CN113762084A - Building night scene light abnormity detection method based on RetinaXNet - Google Patents
Building night scene light abnormity detection method based on RetinaXNet Download PDFInfo
- Publication number
- CN113762084A CN113762084A CN202110909371.1A CN202110909371A CN113762084A CN 113762084 A CN113762084 A CN 113762084A CN 202110909371 A CN202110909371 A CN 202110909371A CN 113762084 A CN113762084 A CN 113762084A
- Authority
- CN
- China
- Prior art keywords
- image
- formula
- retinaxnet
- follows
- night scene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 60
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000002159 abnormal effect Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 14
- 230000005856 abnormality Effects 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 claims description 33
- 238000012549 training Methods 0.000 claims description 19
- 230000004913 activation Effects 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 9
- 230000004927 fusion Effects 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims 2
- 230000010354 integration Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 11
- 238000013507 mapping Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及一种基于RetinaXNet的建筑夜景灯光异常检测方法,数据集采用均衡化处理,保留图像的纹理信息,降低图像复杂度。RetinaXNet网络的输入模块将视频帧缩减为224*224的图像,主干模块采用改进的残差结构提取图像的轮廓信息,检测头模块采用XNet网络加强信息的整合,进行分类与回归,输出模块按照缩减比例将图像重新恢复成原大小。本发明提出的RetinaXNet网络能够用于检测图像中的故障灯的位置以及故障分类,实现自动化检测异常,提高检测的正确率,降低误检的情况,为建筑夜景异常灯光的检测提供一种可靠的方法。
The invention relates to a RetinaXNet-based building night scene lighting abnormality detection method. The data set adopts equalization processing, retains the texture information of the image, and reduces the complexity of the image. The input module of the RetinaXNet network reduces the video frame to a 224*224 image, the backbone module uses an improved residual structure to extract the contour information of the image, the detection head module uses the XNet network to strengthen the integration of information, perform classification and regression, and the output module follows the reduction Scale restores the image to its original size. The RetinaXNet network proposed by the present invention can be used to detect the position of the fault light in the image and the fault classification, realize automatic abnormal detection, improve the correct rate of detection, reduce the situation of false detection, and provide a reliable method for the detection of abnormal lights in building night scenes. method.
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110909371.1A CN113762084B (en) | 2021-08-09 | 2021-08-09 | RetinaXNet-based building night scene lamplight anomaly detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110909371.1A CN113762084B (en) | 2021-08-09 | 2021-08-09 | RetinaXNet-based building night scene lamplight anomaly detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113762084A true CN113762084A (en) | 2021-12-07 |
CN113762084B CN113762084B (en) | 2024-11-29 |
Family
ID=78788759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110909371.1A Active CN113762084B (en) | 2021-08-09 | 2021-08-09 | RetinaXNet-based building night scene lamplight anomaly detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113762084B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115294456A (en) * | 2022-08-23 | 2022-11-04 | 山东巍然智能科技有限公司 | Building lightening project detection method, equipment and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106709511A (en) * | 2016-12-08 | 2017-05-24 | 华中师范大学 | Urban rail transit panoramic monitoring video fault detection method based on depth learning |
WO2019169895A1 (en) * | 2018-03-09 | 2019-09-12 | 华南理工大学 | Fast side-face interference resistant face detection method |
CN112200019A (en) * | 2020-09-22 | 2021-01-08 | 江苏大学 | A fast building night scene lighting lighting fault detection method |
-
2021
- 2021-08-09 CN CN202110909371.1A patent/CN113762084B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106709511A (en) * | 2016-12-08 | 2017-05-24 | 华中师范大学 | Urban rail transit panoramic monitoring video fault detection method based on depth learning |
WO2019169895A1 (en) * | 2018-03-09 | 2019-09-12 | 华南理工大学 | Fast side-face interference resistant face detection method |
CN112200019A (en) * | 2020-09-22 | 2021-01-08 | 江苏大学 | A fast building night scene lighting lighting fault detection method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115294456A (en) * | 2022-08-23 | 2022-11-04 | 山东巍然智能科技有限公司 | Building lightening project detection method, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN113762084B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111339882B (en) | Power transmission line hidden danger detection method based on example segmentation | |
CN108615226B (en) | An Image Dehazing Method Based on Generative Adversarial Networks | |
CN111784633A (en) | An automatic detection algorithm for insulator defects for power inspection video | |
CN109712127B (en) | A transmission line fault detection method for machine patrol video stream | |
CN116485709A (en) | A Bridge Concrete Crack Detection Method Based on YOLOv5 Improved Algorithm | |
CN114926407A (en) | Steel surface defect detection system based on deep learning | |
CN108596883A (en) | It is a kind of that method for diagnosing faults is slid based on the Aerial Images stockbridge damper of deep learning and distance restraint | |
CN113327255A (en) | Power transmission line inspection image processing method based on YOLOv3 detection, positioning and cutting and fine-tune | |
CN110009601A (en) | Large-Scale Equipment irregular contour detection method of surface flaw based on HOG | |
CN114757925A (en) | Method and system for defect detection of non-contact high-voltage circuit breaker | |
CN117451716A (en) | A method for detecting surface defects of industrial products | |
CN115631407B (en) | Underwater transparent biological detection based on fusion of event camera and color frame image | |
CN113762084B (en) | RetinaXNet-based building night scene lamplight anomaly detection method | |
CN113781388A (en) | Image recognition method and device for hidden dangers of transmission line channel based on image enhancement | |
CN112069894A (en) | A Method for Identifying Strands of Wires Based on Faster-RCNN Model | |
CN114743099A (en) | Method and device for identifying faults of train key components | |
CN107992799B (en) | Preprocessing methods for smoke detection applications | |
CN111310899B (en) | Power defect recognition method based on symbiotic relationship and small sample learning | |
CN112132088A (en) | Inspection point location missing inspection identification method | |
CN117292183A (en) | Power transmission inspection system and method based on image processing | |
CN117671452A (en) | Construction method and system of broken gate detection model of lightweight up-sampling YOLOX | |
CN114998315B (en) | Defect detection model training method and device based on deep learning | |
CN112801072B (en) | A computer vision-based elevator non-leveling door opening fault identification device and method | |
CN116994161A (en) | An insulator defect detection method based on improved YOLOv5 | |
CN117789017A (en) | Attention mechanism-based yolov7 bow net electric spark detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240418 Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Applicant after: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd. Country or region after: China Address before: 212013 No. 301, Xuefu Road, Zhenjiang, Jiangsu Applicant before: JIANGSU University Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20241031 Address after: 334000, No. 2 Luzhou Avenue, Fengxi Street, Guangfeng District, Shangrao City, Jiangxi Province Applicant after: Jiangxi Wangkai Construction Co.,Ltd. Country or region after: China Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Applicant before: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |