CN113763356A - 一种基于可见光与红外图像融合的目标检测方法 - Google Patents
一种基于可见光与红外图像融合的目标检测方法 Download PDFInfo
- Publication number
- CN113763356A CN113763356A CN202111048113.5A CN202111048113A CN113763356A CN 113763356 A CN113763356 A CN 113763356A CN 202111048113 A CN202111048113 A CN 202111048113A CN 113763356 A CN113763356 A CN 113763356A
- Authority
- CN
- China
- Prior art keywords
- module
- fusion
- image
- visible light
- fused
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 91
- 238000001514 detection method Methods 0.000 title claims abstract description 72
- 238000005070 sampling Methods 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 13
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 101100441251 Arabidopsis thaliana CSP2 gene Proteins 0.000 claims description 6
- 101100222094 Arabidopsis thaliana CSP4 gene Proteins 0.000 claims description 6
- 102100027557 Calcipressin-1 Human genes 0.000 claims description 6
- 101100247605 Homo sapiens RCAN1 gene Proteins 0.000 claims description 6
- 101150064416 csp1 gene Proteins 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000007547 defect Effects 0.000 abstract description 5
- 230000008569 process Effects 0.000 description 7
- 238000007500 overflow downdraw method Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20064—Wavelet transform [DWT]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111048113.5A CN113763356A (zh) | 2021-09-08 | 2021-09-08 | 一种基于可见光与红外图像融合的目标检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111048113.5A CN113763356A (zh) | 2021-09-08 | 2021-09-08 | 一种基于可见光与红外图像融合的目标检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113763356A true CN113763356A (zh) | 2021-12-07 |
Family
ID=78793824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111048113.5A Pending CN113763356A (zh) | 2021-09-08 | 2021-09-08 | 一种基于可见光与红外图像融合的目标检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113763356A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023155387A1 (zh) * | 2022-02-15 | 2023-08-24 | 上海芯物科技有限公司 | 多传感器目标检测方法、装置、电子设备以及存储介质 |
CN118470641A (zh) * | 2024-05-22 | 2024-08-09 | 鸣飞伟业技术有限公司 | 基于图像识别的船舶超载判定方法及装置 |
CN118470641B (zh) * | 2024-05-22 | 2024-10-22 | 鸣飞伟业技术有限公司 | 基于图像识别的船舶超载判定方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103544539A (zh) * | 2013-10-12 | 2014-01-29 | 国家电网公司 | 一种基于人工神经网络和d-s证据理论的用户变化量预测方法 |
CN108647182A (zh) * | 2018-05-11 | 2018-10-12 | 河南科技大学 | 一种证据理论中基于可分配确定度的概率转换方法 |
CN111832513A (zh) * | 2020-07-21 | 2020-10-27 | 西安电子科技大学 | 基于神经网络的实时足球目标检测方法 |
CN112766188A (zh) * | 2021-01-25 | 2021-05-07 | 浙江科技学院 | 一种基于改进yolo算法的小目标行人检测方法 |
CN112949579A (zh) * | 2021-03-30 | 2021-06-11 | 上海交通大学 | 一种基于密集卷积块神经网络的目标融合检测系统及方法 |
CN113255521A (zh) * | 2021-05-26 | 2021-08-13 | 青岛以萨数据技术有限公司 | 一种面向嵌入式平台的双模目标检测方法及系统 |
-
2021
- 2021-09-08 CN CN202111048113.5A patent/CN113763356A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103544539A (zh) * | 2013-10-12 | 2014-01-29 | 国家电网公司 | 一种基于人工神经网络和d-s证据理论的用户变化量预测方法 |
CN108647182A (zh) * | 2018-05-11 | 2018-10-12 | 河南科技大学 | 一种证据理论中基于可分配确定度的概率转换方法 |
CN111832513A (zh) * | 2020-07-21 | 2020-10-27 | 西安电子科技大学 | 基于神经网络的实时足球目标检测方法 |
CN112766188A (zh) * | 2021-01-25 | 2021-05-07 | 浙江科技学院 | 一种基于改进yolo算法的小目标行人检测方法 |
CN112949579A (zh) * | 2021-03-30 | 2021-06-11 | 上海交通大学 | 一种基于密集卷积块神经网络的目标融合检测系统及方法 |
CN113255521A (zh) * | 2021-05-26 | 2021-08-13 | 青岛以萨数据技术有限公司 | 一种面向嵌入式平台的双模目标检测方法及系统 |
Non-Patent Citations (2)
Title |
---|
WEN BOYUAN, ET AL.: ""Study on Pedestrian Detection Based on an Improved YOLOv4 Algorithm"", 《2020 IEEE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS(ICCC)》 * |
白玉等,: ""基于可见光图像和红外图像决策级融合的目标检测算法"", 《 空军工程大学学报(自然科学版)》, vol. 21, no. 6, pages 53 - 59 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023155387A1 (zh) * | 2022-02-15 | 2023-08-24 | 上海芯物科技有限公司 | 多传感器目标检测方法、装置、电子设备以及存储介质 |
CN118470641A (zh) * | 2024-05-22 | 2024-08-09 | 鸣飞伟业技术有限公司 | 基于图像识别的船舶超载判定方法及装置 |
CN118470641B (zh) * | 2024-05-22 | 2024-10-22 | 鸣飞伟业技术有限公司 | 基于图像识别的船舶超载判定方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109584248B (zh) | 基于特征融合和稠密连接网络的红外面目标实例分割方法 | |
CN113052210B (zh) | 一种基于卷积神经网络的快速低光照目标检测方法 | |
CN110675418B (zh) | 一种基于ds证据理论的目标轨迹优化方法 | |
CN111814771B (zh) | 图像处理的方法及装置 | |
CN111986240A (zh) | 基于可见光和热成像数据融合的落水人员检测方法及系统 | |
CN111965636A (zh) | 一种基于毫米波雷达和视觉融合的夜间目标检测方法 | |
CN112686207A (zh) | 一种基于区域信息增强的城市街道场景目标检测方法 | |
CN112149591B (zh) | 用于sar图像的ssd-aeff自动桥梁检测方法及系统 | |
CN113989613A (zh) | 一种应对复杂环境的轻量级高精度船舶目标检测方法 | |
Tuominen et al. | Cloud detection and movement estimation based on sky camera images using neural networks and the Lucas-Kanade method | |
JP2002203240A (ja) | 物体認識装置、物体を認識する方法、プログラムおよび記録媒体 | |
CN115861756A (zh) | 基于级联组合网络的大地背景小目标识别方法 | |
Bustos et al. | A systematic literature review on object detection using near infrared and thermal images | |
CN114821484A (zh) | 机场跑道fod图像检测方法、系统和存储介质 | |
CN113763356A (zh) | 一种基于可见光与红外图像融合的目标检测方法 | |
Gu et al. | Radar-enhanced image fusion-based object detection for autonomous driving | |
Dangle et al. | Enhanced colorization of thermal images for pedestrian detection using deep convolutional neural networks | |
CN117409244A (zh) | 一种SCKConv多尺度特征融合增强的低照度小目标检测方法 | |
CN116051872A (zh) | 一种跨光谱图像的特征点匹配方法 | |
CN113689399B (zh) | 一种用于电网识别遥感图像处理方法及系统 | |
CN113537397B (zh) | 基于多尺度特征融合的目标检测与图像清晰联合学习方法 | |
CN115984568A (zh) | 一种基于YOLOv3网络的雾霾环境下目标检测方法 | |
CN115035429A (zh) | 一种基于复合主干网络和多预测头的航拍目标检测方法 | |
CN114140698A (zh) | 一种基于FasterR-CNN的水系信息提取算法 | |
Chaudhry | SD-YOLO-AWDNet: A hybrid approach for smart object detection in challenging weather for self-driving cars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 330096 No. 88, Minqiang Road, private science and Technology Park, Qingshanhu District, Nanchang City, Jiangxi Province Applicant after: STATE GRID JIANGXI ELECTRIC POWER COMPANY LIMITED Research Institute Applicant after: STATE GRID CORPORATION OF CHINA Applicant after: BEIJING YUHANG INTELLIGENT TECHNOLOGY Co.,Ltd. Address before: 330096 No.88 Minqiang Road, private science and Technology Park, high tech Zone, Nanchang City, Jiangxi Province Applicant before: STATE GRID JIANGXI ELECTRIC POWER COMPANY LIMITED Research Institute Applicant before: STATE GRID CORPORATION OF CHINA Applicant before: BEIJING YUHANG INTELLIGENT TECHNOLOGY Co.,Ltd. |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211207 |