CN113764196B - 一种五硫化九铜/氧化铁复合电极材料及其制备方法 - Google Patents

一种五硫化九铜/氧化铁复合电极材料及其制备方法 Download PDF

Info

Publication number
CN113764196B
CN113764196B CN202111128516.0A CN202111128516A CN113764196B CN 113764196 B CN113764196 B CN 113764196B CN 202111128516 A CN202111128516 A CN 202111128516A CN 113764196 B CN113764196 B CN 113764196B
Authority
CN
China
Prior art keywords
electrode material
pentasulfide
oxide composite
super
composite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111128516.0A
Other languages
English (en)
Other versions
CN113764196A (zh
Inventor
雷晓东
雒佳欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111128516.0A priority Critical patent/CN113764196B/zh
Publication of CN113764196A publication Critical patent/CN113764196A/zh
Application granted granted Critical
Publication of CN113764196B publication Critical patent/CN113764196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供了一种五硫化九铜/氧化铁复合电极材料及其制备方法,本发明通过对比硫化铜和硫化铁的溶度积常数Ksp的显著区别,即铜离子和亚铁离子共存的情况下优先形成硫化铜,在专门配制的醋酸铜、醋酸亚铁和硫脲、乙二醇和水的混合反应溶液中,通过控制反应的条件,一步得到五硫化九铜和三氧化二铁的复合物。其化学式表示为Cu9S5/Fe2O3,其结构为30‑70nm左右的微球形。该材料比表面积大,在14.03‑14.62m2g‑1,因此有利于电解质与电化学活性组分充分接触具有优良的超电容性能,涂覆在集流体上可以作为超级电容器电极材料。有望在超级电容器乃至其它储能器件的电极材料中具有广泛的应用价值。

Description

一种五硫化九铜/氧化铁复合电极材料及其制备方法
技术领域:
本发明涉及一种金属硫化物/金属氧化物复合电极材料及其制备方法,具体涉及五硫化九铜/氧化铁复合电极材料及其制备方法。
背景技术:
在过去的很长一段时间中,为了满足人口快速增长和全球变暖所带来的能量需求,大力发展可持续能源和强大的能量存储器件越来越多地受到人们的广泛关注。在能量存储器件中,由于具有高能量密度,快速充放电速度以及较好的循环稳定性,使得超级电容器在补偿甚至替代电池这一方面的前景越来越明显。为了获得理想的能量密度,根据E=1/2CV2,我们需要考虑到两个方面:电容(C)和电压窗口(V)。因此,构造具有高电容和宽电压窗口的电极材料至关重要。在最近十年的研究中,我们发现性能优秀的正极材料已经有了很多的研究,但是相比而言,负极材料严重受限于很低的电容,难以和正极匹配。基于这样的缺点,我们希望能够制造出一种性能良好的负极材料来解决这一致命缺点。
基于储能机理,可以将超级电容器分为两种类型,一是电化学双电层机理,另一种是赝电容机理。传统的电化学双电层机理通过表面离子吸附/脱附储能,而赝电容是通过在电极表面发生氧化还原反应进行储能的,因此通过赝电容机理储能可以储存更多的电荷。一般而言,赝电容材料包括过渡金属氧化物、过渡金属氢氧化物、过渡金属硫化物以及导电聚合物,例如Fe2O3,Co3O4,NiMn LDH,PANI,Cu9S5等。
在这些过渡金属氧化物材料中,因为Fe2O3成本低、晶体结构稳定、存在多种用于可逆氧化还原反应的氧化态,并且理论容量高等优点,储量丰富的Fe2O3被认为是一种最有前景的电极材料之一。但是Fe2O3导电性差导致反应缓慢极大的限制了其在储能领域中的应用。经过研究人员的不懈努力,通过设计新颖的Fe2O3电极材料可以在一定程度上解决这个问题,包括构造特殊纳米结构的Fe2O3以及Fe2O3复合材料。在这些方法中,构造Fe2O3基的复合电极材料是一种可以大幅度提升Fe2O3导电性和容量的方法。
文献Electrochimica Acta,2021,381,138245,通过两步反应构造出海胆状的Fe2O3/Mxene超级电容器负极材料,但是所获得的比电容不高,在1A/g时只有486.3F/g,这就限制了这一材料的应用。
文献ACS Appl.Mater.Interfaces,2015,7(49),27518-25,成功的构造了Fe3O4@Fe2O3核壳纳米棒阵列,并取得了1206F/cm2的大电容值,但是其经过了两步复杂的结构化过程,最终材料的导电性却不高。
因此,为了改善电极材料的导电性和比电容等问题,基于复合材料的两种活性物质之间存在一种特殊的协同效应,可以形成特殊的电子结构,进而提升材料的电化学性能,所以我们希望构建一种金属氧化物/金属硫化物的复合物。我们发现金属硫化物Cu9S5具有优良的导电性和高比容量,因此我们选择通过一步水热法构造Cu9S5/Fe2O3纳米复合材料,希望能够有望被广泛应用到超级电容器负极材料中。
发明内容:
本发明的目的是提供一种五硫化九铜/氧化铁复合电极材料及其制备方法,该材料可用作超级电容器等储能器件的电极材料。
本发明所述的五硫化九铜/氧化铁复合电极材料,化学式表示为Cu9S5/Fe2O3,为30-70nm左右的微球形纳米复合材料,其形状不十分规整,但球与球堆叠形成空隙,使得材料处于介孔范围,有利于电化学性能的提升。
本发明采用一步水热法,在恰当的温度下,获得球状五硫化九铜/氧化铁复合电极材料。该电极材料具有良好的超电容性能,可应用于超级电容器电极材料。
本发明提供的Cu9S5/Fe2O3复合电极材料的制备方法,具体步骤如下:
A.在室温下,将醋酸铜、醋酸亚铁和硫脲按摩尔比1:1:1.5-6的比例加入乙二醇和水的混合溶液中,剧烈搅拌25-35min,再超声处理30-60min,得到均匀的黑色混合溶液A,其中醋酸铜的浓度为0.02-0.08M;所述的乙二醇和水的混合溶液中乙二醇和水按2-3:1的体积比混合。
B.将混合溶液A转移到聚四氟乙烯内衬的高压反应釜中,在160-190℃温度下,反应8-14h;较佳的是在170-180℃温度下,反应8-11h;冷却、分离、洗涤;在50-60℃下真空干燥8-24h,得到Cu9S5/Fe2O3复合材料,其外形为30-70nm的微球状结构。
本发明的特点是,巧妙地通过对比硫化铜和硫化铁的溶度积常数Ksp的显著区别,即铜离子和亚铁离子共存的情况下优先形成硫化铜,因此,在恰当的溶液中,通过控制反应的条件,一步得到五硫化九铜和三氧化二铁的复合物,而不是硫化铜和硫化铁的复合物。
对得到的Cu9S5/Fe2O3复合材料进行表征和应用性能测试,结果见图1-8
图1是实施例1制备的Cu9S5/Fe2O3复合材料的扫描电子显微镜(SEM)表征,由图可见,其为微球状固体颗粒,表面略显粗糙,其直径为50nm左右。
图2是实施例1制备的Cu9S5/Fe2O3复合材料的X射线衍射(XRD)表征,由图可见,分别出现了Cu9S5和Fe2O3的相关衍射峰,说明该材料为Cu9S5/Fe2O3复合材料。
图3是实施例1制备的Cu9S5/Fe2O3复合材料的透射电子显微镜(TEM)表征,由图可见,Cu9S5/Fe2O3纳米复合材料为50nm左右的实心结构。
图4是实施例3制备的Cu9S5/Fe2O3复合材料的扫描电子显微镜(SEM)表征,由图可见,其为微球状固体颗粒,表面略显粗糙,其直径为40nm左右。
图5是实施例5制备的Cu9S5/Fe2O3复合材料的扫描电子显微镜(SEM)表征,由图可见,其为微球状固体颗粒,表面略显粗糙,颗粒直径为40nm左右。
图6是实施例1制备的Cu9S5/Fe2O3复合材料电极在1mol/L的KOH电解液中的循环伏安曲线,扫描速率分别为30mV/s、50mV/s、70mV/s、100mV/s、150mV/s、200mV/s。由图可见,出现了明显的氧化还原特征峰,甚至在200mV/s的大扫描速率下也依然存在,这说明材料的可逆性很好。
图7是实施例1制备的Cu9S5/Fe2O3复合材料电极在1mol/L的KOH电解液中不同电流密度下的充放电曲线,充放电过程是在-1.2-0V之间进行,比电容可以由比电容C的计算公式得到。在电流密度分别为1、2、3、4、5A/g时,比电容分别为1504.1、930.8、753.9、683.2、645.5F/g(电极活性组分为0.005g)。
图8是实施例1制备的Cu9S5/Fe2O3复合材料电极在1mol/L的KOH电解液中的充放电倍率曲线,由图可见,随着电流密度的增加,比电容值降低,随着电流密度由1A/g增加到3A/g,比电容值降为初试的50.12%,增加到5A/g是,比电容值降为初试的42.92%,说明该电极材料在高充放电速率条件下仍具有较为理想的比电容值,这说明复合结构存在的协同作用提升了材料的电化学性能。
本发明的有益效果:本发明在特定的温度下,一步水热法制备Cu9S5/Fe2O3复合材料,该材料比表面积大,在14.03-14.62m2 g-1,因此有利于电解质与电化学活性组分充分接触,加速氧化还原反应的发生,进而提升了电化学性能,该电极材料具有较好的超电容性能,比电容值1269.4-1504.1F/g,倍率性能在37.5-42.92%。该方法操作简单,快速,成本低;制备的Cu9S5/Fe2O3复合材料有望在超级电容器乃至其它储能器件的电极材料中具有广泛的应用价值。
附图说明
图1是实施例1制备的Cu9S5/Fe2O3的扫描电子显微镜(SEM)表征。
图2是实施例1制备的Cu9S5/Fe2O3的X射线衍射(XRD)表征。
图3是实施例1制备的Cu9S5/Fe2O3的透射电子显微镜(TEM)表征。
图4是实施例3制备的Cu9S5/Fe2O3的扫描电子显微镜(SEM)表征。
图5是实施例5制备的Cu9S5/Fe2O3的扫描电子显微镜(SEM)表征。
图6是实施例1制备的Cu9S5/Fe2O3电极的循环伏安曲线。
图7是实施例1制备的Cu9S5/Fe2O3电极在不同电流密度下的充放电曲线。
图8是实施例1制备的Cu9S5/Fe2O3电极的充放电倍率曲线。
具体实施方式
实施例1
A.将2mmol的醋酸铜和2mmol的醋酸亚铁以及6mmol的硫脲在乙二醇和水的混合溶液中混合后,在室温下,经过30min剧烈的磁力搅拌,之后再进行60min的超声处理,得到均匀的黑色溶液;
B.将步骤A得到溶液转移到聚四氟乙烯内衬的高压反应釜中,保持在温度180℃,经过10h反应彻底后,经过冷却、分离、洗涤,在60℃下真空干燥24h,即可得到最终的Cu9S5/Fe2O3复合材料。其粒径为50nm,比表面积为14.62m2 g-1
对得到的Cu9S5/Fe2O3进行电化学性能测试:
将5mg Cu9S5/Fe2O3与40~50μL浓度为5%Nafion溶液(粘接剂)和1ml乙醇充分混合,涂覆在1×1cm2泡沫镍表面,烘干得到电极材料。以该电极材料为工作电极,在1mol/L的KOH电解液中,在-1.2-0V电压窗口下,分别进行循环伏安、充放电、充放电倍率等测试,结果见图6-8.
实施例2
A.将1mmol的醋酸铜和1mmol的醋酸亚铁以及6mmol的硫脲在乙二醇和水的混合溶液中混合后,在室温下,经过30min剧烈的磁力搅拌,之后再进行60min的超声处理,得到均匀的黑色溶液;
B.将步骤A得到溶液转移到聚四氟乙烯内衬的高压反应釜中,保持在温度180℃,经过10h反应彻底后,经过冷却、分离、洗涤后,在60℃下真空干燥10h,即可得到最终的Cu9S5/Fe2O3复合材料;其粒径为40nm,比表面积为14.03m2 g-1
实施例3
A.将4mmol的醋酸铜和4mmol的醋酸亚铁以及6mmol的硫脲在乙二醇和水的混合溶液中混合后,在室温下,经过30min剧烈的磁力搅拌,之后再进行30min的超声处理,得到均匀的黑色溶液;
B.将步骤A得到溶液转移到聚四氟乙烯内衬的高压反应釜中,保持在温度180℃,经过11h反应彻底后,经过冷却、分离、洗涤后,在60℃下真空干燥18h,即可得到最终的Cu9S5/Fe2O3复合材料;其粒径为40nm,比表面积为14.26m2 g-1
实施例4
A.将2mmol的醋酸铜和2mmol的醋酸亚铁以及6mmol的硫脲在乙二醇和水的混合溶液中混合后,在室温下,经过30min剧烈的磁力搅拌,之后再进行60min的超声处理,得到均匀的黑色溶液;
B.将步骤A得到溶液转移到聚四氟乙烯内衬的高压反应釜中,保持在温度160℃,经过10h反应彻底后,经过冷却、分离、洗涤后,在55℃下真空干燥8h,即可得到最终的Cu9S5/Fe2O3复合材料;其粒径为50nm,比表面积为14.55m2 g-1
实施例5
A.将2mmol的醋酸铜和2mmol的醋酸亚铁以及6mmol的硫脲在乙二醇和水的混合溶液中混合后,在室温下,经过30min剧烈的磁力搅拌,之后再进行60min的超声处理,得到均匀的黑色溶液;
B.将步骤A得到溶液转移到聚四氟乙烯内衬的高压反应釜中,保持在温度190℃,经过8h反应彻底后,经过冷却、分离、洗涤后,在60℃下真空干燥10h,即可得到最终的Cu9S5/Fe2O3复合材料;其粒径为50nm,比表面积为14.60m2 g-1

Claims (3)

1.一种五硫化九铜/氧化铁复合电极材料的制备方法,其特征是按照如下具体步骤制备:
A.在室温下,将醋酸铜、醋酸亚铁和硫脲按摩尔比1:1 :1.5-6的比例加入乙二醇和水的混合溶液中,剧烈搅拌25-35 min,再超声处理30-60 min,得到均匀的黑色混合溶液A,其中醋酸铜的浓度为0.02-0.08M;
所述的乙二醇和水的混合溶液中乙二醇和水按2-3:1的体积比混合;
B.将混合溶液A转移到聚四氟乙烯内衬的高压反应釜中,在温度为160-190 ℃,反应8-14 h;冷却、分离、洗涤;在50-60 ℃下真空干燥8-24 h,得到Cu9S5/Fe2O3复合材料,其外形为微球状结构,直径为30-70 nm。
2.根据权利要求1所述的五硫化九铜/氧化铁复合电极材料的制备方法,其特征是步骤B的反应条件是在170-180℃,反应8-11 h。
3. 一种根据权利要求1所述的方法制备的五硫化九铜/氧化铁复合电极材料,其特征是该材料的化学式表示为Cu9S5/Fe2O3,其是直径为30-70 nm的实心微球,形状不十分规整,球与球堆叠形成空隙。
CN202111128516.0A 2021-09-26 2021-09-26 一种五硫化九铜/氧化铁复合电极材料及其制备方法 Active CN113764196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111128516.0A CN113764196B (zh) 2021-09-26 2021-09-26 一种五硫化九铜/氧化铁复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111128516.0A CN113764196B (zh) 2021-09-26 2021-09-26 一种五硫化九铜/氧化铁复合电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113764196A CN113764196A (zh) 2021-12-07
CN113764196B true CN113764196B (zh) 2022-12-27

Family

ID=78797461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111128516.0A Active CN113764196B (zh) 2021-09-26 2021-09-26 一种五硫化九铜/氧化铁复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113764196B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106924734B (zh) * 2017-03-31 2020-07-07 温州大学 一种海胆状结构的硫化铋-硫化亚铜异质结复合材料及其制备方法和应用
CN107399717B (zh) * 2017-08-02 2020-08-28 东北大学 用于电池负极的Cu9S5@C纳米复合材料的制备方法
CN109326456B (zh) * 2018-11-15 2020-04-28 长春工业大学 一种超级电容器及其制备方法

Also Published As

Publication number Publication date
CN113764196A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
Li et al. Reduced CoNi2S4 nanosheets with enhanced conductivity for high-performance supercapacitors
Devi et al. Performance of bismuth-based materials for supercapacitor applications: A review
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Wang et al. Highly stable three-dimensional nickel–cobalt hydroxide hierarchical heterostructures hybridized with carbon nanotubes for high-performance energy storage devices
Liu et al. Microwave synthesis of sodium nickel-cobalt phosphates as high-performance electrode materials for supercapacitors
Tang et al. A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance
Wang et al. Urchin-like Ni1/3Co2/3 (CO3) 0.5 OH· 0.11 H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes
Peng et al. Construction of facile ion and electron diffusion by hierarchical core-branch Zn substituted Ni–Co–S nanocomposite for high-performance asymmetric supercapacitors
Younas et al. Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor
Yi et al. ZnS nanoparticles as the electrode materials for high-performance supercapacitors
Guo et al. Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode
Wang et al. NiCo2S4 nanoparticles anchoring on polypyrrole nanotubes for high-performance supercapacitor electrodes
Zhao et al. Electrostatic force-driven anchoring of Ni (OH) 2 nanocrystallites on single-layer MoS2 for high-performance asymmetric hybrid supercapacitors
Liu et al. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors
Xu et al. Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor
Wu et al. Conductive carbon spheres-supported nickel-cobalt selenide nanoparticles as a high-performance and long-life electrode for supercapacitors
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Zhang et al. 3D hetero-nanostructured electrode constructed on carbon fiber paper with 2D 1T-MoS2/1D Cu (OH) 2 for flexible asymmetric solid-state supercapacitors
Ma et al. Facile synthesis clusters of sheet-like Ni3S4/CuS nanohybrids with ultrahigh supercapacitor performance
Hao et al. Hydrothermal synthesis of MWCNT/Ni-Mn-S composite derived from bimetallic MOF for high-performance electrochemical energy storage
Zhang et al. Construction of hierarchical NiCoSe@ CoS core–shell nanotube arrays for high-performance hybrid supercapacitor
Chen et al. Unique hollow-concave CoMoSx boxes with abundant mesoporous structure for high-performance hybrid supercapacitors
Zhang et al. Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors
Feng et al. Facile synthesis of nickel cobalt layered double hydroxide nanosheets intercalated with sulfate anion for high-performance supercapacitor
Chen et al. High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant