CN113759753B - Simulation debugging system based on digital twin platform - Google Patents
Simulation debugging system based on digital twin platform Download PDFInfo
- Publication number
- CN113759753B CN113759753B CN202111014626.4A CN202111014626A CN113759753B CN 113759753 B CN113759753 B CN 113759753B CN 202111014626 A CN202111014626 A CN 202111014626A CN 113759753 B CN113759753 B CN 113759753B
- Authority
- CN
- China
- Prior art keywords
- simulation
- robot
- point
- program
- button
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 230000033001 locomotion Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 9
- 238000012986 modification Methods 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims 1
- 230000037430 deletion Effects 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 238000012795 verification Methods 0.000 abstract description 4
- 238000005493 welding type Methods 0.000 abstract 1
- 238000003466 welding Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
Description
技术领域technical field
本发明涉及数字生产辅助技术领域,尤其是涉及一种基于数字孪生平台的仿真调试系统。The invention relates to the technical field of digital production assistance, in particular to a simulation debugging system based on a digital twin platform.
背景技术Background technique
数字孪生的概念由美国MichaelGrieves教授于2003年提出,当前的研究和应用主要集中于航空航天和汽车制造等领域的产品设计、制造车间建模、产品装配、产品质量分析和寿命预测等,并作为面向智能制造的新兴技术引起了广泛重视。数字孪生技术是以数字化的方式建立物理实体的虚拟模型,借助数据模拟物理实体在实体环境中的行为,通过虚实交互反馈、数据融合分析、决策迭代优化等手段,实现物理世界和信息世界的融合。运用数字孪生技术,可以集成复杂的制造工艺,实现“产品设计-产品制造-产品维护”的全生命周期的优化。随着物联网、大数据、云计算等新一代计算机技术的快速发展,实现了物理世界和信息世界之间的互通互联,数字孪生车间概念也应运而生,主要是借助与物理实体等价的数字模型对物理车间的实际生产过程进行仿真,并基于车间数字模型开展工艺设计、智能制造单元调度、排产等任务,基于网络互联与数据共享对智能化制造单元进行有效地集成和管控,实现各生产环节之间信息交互和统筹管理,从而达到有效提高产品组装质量和降低生产成本的目的。The concept of digital twins was proposed by Professor Michael Grieves of the United States in 2003. The current research and application mainly focus on product design, manufacturing workshop modeling, product assembly, product quality analysis and life prediction in the fields of aerospace and automobile manufacturing. Emerging technologies for intelligent manufacturing have attracted widespread attention. Digital twin technology is to establish a virtual model of a physical entity in a digital way, use data to simulate the behavior of a physical entity in a physical environment, and realize the integration of the physical world and the information world through means such as virtual-real interactive feedback, data fusion analysis, and decision-making iterative optimization. . Using digital twin technology, complex manufacturing processes can be integrated to realize the optimization of the entire life cycle of "product design-product manufacturing-product maintenance". With the rapid development of new-generation computer technologies such as the Internet of Things, big data, and cloud computing, the interconnection between the physical world and the information world has been realized. The model simulates the actual production process of the physical workshop, and based on the digital model of the workshop, tasks such as process design, intelligent manufacturing unit scheduling, and production scheduling are carried out, and intelligent manufacturing units are effectively integrated and controlled based on network interconnection and data sharing. Information exchange and overall management between production links, so as to effectively improve product assembly quality and reduce production costs.
目前,焊接工艺,往往是从工艺设计到加工现场执行的单向信息传递,当焊接过程中出现异常时,不能对焊接工艺进行实时调整,很容易产生焊接缺陷。且面对生产加工多样化需求,多种产品和设备在生产过程中需要多次换型,而每次换型时的参数设置也均需要调整,故亟须设计出一个用于换型仿真调试,对提高焊接质量具有重大意义。At present, the welding process is often a one-way information transmission from process design to processing site execution. When an abnormality occurs during the welding process, the welding process cannot be adjusted in real time, and welding defects are likely to occur. In addition, in the face of diverse needs in production and processing, various products and equipment need to be changed multiple times during the production process, and the parameter settings for each changeover also need to be adjusted, so it is urgent to design a model for simulation debugging , which is of great significance to improve the welding quality.
发明内容Contents of the invention
为了有效解决上面所述的换型时参数设定问题,本发明提出了一种基于数字孪生平台的仿真调试系统。In order to effectively solve the above-mentioned parameter setting problem during model change, the present invention proposes a simulation debugging system based on a digital twin platform.
具体采用的技术方案如下:The specific technical scheme adopted is as follows:
本发明所述的一种基于数字孪生平台的仿真调试系统,在数字孪生平台新增机器人离线仿真系统,构建满足所述数字孪生平台主框架要求的虚拟场景,UI面板和脚本代码,将所述机器人离线仿真系统集成到所述数字孪生平台中;所述机器人离线仿真系统至少包括智能控制模块,中心控制模块,离线调试模块和系统设置模块。其中,A simulation debugging system based on a digital twin platform according to the present invention adds a robot offline simulation system to the digital twin platform, constructs a virtual scene that meets the requirements of the main frame of the digital twin platform, UI panels and script codes, and converts the The robot offline simulation system is integrated into the digital twin platform; the robot offline simulation system at least includes an intelligent control module, a central control module, an offline debugging module and a system setting module. in,
所述智能控制模块包括:主界面,用于显示生产信息,生产数据,设备状态,质量统计;状态监控界面,用于查看历史报警数据和操作日志;以及全屏显示,用于同时显示数字孪生界面及监控界面。The intelligent control module includes: a main interface for displaying production information, production data, equipment status, and quality statistics; a state monitoring interface for viewing historical alarm data and operation logs; and a full-screen display for simultaneously displaying a digital twin interface and monitoring interface.
所述中心控制模块包括:整机控制单元,用于整机开启时的智能控制及参数设置;所述参数设置至少包括上料参数配置单元,用于上料制成和状态控制;加工参数配置单元,用于显示和设置加工时机器的进程参数和加工状态控制。The central control module includes: a complete machine control unit for intelligent control and parameter setting when the complete machine is turned on; the parameter setting includes at least a feeding parameter configuration unit for feeding and state control; processing parameter configuration The unit is used to display and set the machine process parameters and process status control during processing.
所述离线调试模块用于设置与所述系统连接的PLC的配置参数,所述配置参数包括示教机器人点位配置数据,离线仿真配置数据和点位替换上传数据。The off-line debugging module is used to set the configuration parameters of the PLC connected to the system, and the configuration parameters include teaching robot point configuration data, off-line simulation configuration data and point replacement upload data.
和所述系统设置模块,包括:修改密码界面,用于管理用户密码;账号管理,用于增加或删除用户信息;切换用户登录管理界面和程序关闭按钮。And the system setting module, including: password modification interface, used to manage user passwords; account management, used to add or delete user information; switch user login management interface and program close button.
其中,所述虚拟场景为从所述数字孪生平台的在线虚实同步模块中加载的全部或者部分设备三维模型;所述虚拟空间为实际车间设备的数字化映射显示Wherein, the virtual scene is all or part of the equipment three-dimensional model loaded from the online virtual-real synchronization module of the digital twin platform; the virtual space is the digital mapping display of the actual workshop equipment
进一步的,点击所述离线调试模块,在全屏显示中显示至少包括:右侧区的操作面板,左侧区的仿真信息栏,和呈现在全屏中间区域的虚拟空间,所述虚拟空间为所述虚拟场景中实际车间设备的数字化映射的显示区。Further, click on the offline debugging module, and the display in the full screen display at least includes: the operation panel in the right area, the simulation information bar in the left area, and the virtual space presented in the middle area of the full screen, the virtual space is the The display area of the digital twin of the actual workshop equipment in the virtual scene.
其中,所述操作面板,还包括:Wherein, the operation panel also includes:
机器人名称切换键,点击下拉框进行切换视角操作机器人。Robot name switching key, click the drop-down box to switch the viewing angle to operate the robot.
关节角度配置区,包括通过输入关节角度示教,点动示教和滚动条示教进行关节示教参数配置;以及通过点动步进调节按钮进行步进大小调整。Joint angle configuration area, including joint teaching parameter configuration through input joint angle teaching, jog teaching and scroll bar teaching; and step size adjustment through jog step adjustment buttons.
拖拽器按钮,通过点击拖拽器按钮生成,在所选操作机器人上生成拖拽器,按住拖拽器按钮的三个轴箭头进行机器人单方向的拖动示教。The dragger button is generated by clicking the dragger button, and a dragger is generated on the selected operating robot. Press and hold the three axis arrows of the dragger button to drag and teach the robot in one direction.
以及笛卡尔坐标显示区域,用于显示当前操作机器人的笛卡尔坐标信息,及进行笛卡尔坐标上的点动示教。And the Cartesian coordinate display area, which is used to display the Cartesian coordinate information of the currently operating robot, and perform jog teaching on Cartesian coordinates.
进一步的,所述操作面板,还包括:Further, the operation panel also includes:
点位操作区,包括:记录点位按钮,重命名点位,删除点位和保存点位;其中,在点位示教完成后,点击所述记录点位按钮进行记录示教好的点位,点击选中表格中记录的任意一个点位,机器人则自动跳转至该点位置,该点位字体会变成绿色,拖动表头边框可调整某列的显示宽度;点击所述重命名点位进行点位重命名;点击删除点位进行点位删除,如果点位被机器人运动指令引用则不可删除;以及在新记录示教点位后需要点击仿真信息界面,则点击保存点位进行保存磁盘操作。Point operation area, including: record point button, rename point, delete point and save point; among them, after the point teaching is completed, click the record point button to record the taught point , click to select any point recorded in the table, the robot will automatically jump to the point, the font of the point will turn green, drag the border of the table header to adjust the display width of a column; click the rename point point to rename the point; click delete point to delete the point, if the point is referenced by the robot motion command, it cannot be deleted; and after the new record teaching point needs to click on the simulation information interface, click save point to save disk operations.
其中,所述仿真信息栏,还包括:机器人点位,机器人末端工具和仿真程序;其中机器人点位中的点位信息与操作面板记录的点位保持一致,所述机器人末端工具显示机器人可用的机器人夹具,所述仿真程序显示已有的仿真程序。Wherein, the simulation information column also includes: robot point, robot end tool and simulation program; wherein the point information in the robot point is consistent with the point recorded on the operation panel, and the robot end tool displays the robot's available Robot gripper, the simulation program shows the existing simulation program.
点击所述机器人末端工具,则打开需要切换工具的机器人树节点,点击选中需要显示或卸载的工具节点,右键弹出菜单,选择卸载工具或装载工具。Click the robot end tool to open the robot tree node that needs to switch tools, click to select the tool node that needs to be displayed or uninstalled, right-click to pop up a menu, and select Uninstall Tool or Load Tool.
所述仿真信息栏,还包括:产品型号按钮,点击所述产品型号按钮时,则弹出显示产品型号切换对话框,选择需要显示的产品模型确认后场景将显示选择的产品模型。The simulation information bar also includes: a product model button. When the product model button is clicked, a product model switching dialog box pops up, and the product model to be displayed is selected and confirmed. After confirmation, the selected product model will be displayed in the scene.
和新建程序按钮,点击所述新建程序按钮选择已有的标准仿真程序作为模板新建仿真程序,或者选择空白选项新建空白仿真程序;将完成新建的程序按钮保存后,点击对应的仿真程序弹出菜单选项包括仿真运行,重命名和删除选项进行选择;当选择仿真运行时,则弹出仿真播放控制器,选择需要仿真的机器人,点击播放按钮,被选择的机器人则按照设定的仿真程序运动;当选择重命名时则进行重命名操作;当点击删除选项时则将当前运行程序删除;and the New Program button, click the New Program button to select an existing standard simulation program as a template to create a new simulation program, or select the blank option to create a new blank simulation program; after saving the newly created program button, click the corresponding simulation program pop-up menu option Including simulation run, rename and delete options for selection; when the simulation run is selected, the simulation playback controller will pop up, select the robot to be simulated, click the play button, and the selected robot will move according to the set simulation program; When renaming, the renaming operation will be performed; when the delete option is clicked, the current running program will be deleted;
以及上传信息按钮,所述仿真程序通过上传信息按钮进行选择对应的程序并上传至系统。And an upload information button, the simulation program selects the corresponding program through the upload information button and uploads it to the system.
进一步的,所述选择空白选项新建空白仿真程序,还包括以下步骤:Further, the selection of the blank option to create a new blank simulation program also includes the following steps:
S1:选择空白选项新建仿真程序;S1: Select the blank option to create a new simulation program;
S2:点击选中需要添加指令的机器人,右键弹出添加指令菜单;S2: Click to select the robot that needs to add instructions, and right click to pop up the add instruction menu;
S3:添加SetToolLink指令设置仿真工具,然后按运动轨迹添加运动指令和工具动作,确认相应的起点,终点和仿真速度;其中,SetToolLink指令为设置工具指令;S3: Add the SetToolLink command to set the simulation tool, then add motion commands and tool actions according to the motion trajectory, and confirm the corresponding starting point, end point and simulation speed; among them, the SetToolLink command is the tool setting command;
S4:点击保存按钮,存储当前新增程序;并点击右键程序进行仿真运行播放,查看效果;或进行属性修改;或进行指令信息删。S4: Click the save button to store the current newly added program; and right-click the program to simulate, run and play to view the effect; or modify properties; or delete command information.
其中,所述新建空白仿真程序与点位替换操作,包括以下步骤:Wherein, the new blank simulation program and the point replacement operation include the following steps:
SS1:记录需要替换的新点位;SS1: Record the new point that needs to be replaced;
SS2:选择标准仿真程序作为模板新建仿真程序;SS2: Select the standard simulation program as a template to create a new simulation program;
SS3:展开新建的仿真程序,其中,采用黄色标志可修改起点终点的指令,点击选中任一个黄色指令右键弹出修改指令属性菜单,点击修改属性选项,将终点替换成新记录的点位;SS3: Expand the newly created simulation program, among which, the start point and end point can be modified by using the yellow mark. Click to select any yellow command and right-click to pop up the modification command attribute menu. Click the modify attribute option to replace the end point with the newly recorded point;
SS4:点击保存按钮保存当前设置,并通过中心控制模块内选择新增的可上传仿真程序进行点位上传。SS4: Click the save button to save the current settings, and upload the points through the newly added uploadable simulation program in the central control module.
综上所述,本发明提供一种基于数字孪生平台的仿真调试系统,通过在数字孪生平台上新增机器人离线仿真模块,在摩擦焊接的换型生产过程中,通过本发明所述系统进行机器人程序点位的重新对位,及对虚拟机器人模型仿真验证,通过在数字孪生系统中机器人离线调试界面重新规划机器人运动轨迹,并进行仿真验证,通过集成上料PLC控制系统中工件参数设定信息,在数字孪生平台上将仿真后的机器人程序替换原有程序,实现快速换型。In summary, the present invention provides a simulation debugging system based on a digital twin platform. By adding a robot offline simulation module on the digital twin platform, in the production process of friction welding, the system of the present invention performs robot The re-alignment of the program points and the simulation verification of the virtual robot model, re-plan the robot trajectory through the offline debugging interface of the robot in the digital twin system, and perform simulation verification, and integrate the workpiece parameter setting information in the loading PLC control system , replace the original program with the simulated robot program on the digital twin platform to achieve quick changeover.
附图说明Description of drawings
图1 为本发明所述的基于数字孪生平台的仿真调试系统平台示意图。Fig. 1 is a schematic diagram of a simulation debugging system platform based on a digital twin platform according to the present invention.
图2为关节示教界面。Figure 2 is the joint teaching interface.
图3为拖拽器示例图。Figure 3 is an example diagram of the dragger.
图4为新建仿真程序对话框。Figure 4 shows the new simulation program dialog box.
图5为仿真程序右键操作示例图。Figure 5 is an example diagram of the right-click operation of the simulation program.
图6为仿真播放控制器示例图。Fig. 6 is an example diagram of a simulated playback controller.
图7为程序上传对话框。Figure 7 is the program upload dialog box.
图8为添加指令菜单。Figure 8 is the menu for adding commands.
图9为添加MoveJ指令示例。Figure 9 is an example of adding a MoveJ command.
图10为指令修改右键菜单。Figure 10 shows the instruction modification right-click menu.
图11为展开复制的仿真程序。Figure 11 is the simulation program for unfolding and duplication.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明所述一种基于数字孪生平台的仿真调试系统,是通过在数字孪生平台新增机器人离线仿真系统,构建满足所述数字孪生平台主框架要求的虚拟场景,UI面板和脚本代码,将所述机器人离线仿真系统集成到所述数字孪生平台中。According to the present invention, a simulation debugging system based on a digital twin platform is to build a virtual scene that meets the requirements of the main frame of the digital twin platform by adding a robot offline simulation system on the digital twin platform, UI panels and script codes, and convert all The robot offline simulation system is integrated into the digital twin platform.
其中,所述机器人离线仿真系统至少包括:智能控制模块,中心控制模块,离线调试模块和系统设置模块,具体为:Wherein, the robot offline simulation system at least includes: an intelligent control module, a central control module, an offline debugging module and a system setting module, specifically:
具体的,所述智能控制模块包括:主界面,用于显示生产信息,生产数据,设备状态,质量统计;状态监控界面,用于查看历史报警数据和操作日志;以及全屏显示,用于同时显示数字孪生界面及监控界面。Specifically, the intelligent control module includes: a main interface for displaying production information, production data, equipment status, and quality statistics; a status monitoring interface for viewing historical alarm data and operation logs; and a full-screen display for simultaneously displaying Digital twin interface and monitoring interface.
所述中心控制模块包括:整机控制单元,用于整机开启时需要的控制及参数设置;接头上料位单元,用于显示接头上料位的控制及控制状态;杆体上料位单元,用于显示杆体上料位的控制及控制状态;焊机单元,用于显示焊机的控制及控制状态。The central control module includes: the whole machine control unit, which is used for the control and parameter setting required when the whole machine is turned on; the joint upper material level unit, which is used to display the control and control status of the joint upper material level; the rod body upper material level unit, It is used to display the control and control state of the material level on the rod body; the welding unit is used to display the control and control state of the welding machine.
所述离线调试模块用于设置与所述系统连接的PLC的配置参数,所述配置参数包括示教机器人点位配置数据,离线仿真配置数据和点位替换上传数据。The off-line debugging module is used to set the configuration parameters of the PLC connected to the system, and the configuration parameters include teaching robot point configuration data, off-line simulation configuration data and point replacement upload data.
和所述系统设置模块,包括:修改密码界面,用于管理用户密码;账号管理,用于增加或删除用户信息;切换用户登录管理界面和程序关闭按钮。And the system setting module, including: password modification interface, used to manage user passwords; account management, used to add or delete user information; switch user login management interface and program close button.
进一步的,点击所述离线调试模块,在全屏显示中显示至少包括(如图1所示):右侧区的操作面板,左侧区的仿真信息栏,和呈现在全屏中间区域的虚拟空间,所述虚拟空间为所述虚拟场景中实际车间设备的数字化映射的显示区。Further, click the offline debugging module, and the display in the full-screen display includes at least (as shown in Figure 1): the operation panel in the right area, the simulation information bar in the left area, and the virtual space presented in the middle area of the full screen, The virtual space is a display area of digital mapping of actual workshop equipment in the virtual scene.
其中,所述虚拟场景为从所述数字孪生平台的在线虚实同步模块中加载的全部或者部分设备三维模型;所述虚拟空间为实际车间设备的数字化映射显示。Wherein, the virtual scene is all or part of the equipment three-dimensional model loaded from the online virtual-real synchronization module of the digital twin platform; the virtual space is the digital mapping display of the actual workshop equipment.
具体的,在右侧区的操作面板中,还包括:Specifically, the operation panel in the right area also includes:
机器人名称切换键,点击下拉框进行切换视角操作机器人。Robot name switching key, click the drop-down box to switch the viewing angle to operate the robot.
关节角度配置区,包括通过输入关节角度示教,点动示教和滚动条示教进行关节示教参数配置;以及通过点动步进调节按钮进行步进大小调整, 如图2所示,可选的,通过关节角度栏进行输入关节角度示教、点动示教、滚动条示教。如在01栏的关节角度输入区进行关节角度值键入,或通过其右侧的滑动条进行角度调整;在02栏进行角度减少或增加点动的调整;03栏则为拖动滚动条示教的调整。还可以在点动步进栏进行步进的大小调整。Joint angle configuration area, including joint teaching parameter configuration by inputting joint angle teaching, jog teaching and scroll bar teaching; and step size adjustment by jog step adjustment buttons, as shown in Figure 2, If selected, input joint angle teaching, jog teaching, and scroll bar teaching through the joint angle column. For example, enter the joint angle value in the joint angle input area of
如图3所示,拖拽器按钮,通过点击拖拽器按钮生成,在所选操作机器人上生成拖拽器,按住拖拽器按钮的三个轴箭头进行机器人单方向的拖动示教。As shown in Figure 3, the dragger button is generated by clicking the dragger button, and the dragger is generated on the selected operating robot. Press and hold the three axis arrows of the dragger button to drag and teach the robot in one direction. .
以及笛卡尔坐标显示区域,用于显示当前操作机器人的笛卡尔坐标信息,及进行笛卡尔坐标上的点动示教。And the Cartesian coordinate display area, which is used to display the Cartesian coordinate information of the currently operating robot, and perform jog teaching on Cartesian coordinates.
进一步的,在右侧区的操作面板中,还包括:点位操作区,包括:记录点位按钮,重命名点位,删除点位和保存点位;其中,在点位示教完成后,点击所述记录点位按钮进行记录示教好的点位,点击选中表格中记录的任意一个点位,机器人则自动跳转至该点位置,该点位字体会变成绿色,拖动表头边框可调整某列的显示宽度;点击所述重命名点位进行点位重命名;点击删除点位进行点位删除,如果点位被机器人运动指令引用则不可删除;以及在新记录示教点位后需要点击仿真信息界面,则点击保存点位进行保存磁盘操作。Further, the operation panel in the right area also includes: point operation area, including: record point button, rename point, delete point and save point; among them, after the point teaching is completed, Click the record point button to record the taught point, click to select any point recorded in the table, the robot will automatically jump to the point, the font of the point will turn green, drag the header The border can adjust the display width of a certain column; click the rename point to rename the point; click delete point to delete the point, if the point is referenced by the robot motion command, it cannot be deleted; and in the new record teaching point After clicking the simulation information interface, click the save point to save the disk operation.
在左侧区的所述仿真信息栏,还包括:机器人点位,机器人末端工具和仿真程序;其中机器人点位中的点位信息与操作面板记录的点位保持一致,所述机器人末端工具显示机器人可用的机器人夹具,所述仿真程序显示已有的仿真程序。The simulation information column in the left area also includes: robot point, robot end tool and simulation program; wherein the point information in the robot point is consistent with the point recorded on the operation panel, and the robot end tool displays The robot gripper available for the robot, the simulation program shows the existing simulation program.
进一步的,点击所述机器人末端工具,则打开需要切换工具的机器人树节点,点击选中需要显示或卸载的工具节点,右键弹出菜单,选择卸载工具或装载工具。Further, click on the robot terminal tool to open the robot tree node that needs to switch tools, click to select the tool node that needs to be displayed or uninstalled, right-click to pop up a menu, and select Uninstall Tool or Load Tool.
所述仿真信息栏,还包括:产品型号按钮,点击所述产品型号按钮时,则弹出显示产品型号切换对话框,选择需要显示的产品模型确认后场景将显示选择的产品模型;The simulation information bar also includes: a product model button. When the product model button is clicked, a product model switching dialog box pops up, and the selected product model will be displayed in the scene after confirmation of the product model to be displayed;
和新建程序按钮,点击所述新建程序按钮选择已有的标准仿真程序作为模板新建仿真程序,或者选择空白选项新建空白仿真程序,其中,选择空白新建的程序不可进行点位上传;如图4所示,点击所述新建程序按钮,弹出新建仿真程序对话框,如选择1M73Standard作为模板新建仿真程序,将完成新建的程序按钮保存后,右击对应的仿真程序弹出菜单选项包括仿真运行,重命名和删除选项进行选择(如图5所示);当选择仿真运行时,则弹出仿真播放控制器(如图6所示),选择需要仿真的机器人,点击播放按钮,被选择的机器人则按照设定的仿真程序运动,其中,仿真播放控制器显示时其他界面按钮不可点击,点击“x”按钮退出可恢复。当选择重命名时则进行重命名操作;当点击删除选项时则将当前运行程序删除。and the New Program button, click the New Program button to select an existing standard simulation program as a template to create a new simulation program, or select the blank option to create a new blank simulation program, wherein, the blank new program cannot be uploaded; as shown in Figure 4 If you select 1M73Standard as the template to create a new simulation program, after saving the newly created program button, right-click the corresponding simulation program and the pop-up menu options include simulation run, rename and Delete the option to select (as shown in Figure 5); when the simulation is selected to run, the simulation playback controller will pop up (as shown in Figure 6), select the robot to be simulated, click the play button, the selected robot will follow the settings The simulation program movement, in which, when the simulation playback controller is displayed, other interface buttons cannot be clicked, and it can be restored by clicking the "x" button to exit. When renaming is selected, the renaming operation will be performed; when the delete option is clicked, the currently running program will be deleted.
以及上传信息按钮,所述仿真程序通过上传信息按钮进行选择对应的程序并上传至系统,如图7所示,上传的点位信息包括编号,点位描述,位置信息,配置信息,及角度信息,并以表格形式呈现,点击确认键则可以进行上传。And the upload information button, the simulation program selects the corresponding program through the upload information button and uploads it to the system, as shown in Figure 7, the uploaded point information includes number, point description, position information, configuration information, and angle information , and present it in the form of a table, click the OK button to upload.
所述选择空白选项新建空白仿真程序,还包括以下步骤:The selection of the blank option to create a new blank simulation program also includes the following steps:
S1:选择空白选项新建仿真程序。S1: Select the blank option to create a new simulation program.
S2:点击选中需要添加指令的机器人,右键弹出添加指令菜单,如图8所示,其中,其中:MoveJ指令为关节运动指令;MoveL指令为线性运动指令;Pause指令为暂停指令;Config指令为配置点位指令,该指令不影响仿真运动;SetToolLink指令为设置工具指令;ToolAction指令为工具运动指令。其中,MoveL指令需保证起点与终点的姿态一致(欧拉角一致),否则可能导致程序崩溃。S2: Click to select the robot that needs to add instructions, and right click to pop up the add instruction menu, as shown in Figure 8, where: the MoveJ instruction is a joint movement instruction; the MoveL instruction is a linear movement instruction; the Pause instruction is a pause instruction; the Config instruction is a configuration Point instruction, this instruction does not affect the simulation motion; SetToolLink instruction is a tool setting instruction; ToolAction instruction is a tool movement instruction. Among them, the MoveL command needs to ensure that the attitudes of the starting point and the ending point are consistent (the Euler angles are consistent), otherwise the program may crash.
S3:添加SetToolLink指令设置仿真工具,然后按运动轨迹添加运动指令和工具动作,确认相应的起点,终点和仿真速度;其中,SetToolLink指令为设置工具指令;例如:需要Fanuc机器人从A点关节运动到B点,可添加MoveJ指令,如图9所示。S3: Add the SetToolLink command to set the simulation tool, then add motion commands and tool actions according to the motion trajectory, and confirm the corresponding starting point, end point and simulation speed; among them, the SetToolLink command is a tool setting command; for example: the Fanuc robot needs to move from point A joint to At point B, a MoveJ command can be added, as shown in Figure 9.
S4:点击保存按钮,存储当前新增程序;并点击右键程序进行仿真运行播放,查看效果;如果需要调整指令,可点击选中当前指令右键弹出修改菜单(如图10所示),选择 “修改属性”选项弹出修改对话框,进行属性修改;选择“删除指令”选项可删除指令。S4: Click the save button to save the current newly added program; and right click the program to simulate and play to view the effect; if you need to adjust the command, you can click to select the current command and right click to pop up the modification menu (as shown in Figure 10), select "Modify Properties " option pops up a modification dialog box to modify properties; select the "Delete Instruction" option to delete the instruction.
进一步出,所述新建空白仿真程序与点位替换操作,包括以下步骤:Further, the operation of creating a new blank simulation program and point replacement includes the following steps:
SS1:记录需要替换的新点位;SS1: Record the new point that needs to be replaced;
SS2:选择标准仿真程序作为模板新建仿真程序;SS2: Select the standard simulation program as a template to create a new simulation program;
SS3:展开新建的仿真程序,如图11所示,其中,采用黄色标志可修改起点终点的指令,点击选中任一个黄色指令右键弹出修改指令属性菜单,点击修改属性选项,将终点替换成新记录的点位;SS3: Expand the newly created simulation program, as shown in Figure 11, among them, use the yellow mark to modify the start point and end point commands, click to select any yellow command and right-click to pop up the command attribute menu, click the Modify property option, and replace the end point with a new record point;
SS4:点击保存按钮保存当前设置,并通过中心控制模块内选择新增的可上传仿真程序进行点位上传。SS4: Click the save button to save the current settings, and upload the points through the newly added uploadable simulation program in the central control module.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111014626.4A CN113759753B (en) | 2021-08-31 | 2021-08-31 | Simulation debugging system based on digital twin platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111014626.4A CN113759753B (en) | 2021-08-31 | 2021-08-31 | Simulation debugging system based on digital twin platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113759753A CN113759753A (en) | 2021-12-07 |
CN113759753B true CN113759753B (en) | 2023-03-24 |
Family
ID=78792185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111014626.4A Active CN113759753B (en) | 2021-08-31 | 2021-08-31 | Simulation debugging system based on digital twin platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113759753B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114692425B (en) * | 2022-04-18 | 2023-08-01 | 武汉理工大学 | Welding robot simulation method, system, equipment and medium based on digital twin technology |
CN115148064A (en) * | 2022-06-23 | 2022-10-04 | 广东三向智能科技股份有限公司 | Intelligent factory simulation device of virtual simulation teaching system |
CN114879536B (en) * | 2022-07-11 | 2022-09-16 | 山东交通学院 | Method and device for acquiring real-time characteristics of suspension system based on digital twinning technology |
CN115365717A (en) * | 2022-08-26 | 2022-11-22 | 四川物通科技有限公司 | Production line welding equipment optimization auxiliary system and method based on digital twin platform |
CN115877736B (en) * | 2023-02-03 | 2024-02-06 | 广东工业大学 | Digital twinning-based multi-robot collaborative operation simulation monitoring method |
CN117621090B (en) * | 2024-01-25 | 2024-05-14 | 青岛创新奇智科技集团股份有限公司 | Industrial robot control method and system and industrial robot |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105786483B (en) * | 2016-01-05 | 2019-01-08 | 南京熊猫电子股份有限公司 | Welding robot off-line programing system and its off-line programing method based on tablet computer |
CN107832497B (en) * | 2017-10-17 | 2018-08-28 | 广东工业大学 | A kind of intelligence workshop fast custom design method and system |
CN111221312B (en) * | 2020-02-27 | 2020-10-09 | 广东工业大学 | Optimization method and system of robot in production line and application in digital twin |
CN112198812B (en) * | 2020-09-21 | 2023-01-03 | 东南大学 | Simulation and control method and system of micro-assembly production line based on digital twinning |
CN112347586A (en) * | 2020-11-12 | 2021-02-09 | 上海电气液压气动有限公司 | System for digitally twinning a hydraulic system |
CN112487668B (en) * | 2020-12-21 | 2021-07-13 | 广东工业大学 | A near-physical simulation integrated debugging method and system based on digital twin |
CN113050649B (en) * | 2021-03-24 | 2023-11-17 | 西安科技大学 | Digital twin-driven inspection robot remote control system and method |
CN113110328B (en) * | 2021-04-14 | 2023-04-11 | 大连亚明汽车部件股份有限公司 | Production process full-period intelligent workshop system based on digital twin technology and solution method |
-
2021
- 2021-08-31 CN CN202111014626.4A patent/CN113759753B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113759753A (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113759753B (en) | Simulation debugging system based on digital twin platform | |
CN109605366B (en) | Robot graphical programming interaction system and robot | |
CN110497412A (en) | Robot graphic programming interactive system based on webpage and mobile terminal | |
US8447428B2 (en) | Method for editing movements of a robot | |
CN107220099A (en) | A kind of robot visualization virtual teaching system and method based on threedimensional model | |
US20030090491A1 (en) | Simulation device | |
CN111390908B (en) | Webpage-based mechanical arm virtual dragging method | |
US20030023347A1 (en) | Authoring system and authoring method, and storage medium | |
CN104160343B (en) | Multi-axis control system sets/adjusts function auxiliary device | |
JP5479541B2 (en) | Parallel link robot and its operation teaching method | |
CN106794581A (en) | For the system and method for flexible man-machine collaboration | |
KR20160002329A (en) | Robot simulator and file generation method for robot simulator | |
CN102950596B (en) | Parallel link robot and action teaching method thereof | |
CN106846468A (en) | A kind of mechanical arm modeling and motion planning implementation method based on ROS systems | |
US20220395985A1 (en) | Information processing apparatus, information processing method, display apparatus, display method, robot system, article production method, program, and storage medium | |
CN113836702A (en) | Robot teaching programming method and robot teaching programming device | |
Feder et al. | An approach for automatic generation of the URDF file of modular robots from modules designed using SolidWorks | |
CN115877736A (en) | Multi-robot cooperative work simulation monitoring method based on digital twin | |
CN115968456A (en) | Method and system for automatically determining motion data samples for a given robot and its set of surrounding objects | |
JP4668547B2 (en) | Design support system | |
US20220410395A1 (en) | Information processing apparatus, information processing method, display device, display method, robot system, article manufacturing method, and recording medium | |
CN111113426A (en) | A Robot Offline Programming System Based on CAD Platform | |
WO2022254538A1 (en) | Robot simulation device | |
CN111862297A (en) | Visual simulation teaching method of collaborative robot based on Coin3D | |
JPH02176906A (en) | Operating state display, operating instruction controller and controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |