CN113762020A - 一种基于矩阵结构深度神经网络的公路路面裂缝检测系统 - Google Patents
一种基于矩阵结构深度神经网络的公路路面裂缝检测系统 Download PDFInfo
- Publication number
- CN113762020A CN113762020A CN202110124640.3A CN202110124640A CN113762020A CN 113762020 A CN113762020 A CN 113762020A CN 202110124640 A CN202110124640 A CN 202110124640A CN 113762020 A CN113762020 A CN 113762020A
- Authority
- CN
- China
- Prior art keywords
- crack
- network
- matrix
- image
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 60
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000012549 training Methods 0.000 claims abstract description 15
- 238000012360 testing method Methods 0.000 claims abstract description 12
- 238000000605 extraction Methods 0.000 claims abstract description 10
- 238000013135 deep learning Methods 0.000 claims abstract description 7
- 238000003062 neural network model Methods 0.000 claims abstract description 4
- 238000010200 validation analysis Methods 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 14
- 230000011218 segmentation Effects 0.000 claims description 11
- 238000005457 optimization Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 5
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 3
- 230000001629 suppression Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 2
- 238000002372 labelling Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000012423 maintenance Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110124640.3A CN113762020B (zh) | 2021-02-01 | 2021-02-01 | 一种基于矩阵结构深度神经网络的公路路面裂缝检测系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110124640.3A CN113762020B (zh) | 2021-02-01 | 2021-02-01 | 一种基于矩阵结构深度神经网络的公路路面裂缝检测系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113762020A true CN113762020A (zh) | 2021-12-07 |
CN113762020B CN113762020B (zh) | 2024-03-22 |
Family
ID=78786539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110124640.3A Active CN113762020B (zh) | 2021-02-01 | 2021-02-01 | 一种基于矩阵结构深度神经网络的公路路面裂缝检测系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113762020B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114322793A (zh) * | 2022-03-16 | 2022-04-12 | 科大天工智能装备技术(天津)有限公司 | 基于全局分割网络的工件尺寸测量方法、装置及存储介质 |
CN117875549A (zh) * | 2023-12-29 | 2024-04-12 | 昆明理工大学 | 一种基于图像识别的建筑遗产保护评估系统和方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101926561B1 (ko) * | 2018-03-13 | 2018-12-07 | 연세대학교 산학협력단 | 블랙박스 영상을 이용한 딥러닝 기반의 패치 단위 도로 크랙 검출 장치 및 그 방법, 그리고 이 방법을 실행시키기 위해 컴퓨터가 판독 가능한 기록매체에 저장된 컴퓨터 프로그램 |
CN111127449A (zh) * | 2019-12-25 | 2020-05-08 | 汕头大学 | 一种基于编码器-解码器的自动化裂缝检测方法 |
-
2021
- 2021-02-01 CN CN202110124640.3A patent/CN113762020B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101926561B1 (ko) * | 2018-03-13 | 2018-12-07 | 연세대학교 산학협력단 | 블랙박스 영상을 이용한 딥러닝 기반의 패치 단위 도로 크랙 검출 장치 및 그 방법, 그리고 이 방법을 실행시키기 위해 컴퓨터가 판독 가능한 기록매체에 저장된 컴퓨터 프로그램 |
CN111127449A (zh) * | 2019-12-25 | 2020-05-08 | 汕头大学 | 一种基于编码器-解码器的自动化裂缝检测方法 |
Non-Patent Citations (1)
Title |
---|
孙朝云;马志丹;李伟;郝雪丽;申浩;: "基于深度卷积神经网络融合模型的路面裂缝识别方法", 长安大学学报(自然科学版), no. 04 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114322793A (zh) * | 2022-03-16 | 2022-04-12 | 科大天工智能装备技术(天津)有限公司 | 基于全局分割网络的工件尺寸测量方法、装置及存储介质 |
CN114322793B (zh) * | 2022-03-16 | 2022-07-15 | 科大天工智能装备技术(天津)有限公司 | 基于全局分割网络的工件尺寸测量方法、装置及存储介质 |
CN117875549A (zh) * | 2023-12-29 | 2024-04-12 | 昆明理工大学 | 一种基于图像识别的建筑遗产保护评估系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113762020B (zh) | 2024-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dan et al. | Evaluation of asphalt pavement texture using multiview stereo reconstruction based on deep learning | |
Li et al. | Automatic recognition and analysis system of asphalt pavement cracks using interleaved low-rank group convolution hybrid deep network and SegNet fusing dense condition random field | |
CN108898085B (zh) | 一种基于手机视频的道路病害智能检测方法 | |
Zalama et al. | Road crack detection using visual features extracted by Gabor filters | |
CN114693615A (zh) | 一种基于域适应的深度学习混凝土桥梁裂缝实时检测方法 | |
CN103955923B (zh) | 一种快速的基于图像的路面病害检测方法 | |
CN113256082A (zh) | 一种隧道掌子面智能地质素描及地质评价方法 | |
Dong et al. | Innovative method for pavement multiple damages segmentation and measurement by the Road-Seg-CapsNet of feature fusion | |
CN117422699B (zh) | 公路检测方法、装置、计算机设备及存储介质 | |
CN111241994A (zh) | 一种深度学习的遥感影像农村公路砂化路段的提取方法 | |
Dong et al. | Intelligent segmentation and measurement model for asphalt road cracks based on modified mask R-CNN algorithm | |
CN111896549A (zh) | 一种基于机器学习的建筑物裂缝监测系统和方法 | |
CN109034073B (zh) | 预测建筑拆除废弃物产生量的方法、系统、设备及介质 | |
CN113762020B (zh) | 一种基于矩阵结构深度神经网络的公路路面裂缝检测系统 | |
Wang et al. | Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings | |
CN117932763B (zh) | 基于数字孪生的高速公路交通模型构建方法 | |
CN114419421A (zh) | 一种基于影像的地铁隧道裂缝识别系统及方法 | |
Luo et al. | Using deep learning-based defect detection and 3D quantitative assessment for steel deck pavement maintenance | |
CN115204686A (zh) | 基于面向用户感知体验的城市街道设计品质评价方法 | |
Salari et al. | Pavement distress evaluation using 3D depth information from stereo vision | |
Tayo et al. | Portable crack width calculation of concrete road pavement using machine vision | |
CN118941526A (zh) | 一种道路裂缝检测方法、介质及产品 | |
Xing et al. | A lightweight detection method of pavement potholes based on binocular stereo vision and deep learning | |
CN118776479A (zh) | 一种融合机器视觉与边缘计算的桥梁健康监测方法 | |
Shao et al. | Crack detection and measurement using PTZ camera–based image processing method on expressways |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Gang Inventor after: Peng Yaxue Inventor after: Chen Yongqiang Inventor after: Deng Zhihao Inventor after: Lan Dongchao Inventor after: Dai Yu Inventor after: Zhang Shuailong Inventor after: Li Xiyuan Inventor before: Li Gang Inventor before: Chen Yongqiang Inventor before: Deng Zhihao Inventor before: Lan Dongchao Inventor before: Dai Yu Inventor before: Zhang Shuailong Inventor before: Li Xiyuan |
|
GR01 | Patent grant | ||
GR01 | Patent grant |