化碳和环氧化物的环加成反应,能高效吸附和转化二氧化碳,且具有良好的普适性和循环使用性。
附图说明
图1为本发明复合材料制备原理示意图;
图2为实施例1所制备复合材料的红外光谱图;
图3为实施例1所制备复合材料的X射线衍射图。
具体实施方法
通过以下具体的实施例对本发明作进一步阐述,但本发明的保护范围并不限于下列实施例。
实施例1
(1)Uio-66的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入3.4 ml 乙酸,超声溶解 15 min;再加入 1.2 mmol H2BDC,超声20 min。将混合液装入 100 ml 水热合成釜中,在120 ℃反应24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
(2)1,3-二(羧甲基)咪唑溴盐[CH2COOHimCH2COOH]Br的制备
在圆底烧瓶中,依次加入 3.8 g 甘氨酸、2 ml 甲醛、4 ml 乙二醛、4 ml 蒸馏水,将此无色溶液于90 ℃恒温水浴中回流3 h。溶液逐渐变成深棕色,自然冷却至室温后,有大量棕色晶体析出,用无水乙醇将棕色晶体洗涤至淡黄色,真空干燥24 h,即得双羧酸功能化离子液体前驱盐。用适量的 40% 氢溴酸对前驱盐进行酸化,过滤重结晶,得到的晶体或液体即目标产物。
(3)1,3-二(羧甲基)咪唑氯盐[CH2COOHimCH2COOH]Cl的制备
在圆底烧瓶中,依次加入 3.8 g 甘氨酸、2 ml 甲醛、4 ml 乙二醛、4 ml 蒸馏水,将此无色溶液于90 ℃恒温水浴中回流3 h。溶液逐渐变成深棕色,自然冷却至室温后,有大量棕色晶体析出,用无水乙醇将棕色晶体洗涤至淡黄色,真空干燥24 h,即得双羧酸功能化离子液体前驱盐。用适量的 37% 盐酸或浓硫酸对前驱盐进行酸化,过滤重结晶,得到的晶体或液体即目标产物。
实施例2
(1)33%[CH2COOHimCH2COOH]Br@Uio-66复合材料的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入 3.4 ml 乙酸,超声溶解 15 min;再加入 0.8 mmol H2BDC和0.4mmol [CH2COOHimCH2COOH]Br,超声20 min。将混合液装入100 ml 水热合成釜中,在120 ℃反应 24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
(2)50%[CH2COOHimCH2COOH]Br@Uio-66复合材料的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入 3.4 ml 乙酸,超声溶解 15min;再加入 0.6 mmol H2BDC和0.6mmol [CH2COOHimCH2COOH]Br,超声20 min。将混合液装入 100ml 水热合成釜中,在120 ℃反应 24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
(3)67%[CH2COOHimCH2COOH]Br@Uio-66复合材料的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入 3.4 ml 乙酸,超声溶解 15 min;再加入 0.4 mmol H2BDC和0.8 mmol [CH2COOHimCH2COOH]Br,超声20 min。将混合液装入100 ml 水热合成釜中,在120 ℃反应 24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
实施例3
(1)33%[CH2COOHimCH2COOH]Cl@Uio-66复合材料的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入 3.4 ml 乙酸,超声溶解 15 min;再加入 0.8 mmol H2BDC和0.4mmol [CH2COOHimCH2COOH]Cl,超声20 min。将混合液装入100 ml 水热合成釜中,在120 ℃反应 24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
(2)50% [CH2COOHimCH2COOH]Cl@Uio-66复合材料的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入 3.4 ml 乙酸,超声溶解 15 min;再加入 0.6 mmol H2BDC和0.6mmol [CH2COOHimCH2COOH]Cl,超声20 min。将混合液装入100 ml 水热合成釜中,在120 ℃反应 24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
(3)67%[CH2COOHimCH2COOH]Cl@Uio-66复合材料的制备
在48 ml DMF中加入 1.2 mmol ZrCl4,再加入 3.4 ml 乙酸,超声溶解 15 min;再加入 0.4 mmol H2BDC和0.8mmol [CH2COOHimCH2COOH]Cl,超声20 min。将混合液装入100 ml 水热合成釜中,在120 ℃反应 24 h。将反应体系冷却至室温,通过离心分离沉淀。用DMF和甲醇洗涤 3~5 次后在75 ℃烘箱中干燥即得产物。
应用实施例1
首先在高压反应釜中加入转子、0.2 mol环氧化物和一定量催化剂,再向反应釜充入2.2 MPa的二氧化碳。在110 ℃和400 r/min下反应120 min,反应结束后将反应釜置于冰水浴中冷却至0℃,释放出釜内多余气体,取出并离心分离催化剂和产物。催化剂分别用DMF和甲醇进行洗涤3~5次后循环使用。其中环氧化物有环氧丙烷、环氧氯丙烷、环氧丁烷、烯丙基缩水甘油醚、丁基缩水甘油醚、氧化苯乙烯等。本方案中以二氧化碳与环氧丙烷的环加成反应为探针反应,实施例1、实施例2和实施例3中催化剂的催化试验,催化效果如表1所示:
表1 催化剂对环氧丙烷的催化性能
反应条件: PO(0.2 mol),催化剂用量(1.2wt%),T=383 K, P(CO2)=2.2 MPa,t=2.0 h。
[1]:催化剂用量(1.0 mol%);
[2]:[(CH2COOH)2Im]Br ,Uio-66加入量与项目9一致;
[3]:[(CH2COOH)2Im]Cl ,Uio-66加入量与项目12一致。
由表1中项目1可知,没有催化剂反应的情况下,没有产物生成,这是由于二氧化碳具有热力学稳定性和动力学惰性。单独的Uio-66作为催化剂催化环加成反应时,环氧丙烷转化率为11%,碳酸丙烯酯选择性为91%。然而,对比单独Uio-66,单独[(CH2COOH)2Im]Br和[(CH2COOH)2Im]Cl(项目1和项目2)的催化效果明显提高,这是由于“-COOH”和卤素阴离子(Br-和Cl-)的协同作用,但是该类离子液体在后续循环回收利用实验中分离成本高。基于以上的实验,本发明将离子液体通过原位合成的方式部分取代Uio-66原始配体固载在Uio-66上,随着[(CH2COOH)2Im]Br或[(CH2COOH)2Im]Cl固载量的增加,复合材料在二氧化碳和环氧丙烷的环加成反应中催化效果逐渐提高(项目7-项目12),其中在67%[(CH2COOH)2Im]Br@Uio-66的催化下,环氧丙烷的转化率达到98%,且碳酸丙烯酯选择性>99%(项目9)。将Uio-66和离子液体简单物理混合(项目5和项目6),在同样的条件下催化效果分别与项目9和项目12相近,进一步说明了“-COOH”和卤素阴离子的协同作用。
我们进一步将Uio-66和离子液体简单物理混合(项目5和项目6),在同样的条件下催化效果优于单独Uio-66(项目2)和离子液体(项目3和项目4),这说明了“Zr-OH/Zr-OH2”、“-COOH”和卤素阴离子之间具有协同作用;但是催化效果分别略低于项目9和项目12,且离子液体在后续循环实验中难以回收利用。
应用实施例2
由应用实施例1可知,67%[CH2COOHimCH2COOH]Br@Uio-66的催化效果最佳。用该催化剂催化如下不同环氧化物:环氧丙烷、环氧氯丙烷、环氧丁烷、烯丙基缩水甘油醚、丁基缩水甘油醚、氧化苯乙烯、环氧环己烯。首先在高压反应釜中加入转子、0.2 mol环氧化物和1.2 wt% 的(x)ILs@MOFs,再向反应釜充入2.2 MPa的二氧化碳。在110 ℃和400 r/min下反应120 min,反应结束后将反应釜置于冰水浴中冷却至0 ℃,释放出釜内多余气体,取出并离心分离催化剂和产物。67%[CH2COOHimCH2COOH]Br@Uio-66催化不同环氧化物催化试验中,对应环状碳酸酯的产率如表2所示:
表2 67%[CH2COOHimCH2COOH]Br@Uio-66普适性试验中环状碳酸酯的产率
反应条件: 环氧化物(0.2 mol),催化剂用量(1.2 wt%),T=383 K, P(CO2)=2.2MPa,t=2 h。
由表2可知,本发明对脂肪族环氧化物的催化效果优于氧化苯乙烯和环氧环己烯,这是由于苯环和环己环的空间位阻大。
应用实施例3
以应用实施例2中的二氧化碳和环氧丙烷环加成反应作为探针反应,复合材料67%[CH2COOHimCH2COOH]Br@Uio-66的活性重复性试验,重复使用5次,碳酸丙烯酯的转化率如表3所示:
表3 67%[CH2COOHimCH2COOH]Br@Uio-66重复性试验中碳酸丙烯酯的产率
由表3可知,本发明催化剂的循环使用性能良好,使用5次后,环氧丙烷转化率仍为95.06%,仅下降了3%。与单独[(CH2COOH)2Im]Br相比较,67%[(CH2COOH)2Im]Br@Uio-66只需经过简单的离心分离,且催化性能大大提高。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种羧基功能化ILs@MOFs复合材料在催化二氧化碳和环氧化物环加成反应中的应用,其特征在于,首先在高压反应釜中加入转子、羧基功能化ILs@MOFs复合材料和环氧化物,再向反应釜充入二氧化碳,在温度90~130℃和转速200~400 r/min下反应30~180min,反应结束后将反应釜置于冰水浴中冷却至0℃,释放出釜内多余气体,取出并分离复合材料和产物,复合材料分别用DMF和甲醇进行洗涤3~5次后循环使用;所述的环氧化物加入量与羧基功能化ILs@MOFs复合材料加入量的摩尔比为1:100~3:100;所述羧基功能化ILs@MOFs复合材料和产物分离方式为离心分离;
所述羧基功能化ILs@MOFs复合材料的制备方法,包括以下步骤:
(1)将ZrCl4均匀溶解在DMF和乙酸溶液中,超声后加入有机配体和离子液体类配体,继续超声,放入水热合成反应釜中,在110~150℃的烘箱中反应24~36 h;
(2)将步骤(1)反应釜自然冷却至室温后取出液体离心,将沉淀物溶于DMF中进行洗涤离心,再将沉淀物溶于甲醇中进行洗涤离心;
(3)将步骤(2)的产物在70~110℃烘箱下干燥,即得羧基功能化ILs@MOFs复合材料;
所述的有机配体为:
所述的离子液体类配体为:
2.根据权利要求1所述的应用,其特征在于:所述离子液体类配体占总配体的摩尔分数为33%~67%。
3.根据权利要求1所述的应用,其特征在于:所述ZrCl4与加入的总配体的摩尔量之比为0.5~2:1。
4.根据权利要求1所述的应用,其特征在于:步骤(2)中洗涤离心具体为在25~45℃下洗涤2~5 h,反复洗涤3~5次之后离心。
CN202111091967.1A 2021-09-17 2021-09-17 一种羧基功能化ILs@MOFs复合材料及其制备方法和应用 Active CN113769790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111091967.1A CN113769790B (zh) 2021-09-17 2021-09-17 一种羧基功能化ILs@MOFs复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111091967.1A CN113769790B (zh) 2021-09-17 2021-09-17 一种羧基功能化ILs@MOFs复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113769790A CN113769790A (zh) 2021-12-10
CN113769790B true CN113769790B (zh) 2023-10-24

Family

ID=78851814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111091967.1A Active CN113769790B (zh) 2021-09-17 2021-09-17 一种羧基功能化ILs@MOFs复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113769790B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558620B (zh) * 2022-01-28 2024-04-26 沈阳工业大学 金属有机骨架固载离子液体催化剂及其制备方法与应用
CN115090273B (zh) * 2022-07-18 2023-11-14 常州大学 一种用于吸附苯类气体的mil-101/npan复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149002A (zh) * 2015-10-14 2015-12-16 太原理工大学 Zif-8封装氨基离子液体型co2吸附-催化剂及制备方法
CN108816287A (zh) * 2018-05-23 2018-11-16 福州大学 Uio-66原位固载羧基功能化离子液体复合材料及其制备和应用
CN109663614A (zh) * 2019-01-08 2019-04-23 太原理工大学 羧基功能化咪唑离子液体/mil-101复合催化剂及其制备方法
CN110252407A (zh) * 2019-07-09 2019-09-20 福州大学 一种羧基功能化离子液体制备核-壳结构催化剂的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471866B2 (en) * 2019-02-25 2022-10-18 King Fahd University Of Petroleum And Minerals 4,4′-bipyridyl-ethylene MOFs of lead, zinc, or cadmium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149002A (zh) * 2015-10-14 2015-12-16 太原理工大学 Zif-8封装氨基离子液体型co2吸附-催化剂及制备方法
CN108816287A (zh) * 2018-05-23 2018-11-16 福州大学 Uio-66原位固载羧基功能化离子液体复合材料及其制备和应用
CN109663614A (zh) * 2019-01-08 2019-04-23 太原理工大学 羧基功能化咪唑离子液体/mil-101复合催化剂及其制备方法
CN110252407A (zh) * 2019-07-09 2019-09-20 福州大学 一种羧基功能化离子液体制备核-壳结构催化剂的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability;Guorui Cai et al.;《Angewandte Chemie-International Edition》;第56卷;563-567 *
Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides;Luogang Ding et al.;《Inorganic Chemistry》;第56卷;2337-2344 *
Chemically Cross-Linked MOF Membrane Generated from Imidazolium-Based Ionic Liquid-Decorated UiO-66 Type NMOF and Its Application toward CO2 Separation and Conversion;Bingjian Yao et al.;《ACS Applied Materials Interfaces》;第9卷;38919-38930 *
新型双功能咪唑基离子液体与DMAB分别催化CO2转化研究;张倩;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》(第7期);16-30、45-46 *

Also Published As

Publication number Publication date
CN113769790A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN113769790B (zh) 一种羧基功能化ILs@MOFs复合材料及其制备方法和应用
Luo et al. Metallosalen‐based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals
Li et al. Homogeneous and heterogeneous ionic liquid system: promising “ideal catalysts” for the fixation of CO2 into cyclic carbonates
Yuan et al. Pyridyl ionic liquid functionalized ZIF-90 for catalytic conversion of CO 2 into cyclic carbonates
Dai et al. Cross-linked polymer grafted with functionalized ionic liquid as reusable and efficient catalyst for the cycloaddition of carbon dioxide to epoxides
Zhang et al. Facile syntheses of ionic polymers for efficient catalytic conversion of CO2 to cyclic carbonates
CN103495437A (zh) 一种负载型离子液体催化剂及其制备和应用
Zhang et al. Thermally activated construction of open metal sites on a Zn-organic framework: An effective strategy to enhance Lewis acid properties and catalytic performance for CO2 cycloaddition reactions
Zou et al. Polyamine-functionalized imidazolyl poly (ionic liquid) s for the efficient conversion of CO 2 into cyclic carbonates
Sharifzadeh et al. Construction of hierarchically chiral metal–organic frameworks for fast and mild asymmetric catalysis
Jamil et al. Emerging ionic polymers for CO2 conversion to cyclic carbonates: an overview of recent developments
CN114437364B (zh) 金属耦合三嗪多孔有机框架及其构筑方法和催化co2与环氧化物耦合制备环状碳酸酯应用
Li et al. Nanoarchitectonics of polymeric crown-ether analog of Tröger base combined with potassium iodide and acids synergy in fixation of CO2 and epoxides
Appaturi et al. ImX-MCM-41 (X= Cl, Br and I): Active catalysts for the solvent free synthesis of phenyl glycidyl carbonate
Kim et al. Ni 2 (BDC) 2 (DABCO) metal–organic framework for cyclic carbonate synthesis from CO 2 and epoxides (BDC= 1, 4-benzendicarboxylic acid, DABCO= 1, 4-diazabicyclo [2.2. 2] octane)
Ju et al. Highly stable and versatile conjugated microporous polymer for heterogeneous catalytic applications
KR101536351B1 (ko) 아연함유 금속유기골격체를 촉매로 사용한 5원환 탄산염 화합물의 제조방법
Mariyaselvakumar et al. Direct hydrogenation of CO2-rich scrubbing solvents to formate/formic acid over heterogeneous Ru catalysts: A sustainable approach towards continuous integrated CCU
WO2009067863A1 (fr) Catalyseur d'oxydation asymétrique ayant une structure supramoléculaire et sa préparation
Gupta Cyclic carbonates: Treasure of fine chemicals obtained from waste stream CO2 over carbon-based heterogeneous catalysts
Feng et al. Catalytic performance of Co 1, 3, 5-benzenetricarboxylate in the conversion of CO 2 to cyclic carbonates
Zhou et al. Ionic Porous Organic Polymer Loaded with Zn (II) Ions for Efficient Cycloaddition of CO2 and Epoxides to Cyclic Carbonate
Yang et al. In Situ Anchoring of Small-Sized Silver Nanoparticles on Porphyrinic Triazine-Based Frameworks for the Conversion of CO2 into α-Alkylidene Cyclic Carbonates with Outstanding Catalytic Activities under Ambient Conditions
CN108568316B (zh) 一类高稳定锆基手性催化剂及制备方法与其应用
CN111732736A (zh) 一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant