CN113758503A - A process parameter estimation method, device, electronic device and storage medium - Google Patents

A process parameter estimation method, device, electronic device and storage medium Download PDF

Info

Publication number
CN113758503A
CN113758503A CN202110924502.3A CN202110924502A CN113758503A CN 113758503 A CN113758503 A CN 113758503A CN 202110924502 A CN202110924502 A CN 202110924502A CN 113758503 A CN113758503 A CN 113758503A
Authority
CN
China
Prior art keywords
variable
parameter
magnitude
determining
noise signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110924502.3A
Other languages
Chinese (zh)
Other versions
CN113758503B (en
Inventor
王雪
陈军锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110924502.3A priority Critical patent/CN113758503B/en
Publication of CN113758503A publication Critical patent/CN113758503A/en
Application granted granted Critical
Publication of CN113758503B publication Critical patent/CN113758503B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising

Landscapes

  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本申请实施例提供了一种过程参数估计方法、装置、电子设备及存储介质。该方法包括按照预设采样间隔时间,采集第一变量的测量值;根据测量值,获取第一变量的第一参数和第二参数,其中,第一参数用于表示噪声信号对第一变量在预设采样间隔时间内的增量的影响程度,第二参数用于表示测量值随时间变化的程度;根据第一参数和第二参数,确定噪声信号的量级;基于噪声信号的量级,确定第二变量的后验估计值;其中,第一变量与第二变量存在函数关系。因此,本申请的方案,可以提高过程参数的估计精度,从而缩短达到相同精度的响应时间。

Figure 202110924502

Embodiments of the present application provide a process parameter estimation method, apparatus, electronic device, and storage medium. The method includes collecting a measurement value of a first variable according to a preset sampling interval; and obtaining a first parameter and a second parameter of the first variable according to the measurement value, wherein the first parameter is used to indicate that the noise signal has an impact on the first variable. The influence degree of the increment within the preset sampling interval, and the second parameter is used to indicate the degree of change of the measured value with time; according to the first parameter and the second parameter, the magnitude of the noise signal is determined; based on the magnitude of the noise signal, A posteriori estimated value of the second variable is determined; wherein, there is a functional relationship between the first variable and the second variable. Therefore, the solution of the present application can improve the estimation accuracy of the process parameters, thereby shortening the response time to reach the same accuracy.

Figure 202110924502

Description

一种过程参数估计方法、装置、电子设备及存储介质A process parameter estimation method, device, electronic device and storage medium

技术领域technical field

本发明涉及数据处理技术领域,特别是涉及一种过程参数估计方法、装置、电子设备及存储介质。The present invention relates to the technical field of data processing, and in particular, to a process parameter estimation method, device, electronic device and storage medium.

背景技术Background technique

在状态监测系统中,过程参数反映了整个系统的工作状态,是系统正常工作的基础和关键。因此,快速准确的状态监测过程参数估计对于安全生产具有重大意义。In the condition monitoring system, the process parameters reflect the working state of the entire system and are the basis and key to the normal operation of the system. Therefore, fast and accurate estimation of process parameters for condition monitoring is of great significance for safe production.

在现有的状态监测过程参数估计技术中,估计精度和响应时间对初始阶段信号的准确测量具有较高的要求。然而在一些状态监测系统中,初始阶段信号幅值较小,受到噪声影响很大,从而使得过程参数估计受到极大的干扰。即采用依赖初始阶段信号的计算方法估计过程参数,会在初始阶段信号幅值较小时出现计算结果稳定性差的问题,在初始阶段信号幅值较大时出现测量响应时间长、实时性差的问题。In the existing state monitoring process parameter estimation technology, the estimation accuracy and response time have high requirements on the accurate measurement of the initial stage signal. However, in some condition monitoring systems, the signal amplitude is small in the initial stage, which is greatly affected by noise, so that the process parameter estimation is greatly disturbed. That is to say, using a calculation method that relies on the signal in the initial stage to estimate the process parameters will cause the problem of poor stability of the calculation result when the signal amplitude is small in the initial stage, and the problem of long measurement response time and poor real-time performance when the signal amplitude is large in the initial stage.

由上述可知,现有技术中的过程参数估计方法,受系统噪声干扰影响较大,从而使得估计结果精度较差,则达到较高精度所需的响应时间较长。It can be seen from the above that the process parameter estimation method in the prior art is greatly affected by system noise interference, so that the accuracy of the estimation result is poor, and the response time required to achieve higher accuracy is longer.

发明内容SUMMARY OF THE INVENTION

本申请实施例提供了一种过程参数估计方法、装置、电子设备及存储介质,以提高过程参数的估计精度,从而缩短达到相同精度的响应时间。The embodiments of the present application provide a process parameter estimation method, apparatus, electronic device, and storage medium, so as to improve the estimation accuracy of the process parameters, thereby shortening the response time to reach the same accuracy.

为了解决上述技术问题,本申请是这样实现的:In order to solve the above technical problems, this application is implemented as follows:

第一方面,本申请实施例提供了一种过程参数估计方法,所述方法包括:In a first aspect, an embodiment of the present application provides a method for estimating a process parameter, the method comprising:

按照预设采样间隔时间,采集第一变量的测量值;collecting the measured value of the first variable according to the preset sampling interval;

根据所述测量值,获取所述第一变量的第一参数和第二参数,其中,所述第一参数用于表示噪声信号对所述第一变量在所述预设采样间隔时间内的增量的影响程度,所述第二参数用于表示所述测量值随时间变化的程度;Obtain a first parameter and a second parameter of the first variable according to the measured value, wherein the first parameter is used to represent the increase of the noise signal on the first variable within the preset sampling interval. The influence degree of the quantity, the second parameter is used to represent the degree of the change of the measured value with time;

根据所述第一参数和所述第二参数,确定所述噪声信号的量级;determining the magnitude of the noise signal according to the first parameter and the second parameter;

基于所述噪声信号的量级,确定第二变量的后验估计值;determining a posteriori estimate of the second variable based on the magnitude of the noise signal;

其中,所述第一变量与所述第二变量存在函数关系。Wherein, there is a functional relationship between the first variable and the second variable.

第二方面,本申请实施例提供了一种过程参数估计装置,所述装置包括:In a second aspect, an embodiment of the present application provides an apparatus for estimating a process parameter, and the apparatus includes:

采集模块,用于按照预设采样间隔时间,采集第一变量的测量值;a collection module, configured to collect the measured value of the first variable according to a preset sampling interval;

参数获取模块,用于根据所述测量值,获取所述第一变量的第一参数和第二参数,其中,所述第一参数用于表示噪声信号对所述第一变量在所述预设采样间隔时间内的增量的影响程度,所述第二参数用于表示所述测量值随时间变化的程度;A parameter acquisition module, configured to acquire a first parameter and a second parameter of the first variable according to the measured value, wherein the first parameter is used to indicate that the noise signal has an effect on the first variable in the preset the influence degree of the increment within the sampling interval, the second parameter is used to represent the degree of the change of the measurement value with time;

噪声量级确定模块,用于根据所述第一参数和所述第二参数,确定所述噪声信号的量级;a noise level determination module, configured to determine the magnitude of the noise signal according to the first parameter and the second parameter;

第一估计模块,用于基于所述噪声信号的量级,确定第二变量的后验估计值;a first estimation module for determining a posteriori estimated value of the second variable based on the magnitude of the noise signal;

其中,所述第一变量与所述第二变量存在函数关系。Wherein, there is a functional relationship between the first variable and the second variable.

第三方面,本申请实施例另外提供了一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如前第一方面所述的过程参数估计方法的步骤。In a third aspect, embodiments of the present application further provide an electronic device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being processed by the processor The steps of the process parameter estimation method as described in the first aspect are implemented when the controller is executed.

第四方面,本申请实施例另外提供以了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如前第一方面所述的过程参数估计方法的步骤。In a fourth aspect, an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the implementation is as described in the first aspect. The steps of the process parameter estimation method.

本申请实施例中,按照预设采样间隔,采集第一变量的测量值,从而根据测量值,获取第一变量的第一参数和第二参数,其中,第一参数用于表示噪声信号对第一变量在所述预设采样间隔时间内的增量的影响程度,第二参数用于表示测量值随时间线性变化的程度;进而根据第一参数和第二参数,确定噪声信号的量级,并基于该噪声信号的量级,确定与第一变量存在函数关系的第二变量的后验估计值。In the embodiment of the present application, the measured value of the first variable is collected according to the preset sampling interval, so as to obtain the first parameter and the second parameter of the first variable according to the measured value, wherein the first parameter is used to indicate that the noise signal affects the first variable. The degree of influence of the increment of a variable within the preset sampling interval, the second parameter is used to represent the degree of linear change of the measured value with time; and then the magnitude of the noise signal is determined according to the first parameter and the second parameter, And based on the magnitude of the noise signal, an a posteriori estimate of the second variable that is functionally related to the first variable is determined.

由此可知,本申请的实施例,根据第一变量的测量值预估噪声信号的量级,从而根据噪声信号的量级,确定与第一变量存在函数关系的第二变量的后验估计。这样,即使在初始阶段系统不稳定,也可以对系统噪声的量级进行准确的预估,进而可以基于预估的噪声量级,更加准确估计过程参数(即更加准确的确定第二变量的后验估计值)。因此,本申请的实施例,可以缓解系统噪声对过程参数估计的影响,从而在达到更高的估计精度,进而可以缩短达到相同精度的响应时间。It can be seen that, in the embodiment of the present application, the magnitude of the noise signal is estimated according to the measured value of the first variable, so that the posterior estimation of the second variable having a functional relationship with the first variable is determined according to the magnitude of the noise signal. In this way, even if the system is unstable in the initial stage, the magnitude of the system noise can be accurately estimated, and then the process parameters can be more accurately estimated based on the estimated noise level (that is, after the second variable is more accurately determined. test estimate). Therefore, the embodiments of the present application can alleviate the influence of the system noise on the estimation of the process parameters, so as to achieve higher estimation accuracy, and further shorten the response time to achieve the same accuracy.

上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。The above description is only an overview of the technical solution of the present application. In order to be able to understand the technical means of the present application more clearly, it can be implemented according to the content of the description, and in order to make the above-mentioned and other purposes, features and advantages of the present application more obvious and easy to understand , and the specific embodiments of the present application are listed below.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments of the present application. Obviously, the drawings in the following description are only some embodiments of the present application. , for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.

图1是本申请实施例提供的一种过程参数估计方法的步骤流程图;1 is a flowchart of steps of a process parameter estimation method provided by an embodiment of the present application;

图2是本申请实施例中ut的测量值与lnut的测量值的对比示意图;Fig. 2 is the contrast schematic diagram of the measured value of u t and the measured value of lnu t in the embodiment of the present application;

图3是本申请实施例中计算的偏差均值比Para与相关系数ρX,K的示意图;Fig. 3 is the schematic diagram of the deviation mean ratio Para and correlation coefficient ρ X, K calculated in the embodiment of the present application;

图4是本申请实施例中采用不同算法确定T的后验估计值的效果对比示意图;4 is a schematic diagram of the comparison of the effects of using different algorithms to determine the posterior estimated value of T in the embodiment of the present application;

图5是本申请实施例提供的一种过程参数估计装置的结构框图。FIG. 5 is a structural block diagram of an apparatus for estimating a process parameter provided by an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.

本申请实施例的边缘计算的负荷识别方法可以运行于终端设备或者是服务器。其中,终端设备可以为本地终端设备。当该方法运行于为服务器时,可以为云展示。The load identification method for edge computing in this embodiment of the present application may run on a terminal device or a server. The terminal device may be a local terminal device. When the method runs on a server, it can be displayed for the cloud.

在一可选的实施方式中,云展示是指以云计算为基础的信息展示方式。在云展示的运行模式下,信息处理程序的运行主体和信息画面呈现主体是分离的,显示切换方法的储存与运行是在云展示服务器上完成的,云展示客户端的作用为数据的接收、发送以及信息画面的呈现,举例而言,云展示客户端可以是靠近用户侧的具有数据传输功能的显示设备,如移动终端、电视机、计算机、掌上电脑等;但是进行信息数据处理的终端设备为云端的云展示服务器。在进行浏览时,用户操作云展示客户端向云展示服务器发送操作指令,云展示服务器根据操作指令展示信息,将数据进行编码压缩,通过网络返回云展示客户端,最后,通过云展示客户端进行解码并输出展示内容。In an optional implementation manner, cloud display refers to an information display method based on cloud computing. In the operation mode of cloud display, the main body of the information processing program is separated from the main body of information screen presentation, the storage and operation of the display switching method are completed on the cloud display server, and the function of the cloud display client is to receive and send data. and the presentation of information screens. For example, the cloud display client can be a display device with a data transmission function close to the user side, such as a mobile terminal, a TV, a computer, a handheld computer, etc.; but the terminal device for information data processing is Cloud display server in the cloud. When browsing, the user operates the cloud display client to send operation instructions to the cloud display server, and the cloud display server displays information according to the operation instructions, encodes and compresses the data, returns to the cloud display client through the network, and finally performs the operation through the cloud display client. Decode and output the display content.

在另一可选的实施方式中,终端设备可以为本地终端设备。本地终端设备存储有应用程序并用于呈现应用界面。本地终端设备用于通过图形用户界面与用户进行交互,即常规的通过电子设备下载安装应用程序并运行。该本地终端设备将图形用户界面提供给用户的方式可以包括多种,例如,可以渲染显示在终端的显示屏上,或者通过全息投影提供给用户。举例而言,本地终端设备可以包括显示屏和处理器,该显示屏用于呈现图形用户界面,该图形用户界面包括应用画面,该处理器用于运行该应用程序、生成图形用户界面以及控制图形用户界面在显示屏上的显示。In another optional implementation manner, the terminal device may be a local terminal device. The local terminal device stores the application program and is used to present the application interface. The local terminal device is used for interacting with the user through a graphical user interface, that is, the conventional electronic device downloads, installs and runs the application program. The local terminal device may provide the graphical user interface to the user in various ways, for example, it may be rendered and displayed on the display screen of the terminal, or provided to the user through holographic projection. For example, the local terminal device may include a display screen for presenting a graphical user interface, the graphical user interface including an application screen, and a processor for running the application program, generating the graphical user interface, and controlling the graphical user interface The display of the interface on the display.

下面对本申请实施例提供的过程参数估计方法进行详细阐述。The process parameter estimation method provided by the embodiments of the present application will be described in detail below.

参照图1,示出了本申请实施例中的一种过程参数估计方法的步骤流程图,所述方法包括以下步骤101至104。Referring to FIG. 1 , a flowchart of steps of a process parameter estimation method in an embodiment of the present application is shown, and the method includes the following steps 101 to 104 .

步骤101:按照预设采样间隔时间,采集第一变量的测量值。Step 101: Collect the measurement value of the first variable according to the preset sampling interval.

其中,所述第一变量的测量值是包含待监测系统的系统噪声(即噪声信号)的值。因此,本申请的实施例是根据第一变量的包含系统噪声的测量值,预估与第一变量存在函数关系的第二变量的后验估计值。Wherein, the measured value of the first variable is a value containing system noise (ie, noise signal) of the system to be monitored. Therefore, the embodiment of the present application estimates the a posteriori estimated value of the second variable that has a functional relationship with the first variable according to the measured value of the first variable including the system noise.

步骤102:根据所述测量值,获取所述第一变量的第一参数和第二参数。Step 102: Acquire a first parameter and a second parameter of the first variable according to the measured value.

其中,所述第一参数用于表示噪声信号对所述第一变量在所述预设采样间隔时间内的增量的影响程度,所述第二参数用于表示所述测量值随时间变化的程度。The first parameter is used to indicate the influence degree of the noise signal on the increment of the first variable within the preset sampling interval, and the second parameter is used to indicate the change of the measured value with time. degree.

步骤103:根据所述第一参数和所述第二参数,确定所述噪声信号的量级。Step 103: Determine the magnitude of the noise signal according to the first parameter and the second parameter.

在本申请的实施例中,通过计算上述第一变量的第一参数和第二参数,可以量化噪声信号的影响,从而为后续确定第二变量的后验估计值提供依据。In the embodiment of the present application, by calculating the first parameter and the second parameter of the first variable, the influence of the noise signal can be quantified, thereby providing a basis for the subsequent determination of the a posteriori estimated value of the second variable.

步骤104:基于所述噪声信号的量级,确定第二变量的后验估计值。Step 104: Determine a posteriori estimated value of the second variable based on the magnitude of the noise signal.

其中,所述第一变量与所述第二变量存在函数关系。Wherein, there is a functional relationship between the first variable and the second variable.

由上述步骤101至104可知,本申请的实施例,可以按照预设采样间隔,采集第一变量的测量值,从而根据测量值,获取第一变量的第一参数和第二参数,其中,第一参数用于表示噪声信号对第一变量在所述预设采样间隔时间内的增量的影响程度,第二参数用于表示测量值随时间线性变化的程度;进而根据第一参数和第二参数,确定噪声信号的量级,并基于该噪声信号的量级,确定与第一变量存在函数关系的第二变量的后验估计值。It can be seen from the above steps 101 to 104 that in the embodiment of the present application, the measurement value of the first variable can be collected according to the preset sampling interval, so as to obtain the first parameter and the second parameter of the first variable according to the measurement value, wherein the first parameter is the first variable. A parameter is used to indicate the degree of influence of the noise signal on the increment of the first variable within the preset sampling interval, and the second parameter is used to indicate the degree of linear variation of the measured value with time; and then according to the first parameter and the second parameter parameters, determine the magnitude of the noise signal, and based on the magnitude of the noise signal, determine an a posteriori estimate of the second variable that is functionally related to the first variable.

由此可知,本申请的实施例,根据第一变量的测量值预估噪声信号的量级,从而根据噪声信号的量级,确定与第一变量存在函数关系的第二变量的后验估计。这样,即使在初始阶段系统不稳定,也可以对系统噪声的量级进行准确的预估,进而可以基于预估的噪声量级,更加准确估计过程参数(即更加准确的确定第二变量的后验估计值)。因此,本申请的实施例,可以缓解系统噪声对过程参数估计的影响,从而在达到更高的估计精度,进而可以缩短达到相同精度的响应时间。It can be seen that, in the embodiment of the present application, the magnitude of the noise signal is estimated according to the measured value of the first variable, so that the posterior estimation of the second variable having a functional relationship with the first variable is determined according to the magnitude of the noise signal. In this way, even if the system is unstable in the initial stage, the magnitude of the system noise can be accurately estimated, and then the process parameters can be more accurately estimated based on the estimated noise level (that is, after the second variable is more accurately determined. test estimate). Therefore, the embodiments of the present application can alleviate the influence of the system noise on the estimation of the process parameters, so as to achieve higher estimation accuracy, and further shorten the response time to achieve the same accuracy.

可选的,所述按照预设采样间隔时间,采集第一变量的测量值之前,所述方法还包括:Optionally, before collecting the measured value of the first variable according to the preset sampling interval, the method further includes:

获取待监测系统的监测量和待求量;Obtain the monitoring and demand quantities of the system to be monitored;

获取所述监测量和所述待求量之间的线性函数关系表达式,其中,所述线性函数关系表达式的因变量包括所述监测量,所述线性函数关系表达式的自变量的系数包括所述待求量;Obtain a linear functional relationship expression between the monitored quantity and the to-be-determined quantity, wherein the dependent variable of the linear functional relationship expression includes the monitored quantity, and the coefficient of the independent variable of the linear functional relationship expression including said quantity to be requested;

将所述线性函数关系表达式的因变量确定为所述第一变量,并将所述线性函数关系表达式的自变量的系数确定为所述第二变量。The dependent variable of the linear functional relationship expression is determined as the first variable, and the coefficient of the independent variable of the linear functional relationship expression is determined as the second variable.

其中,在待监测系统(例如状态监测系统)中,源信号的准确获取(即监测量的测量值的采集)是过程参数估计的第一步,是至关重要的一环。通常,监测量会随着时间呈线性变化趋势,或者线性变化的变形形式,如指数型变化。并且,监测量随时间变化的表达式中包括待求量。其中,为了简化根据监测量的测量值确定待求量的后验估计值的过程(即简化过程参数的估计过程),本申请的实施例,需要将监测量与待求量之间的函数关系转换为线性形式,并且在该线性形式的函数关系式中,监测量作为自变量的一部分,待求量作为因变量的系数的一部分。Among them, in a system to be monitored (such as a condition monitoring system), the accurate acquisition of the source signal (ie, the acquisition of the measured value of the monitored quantity) is the first step in the process parameter estimation, and is a crucial part. Usually, the monitoring quantity will show a linear trend with time, or a deformed form of linear change, such as exponential change. Also, the variable to be determined is included in the expression for the change of the monitoring amount over time. Among them, in order to simplify the process of determining the posterior estimated value of the quantity to be calculated according to the measured value of the monitored quantity (that is, to simplify the estimation process of the process parameters), in the embodiment of the present application, the functional relationship between the monitored quantity and the quantity to be calculated needs to be calculated. Converted to a linear form, and in the linear form of the functional relationship, the monitored quantity is part of the independent variable, and the quantity to be determined is part of the coefficient of the dependent variable.

由此可知,在本申请的实施例中,待监测系统的监测量和待求量之间存在函数关系,该函数关系可以为线性函数关系,也可以为非线性函数关系。其中,无论待监测系统的监测量与待求量之间的函数关系属于线性函数关系,还是非线性函数关系,监测量与待求量之间的函数关系,均可以转换成“监测量作为因变量的一部分,待求量作为因变量的系数的一部分”这种形式。It can be seen from this that, in the embodiments of the present application, there is a functional relationship between the monitoring quantity of the system to be monitored and the quantity to be determined, and the functional relationship may be a linear functional relationship or a nonlinear functional relationship. Among them, no matter whether the functional relationship between the monitored quantity of the system to be monitored and the quantity to be calculated is a linear functional relationship or a nonlinear functional relationship, the functional relationship between the monitored quantity and the quantity to be calculated can be converted into "monitoring quantity as a factor". part of the variable, and the quantity to be determined is part of the coefficient of the dependent variable" of the form.

这样,转换后的线性形式的函数关系表达式中,包括监测量的因变量即作为上述第一变量,包括待求量的系数即作为上述第二变量。即此种情况下,可以根据第一变量的测量值,确定第二变量的后验估计值,进而根据第二变量的后验估计值,可以得到待求量的后验估计值。In this way, in the transformed linear form of the functional relationship expression, the dependent variable including the monitored quantity is the first variable, and the coefficient including the quantity to be determined is the second variable. That is, in this case, the posterior estimated value of the second variable can be determined according to the measured value of the first variable, and then the posterior estimated value of the quantity to be calculated can be obtained according to the posterior estimated value of the second variable.

例如:V=2M*t+L,其中,V为监测量,M为待求量,t表示时间,L为已知量,则V即为上述第一变量,2M即为上述第二变量。For example: V=2M*t+L, where V is the monitored quantity, M is the quantity to be determined, t is the time, and L is the known quantity, then V is the first variable and 2M is the second variable.

或者,例如:

Figure BDA0003208667640000061
其中,ut为监测量,T为待求量,t表示时间,u0、N0、Nt为已知量,则
Figure BDA0003208667640000062
可以转换为:
Figure BDA0003208667640000063
其中,
Figure BDA0003208667640000064
为等效噪声,则lnut为上述第一变量,
Figure BDA0003208667640000065
为上述第二变量。Or, for example:
Figure BDA0003208667640000061
Among them, u t is the monitoring quantity, T is the quantity to be determined, t is the time, and u 0 , N 0 , and N t are known quantities, then
Figure BDA0003208667640000062
can be converted to:
Figure BDA0003208667640000063
in,
Figure BDA0003208667640000064
is equivalent noise, then lnu t is the first variable above,
Figure BDA0003208667640000065
is the second variable above.

可选的,所述基于所述噪声信号的量级,确定第二变量的后验估计值之后,所述方法还包括:Optionally, after the a posteriori estimated value of the second variable is determined based on the magnitude of the noise signal, the method further includes:

根据所述第二变量的后验估计值,确定所述待求量的后验估计值。A posteriori estimated value of the to-be-determined quantity is determined according to the posteriori estimated value of the second variable.

其中,第二变量为监测量和待求量之间的函数关系转换的线性表达式中的自变量的系数,而自变量的系数包括待求量,因此,得到第二变量的后验估计值之后,可以进一步根据第二变量的后验估计值,得到待求量的后验估计值。例如前述举例中,第二变量为

Figure BDA0003208667640000066
待求量为T,则在确定出
Figure BDA0003208667640000067
的后验估计值后,可以得到T的后验估计值。Wherein, the second variable is the coefficient of the independent variable in the linear expression of the functional relationship conversion between the monitored quantity and the quantity to be calculated, and the coefficient of the independent variable includes the quantity to be calculated. Therefore, the posterior estimated value of the second variable is obtained. Afterwards, the posterior estimated value of the quantity to be calculated can be obtained further according to the posterior estimated value of the second variable. For example, in the preceding example, the second variable is
Figure BDA0003208667640000066
If the quantity to be sought is T, then after determining
Figure BDA0003208667640000067
After the posterior estimate of T, the posterior estimate of T can be obtained.

可选的,所述根据所述测量值,获取所述第一变量的第一参数和第二参数,包括:Optionally, obtaining the first parameter and the second parameter of the first variable according to the measured value includes:

从所述第一变量的采样起始时刻开始,按照预设步长移动预先设置的滑动窗口,并在每移动一次所述滑动窗口之后,根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第一参数和所述第二参数;Starting from the sampling start time of the first variable, the preset sliding window is moved according to the preset step size, and after each moving of the sliding window, according to the measurement value in the sliding window, calculate the the first parameter and the second parameter of the first variable;

其中,所述预设步长包括预设数量的采样点。Wherein, the preset step size includes a preset number of sampling points.

由此可知,本申请的实施例中,按照预设步长移动预先设置的滑动窗口,并在每移动一次滑动窗口,计算一次第一变量的第一参数和第二参数,从而根据本次计算的第一参数和第二参数确定当前待监测系统的噪声信号的量级。即本申请的实施例中,每移动一次滑动窗,进行一次噪声估计,实现了对待监测系统的噪声信号的动态估计,从而可以动态根据噪声大小得到第二变量的后验估计值。这样,进一步提升了第二变量的后验估计值的精度。It can be seen from this that, in the embodiment of the present application, the preset sliding window is moved according to the preset step size, and the first parameter and the second parameter of the first variable are calculated once every time the sliding window is moved, so that according to this calculation The first parameter and the second parameter of , determine the magnitude of the noise signal of the current system to be monitored. That is, in the embodiment of the present application, each time the sliding window is moved, a noise estimation is performed, which realizes the dynamic estimation of the noise signal of the system to be monitored, so that the posterior estimation value of the second variable can be dynamically obtained according to the size of the noise. In this way, the accuracy of the posterior estimation value of the second variable is further improved.

可选的,根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第一参数的过程,包括:Optionally, according to the measurement value in the sliding window, the process of calculating the first parameter of the first variable includes:

确定离散序列的差分信号,其中,所述离散序列包括所述滑动窗口内的所述测量值;determining a differential signal of a discrete sequence, wherein the discrete sequence includes the measurements within the sliding window;

计算所述差分信号的平均值和标准差;calculating the mean and standard deviation of the differential signal;

计算所述标准差与所述平均值之比,得到所述第一参数。The ratio of the standard deviation to the mean is calculated to obtain the first parameter.

其中,信号差分可以进一步的揭示测量过程中的噪声信号对测量信号(即第一变量)的影响。对于线性信号来说,其数学基本形式为线性函数。因此,其差分信号的理论数学形式为恒定常数,反映了测量信号随时间增长速度。The signal difference can further reveal the influence of the noise signal in the measurement process on the measurement signal (ie, the first variable). For a linear signal, its mathematical basic form is a linear function. Therefore, the theoretical mathematical form of the differential signal is a constant, which reflects the growth rate of the measurement signal over time.

假设滑动窗口内的第一变量的测量值组成的离散序列为x(k),则差分信号的表达式如下:Assuming that the discrete sequence composed of the measurement values of the first variable in the sliding window is x(k), the expression of the differential signal is as follows:

Figure BDA0003208667640000071
Figure BDA0003208667640000071

其中,如果采样间隔时间为Δt,则差分后的信号则为在Δt的时间内线性信号(即第一变量)的增量。一般初始测量阶段由于噪声的影响较大,差分信号波动也比较大,进而对信号参数的计算产生较大的影响。Wherein, if the sampling interval is Δt, the differential signal is the increment of the linear signal (ie, the first variable) within the time of Δt. Generally, in the initial measurement stage, due to the great influence of noise, the fluctuation of the differential signal is also relatively large, which in turn has a great influence on the calculation of signal parameters.

另外,对离散序列进行差分处理后,得到的差分信号反映了噪声信号对第一变量的影响程度。通常情况下噪声信号的影响会随着测量时间的推移而逐渐弱化,通过计算第一变量的第一参数和第二参数,可以自适应量化噪声信号对第一变量的影响程度,为后续确定与第一变量存在函数关系的第二变量的后验估计值提供依据。In addition, after performing differential processing on the discrete sequence, the obtained differential signal reflects the influence degree of the noise signal on the first variable. Usually, the influence of the noise signal will gradually weaken with the passage of the measurement time. By calculating the first parameter and the second parameter of the first variable, the influence degree of the noise signal on the first variable can be adaptively quantified, which can be used for subsequent determination of the relationship with the first variable. The a posteriori estimate of the second variable that is functionally related to the first variable provides the basis.

此外,第一变量的第一参数的计算过程如下所述:In addition, the calculation process of the first parameter of the first variable is as follows:

例如滑动窗口包括n个采样点,则一个滑动窗口内的测量值组成的离散序列x(k)的差分信号为:y(k),其中,k为0至n-1的整数。则该差分信号的平均值为

Figure BDA0003208667640000081
标准差为
Figure BDA0003208667640000082
For example, the sliding window includes n sampling points, and the differential signal of a discrete sequence x(k) composed of measurement values in a sliding window is: y(k), where k is an integer from 0 to n-1. Then the average value of the differential signal is
Figure BDA0003208667640000081
The standard deviation is
Figure BDA0003208667640000082

其中,平均值

Figure BDA0003208667640000083
反映了差分信号数值上的平均水平,而标准差σy则反映了差分信号在平均值附近的波动幅度,二者结合可以反映出噪声信号对所述第一变量在所述预设采样间隔时间内的增量的影响程度。因此,差分信号的平均值与标准差之比,可以作为上述第一参数。其中,差分信号的平均值与标准差之比也可以称为偏差均值比,记为Para。Among them, the average
Figure BDA0003208667640000083
It reflects the average level of the difference signal value, and the standard deviation σ y reflects the fluctuation range of the difference signal near the average value. The combination of the two can reflect the effect of the noise signal on the first variable at the preset sampling interval. The degree of influence within the increment. Therefore, the ratio of the average value to the standard deviation of the differential signal can be used as the above-mentioned first parameter. Among them, the ratio of the mean value to the standard deviation of the differential signal can also be called the deviation mean ratio, denoted as Para.

总之,上述第一参数记为偏差均值比,

Figure BDA0003208667640000084
Figure BDA0003208667640000085
In short, the above first parameter is recorded as the deviation-to-average ratio,
Figure BDA0003208667640000084
Figure BDA0003208667640000085

可选的,根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第二参数的过程,包括:Optionally, according to the measurement value in the sliding window, the process of calculating the second parameter of the first variable includes:

计算离散序列与所述测量值的采样时间的相关系数,并将所述相关系数确定为所述第二参数,其中,所述离散序列包括所述滑动窗口内的所述测量值。A correlation coefficient between a discrete sequence and a sampling time of the measurement value is calculated, and the correlation coefficient is determined as the second parameter, wherein the discrete sequence includes the measurement value within the sliding window.

其中,相关系数是研究变量之间线性相关程度的量。针对离散序列x(k)和离散测量时间点k,二者的相关系数反映了离散随时间线性变化的程度,相关系数绝对值越大(即接近1),离散序列与时间越呈线性相关关系。若令随机变量X代表离散序列,随机变量K代表离散时间序列,则二者相关系数的表达式为:

Figure BDA0003208667640000086
其中,Var(·)表示方差计算函数,Cov(·)表示协方差计算函数,其定义式为:Cov(X,K)=E(XK)-E(X)E(K)。E(·)表示期望(即均值)计算函数。Among them, the correlation coefficient is a measure of the degree of linear correlation between the variables under study. For the discrete sequence x(k) and discrete measurement time point k, the correlation coefficient between the two reflects the degree of linear variation of discrete with time. The larger the absolute value of the correlation coefficient (that is, close to 1), the more linear the relationship between discrete sequence and time will be. . If the random variable X represents a discrete sequence and the random variable K represents a discrete time series, the expression of the correlation coefficient between the two is:
Figure BDA0003208667640000086
Among them, Var(·) represents a variance calculation function, and Cov(·) represents a covariance calculation function, and its definition formula is: Cov(X,K)=E(XK)-E(X)E(K). E(·) represents the expectation (ie mean) calculation function.

因此,随机变量X和K的相关系数的计算过程整理如下所述:Therefore, the calculation process of the correlation coefficient of random variables X and K is organized as follows:

Figure BDA0003208667640000091
Figure BDA0003208667640000091

由上述可知,通过计算偏差均值比Para和相关系数ρX,K,可以针对离散序列进行增强型自适应预处理,减轻初始阶段噪声信号对过程参数估计的影响。It can be seen from the above that by calculating the deviation mean ratio Para and the correlation coefficient ρ X,K , an enhanced adaptive preprocessing can be performed for the discrete sequence to reduce the influence of the noise signal on the process parameter estimation in the initial stage.

可选的,所述根据所述第一参数和所述第二参数,确定所述噪声信号的量级,包括:Optionally, the determining the magnitude of the noise signal according to the first parameter and the second parameter includes:

根据第一预设公式|Para*(1-ρ)|=Q,计算所述噪声信号的量级Q,其中,Para表示所述第一参数,ρ表示所述第二参数。The magnitude Q of the noise signal is calculated according to a first preset formula |Para*(1-ρ)|=Q, where Para represents the first parameter and ρ represents the second parameter.

可选的,所述基于所述噪声信号的量级,确定第二变量的后验估计值,包括:Optionally, the determining a posteriori estimated value of the second variable based on the magnitude of the noise signal includes:

将所述噪声参数的量级和预先确定的卡尔曼方程的初始参数,代入预先确定的卡尔曼滤波方程中,得到所述第二变量在不同采样时刻的后验估计值。The magnitude of the noise parameter and the predetermined initial parameters of the Kalman equation are substituted into the predetermined Kalman filter equation to obtain a posteriori estimated value of the second variable at different sampling times.

其中,当从所述第一变量的采样起始时刻开始,按照预设步长移动预先设置的滑动窗口,并在每移动一次所述滑动窗口之后,根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第一参数和所述第二参数时,可以根据每一次得到的第一参数和第二参数得到不同采样时刻下噪声信号的量级(即Q(k),k取0至n-1的整数),从而基于各个时刻的噪声信号的量级,以及预先确定的卡尔曼滤波方程的初始参数,代入预先确定的卡尔曼滤波方程中,得到第二变量在不同采样时刻的后验估计值。Wherein, starting from the sampling start time of the first variable, the preset sliding window is moved according to the preset step size, and after each moving of the sliding window, according to the measurement value in the sliding window , when calculating the first parameter and the second parameter of the first variable, the magnitude of the noise signal at different sampling times (ie, Q(k) can be obtained according to the first parameter and the second parameter obtained each time , k is an integer from 0 to n-1), so that based on the magnitude of the noise signal at each moment and the initial parameters of the predetermined Kalman filter equation, substituted into the predetermined Kalman filter equation to obtain the second variable in Posterior estimates at different sampling instants.

另外,卡尔曼滤波方程包括如下五个方程:In addition, the Kalman filter equation includes the following five equations:

状态预测方程:

Figure BDA0003208667640000101
B=0,Tc为上述预设采用间隔时间,其中,该状态预测方程用于采用上一时刻的状态估计当前状态;State prediction equation:
Figure BDA0003208667640000101
B=0, T c is the above-mentioned preset adoption interval, wherein, the state prediction equation is used to estimate the current state by using the state at the previous moment;

均方误差预测方程:

Figure BDA0003208667640000102
Q(k)表示第k个采样时刻的噪声信号的量级;其中,该均方误差预测方程用于利用上一时刻的误差估计当前状态误差;Mean squared error prediction equation:
Figure BDA0003208667640000102
Q(k) represents the magnitude of the noise signal at the kth sampling moment; wherein, the mean square error prediction equation is used to estimate the current state error by using the error at the previous moment;

滤波增益方程:

Figure BDA0003208667640000103
H=[1,0],R(k)表示第k个采样时刻的传感器测量噪声的协方差矩阵,且R(k)为已知量;其中,该滤波增益方程用来衡量测量值的准确性;Filter gain equation:
Figure BDA0003208667640000103
H=[1,0], R(k) represents the covariance matrix of the sensor measurement noise at the kth sampling time, and R(k) is a known quantity; wherein, the filter gain equation is used to measure the accuracy of the measurement value sex;

滤波估计方程:

Figure BDA0003208667640000104
y(k)=Hx(k)+v(k),H=[1,0],v(k)表示第k个采样时刻的传感器测量噪声的量级,且v(k)为已知量;其中,该滤波估计方程用以获取当前时刻状态变量;Filter estimation equation:
Figure BDA0003208667640000104
y(k)=Hx(k)+v(k), H=[1,0], v(k) represents the magnitude of the sensor measurement noise at the kth sampling time, and v(k) is a known quantity ; Wherein, the filter estimation equation is used to obtain the state variable at the current moment;

状态迭代方程:

Figure BDA0003208667640000105
其中,该状态迭代方程用于根据当前状态变量更新误差项。State iteration equation:
Figure BDA0003208667640000105
Among them, the state iteration equation is used to update the error term according to the current state variable.

其中,上述卡尔曼滤波方程中的状态变量

Figure BDA0003208667640000106
V(k)表示上述所述的第一变量,Mk表示上述所述的第二变量,上述
Figure BDA0003208667640000107
表示第k个采样时刻状态变量的先验估计,
Figure BDA0003208667640000108
表示第k个采样时刻状态变量的后验估计,
Figure BDA0003208667640000109
表示第k个采样时刻的后验估计的协方差矩阵,
Figure BDA00032086676400001010
表示第k个采样时刻的先验估计的协方差矩阵。Among them, the state variables in the above Kalman filter equation
Figure BDA0003208667640000106
V(k) represents the above-mentioned first variable, M k represents the above-mentioned second variable, and the above-mentioned
Figure BDA0003208667640000107
represents the prior estimate of the state variable at the kth sampling time,
Figure BDA0003208667640000108
represents the posterior estimate of the state variable at the kth sampling time,
Figure BDA0003208667640000109
represents the covariance matrix of the posterior estimate at the kth sampling instant,
Figure BDA00032086676400001010
Represents the covariance matrix of the prior estimate at the kth sampling instant.

例如k=0时,即第0个采样时刻,令

Figure BDA00032086676400001011
其中,
Figure BDA00032086676400001012
即为第一变量在第0个采样时刻的测量值,
Figure BDA0003208667640000111
取预先确定的值;并且,令
Figure BDA0003208667640000112
分别取预先确定的值,即预先确定卡尔曼滤波方程的初始参数:
Figure BDA0003208667640000113
For example, when k=0, that is, the 0th sampling time, let
Figure BDA00032086676400001011
in,
Figure BDA00032086676400001012
is the measured value of the first variable at the 0th sampling time,
Figure BDA0003208667640000111
take a predetermined value; and, let
Figure BDA0003208667640000112
Take the pre-determined values respectively, that is, pre-determine the initial parameters of the Kalman filter equation:
Figure BDA0003208667640000113

基于上述内容,在k=1时,即第1个采样时刻,则可以根据状态预测方程得到

Figure BDA0003208667640000114
根据均方误差预测方程得到
Figure BDA0003208667640000115
根据滤波增益方程得到
Figure BDA0003208667640000116
根据滤波估计方程得到
Figure BDA0003208667640000117
其中,
Figure BDA0003208667640000118
y(1)=Hx(1)+v(1);根据状态迭代方程得到
Figure BDA0003208667640000119
Based on the above content, when k=1, that is, the first sampling time, it can be obtained according to the state prediction equation
Figure BDA0003208667640000114
According to the mean square error prediction equation, we get
Figure BDA0003208667640000115
According to the filter gain equation, we get
Figure BDA0003208667640000116
According to the filter estimation equation, we get
Figure BDA0003208667640000117
in,
Figure BDA0003208667640000118
y(1)=Hx(1)+v(1); obtained according to the state iteration equation
Figure BDA0003208667640000119

在k=2时,即第2个采样时刻,则可以根据状态预测方程得到

Figure BDA00032086676400001110
Figure BDA00032086676400001111
根据均方误差预测方程得到
Figure BDA00032086676400001112
根据滤波增益方程得到
Figure BDA00032086676400001113
根据滤波估计方程得到
Figure BDA00032086676400001114
其中,
Figure BDA00032086676400001115
y(2)=Hx(2)+v(2);根据状态迭代方程得到
Figure BDA00032086676400001116
When k=2, that is, the second sampling time, it can be obtained according to the state prediction equation
Figure BDA00032086676400001110
Figure BDA00032086676400001111
According to the mean square error prediction equation, we get
Figure BDA00032086676400001112
According to the filter gain equation, we get
Figure BDA00032086676400001113
According to the filter estimation equation, we get
Figure BDA00032086676400001114
in,
Figure BDA00032086676400001115
y(2)=Hx(2)+v(2); obtained according to the state iteration equation
Figure BDA00032086676400001116

同理,在后续的每一个采样时刻,均按照上述方法,利用卡尔曼滤波方程进行迭代,从而可以得到

Figure BDA00032086676400001117
其中,
Figure BDA00032086676400001118
表示上述第一变量的后验估计值,
Figure BDA00032086676400001119
表示上述第二变量的后验估计值,因此,最终可以得到第二变量在不同采样时刻的后验估计值。Similarly, at each subsequent sampling time, according to the above method, the Kalman filter equation is used to iterate, so as to obtain
Figure BDA00032086676400001117
in,
Figure BDA00032086676400001118
represents the posterior estimate of the first variable above,
Figure BDA00032086676400001119
represents the a posteriori estimated value of the second variable above, therefore, the posterior estimated value of the second variable at different sampling times can be finally obtained.

可选的,所述卡尔曼滤波方程的确定过程包括:Optionally, the determining process of the Kalman filter equation includes:

根据所述第一变量与所述第二变量之间的函数关系,确定随机状态空间方程;determining a stochastic state space equation according to the functional relationship between the first variable and the second variable;

基于所述随机状态空间方程,确定所述卡尔曼滤波方程。Based on the stochastic state space equation, the Kalman filter equation is determined.

第一方面,根据第一变量与第二变量之间的函数关系,确定随机状态空间方程的过程如下所述:In the first aspect, according to the functional relationship between the first variable and the second variable, the process of determining the stochastic state space equation is as follows:

第一变量与第二变量之间的函数关系可以转换成线性形式。对于线性信号,其连续表达式为:第一表达式V=M·t+L,待求变量(即第二变量)通常包含在反映增长速度的参数M和反映偏置情况的参数L中。The functional relationship between the first variable and the second variable can be converted into a linear form. For a linear signal, its continuous expression is: the first expression V=M·t+L, the variable to be determined (ie the second variable) is usually included in the parameter M reflecting the growth rate and the parameter L reflecting the bias condition.

其中,将上述第一表达式进行离散化,可以得到第二表达式:V(k+1)=V(k)+Tc·Mk。假设状态变量

Figure BDA0003208667640000121
令Mk+1=Mk+o(Mk),o(Mk)为远小于Mk的增量。其中,对于线性信号,前一采样时刻和下一采样时刻的斜率变化在很短时内很小,因此o(Mk)是一个很小的量,即o(Mk)表在物理意义上表示测量信号随时间变化的增长(或下降)速度基本是恒定的。Wherein, by discretizing the above-mentioned first expression, the second expression can be obtained: V(k+1)=V(k)+T c ·M k . Hypothetical state variable
Figure BDA0003208667640000121
Let Mk+1 = Mk +o( Mk ), o( Mk ) be an increment much smaller than Mk . Among them, for a linear signal, the slope change between the previous sampling moment and the next sampling moment is very small in a very short time, so o(M k ) is a very small quantity, that is, o(M k ) is represented in the physical sense. Indicates that the rate of increase (or decrease) of the measured signal over time is substantially constant.

令w1(k)=o(Mk),则得到第三表达式x1(k+1)=x1(k)+Tc·Mk以及第四表达式x2(k+1)=x2(k)+w1(k)。其中,在测量过程中通常会引入测量噪声,而x1(k)是不含噪声的真实值,则若设v(k)表示测量噪声,y(k)表示真实值叠加噪声,即观测向量,则可以得到第五表达式y(k)=x1(k)+v(k)。Let w 1 (k)=o(M k ), then the third expression x 1 (k+1)=x 1 (k)+T c ·M k and the fourth expression x 2 (k+1) are obtained =x 2 (k)+w 1 (k). Among them, measurement noise is usually introduced in the measurement process, and x 1 (k) is the real value without noise, then if v(k) represents the measurement noise, y(k) represents the real value superimposed noise, that is, the observation vector , then the fifth expression y(k)=x 1 (k)+v(k) can be obtained.

其中,x2(k)=Mk,因此,上述第三表达式可以转换为第六表达式:x1(k+1)=x1(k)+Tc·x2(k)。这样,由第六表达式x1(k+1)=x1(k)+Tc·x2(k)和第四表达式x2(k+1)=x2(k)+w1(k)可以得到第七表达式:

Figure BDA0003208667640000122
其中,
Figure BDA0003208667640000123
Figure BDA0003208667640000124
where x 2 (k)=M k , therefore, the above third expression can be converted into the sixth expression: x 1 (k+1)=x 1 (k)+T c ·x 2 (k). Thus, from the sixth expression x 1 (k+1)=x 1 (k)+T c ·x 2 (k) and the fourth expression x 2 (k+1)=x 2 (k)+w 1 (k) can get the seventh expression:
Figure BDA0003208667640000122
in,
Figure BDA0003208667640000123
Figure BDA0003208667640000124

另外,根据第五表达式y(k)=x1(k)+v(k),可以得到第八表达式:y(k)=[1 0]×x(k)+v(k)。In addition, according to the fifth expression y(k)=x 1 (k)+v(k), the eighth expression: y(k)=[1 0]×x(k)+v(k) can be obtained.

至此,则得到随机状态空间方程

Figure BDA0003208667640000125
其中,
Figure BDA0003208667640000126
So far, the stochastic state space equation is obtained
Figure BDA0003208667640000125
in,
Figure BDA0003208667640000126

第二方面,根据随机状态空间方程,确定卡尔曼滤波方程的过程如下所述:In the second aspect, according to the stochastic state space equation, the process of determining the Kalman filter equation is as follows:

在建立随机状态空间方程之后,线性递归拟合需要定义先验估计和后验估计及其误差。其中,定义

Figure BDA0003208667640000131
表示根据上一次迭代计算结果产生的估计值,称为先验估计,先验估计误差为
Figure BDA0003208667640000132
定义
Figure BDA0003208667640000133
表示根据当前计算结果产生的估计值,称为后验估计,后验估计误差为
Figure BDA0003208667640000134
After the stochastic state-space equations are established, linear recursive fitting requires the definition of prior and posterior estimates and their errors. Among them, the definition
Figure BDA0003208667640000131
Represents the estimated value generated according to the calculation result of the previous iteration, which is called a priori estimation, and the prior estimation error is
Figure BDA0003208667640000132
definition
Figure BDA0003208667640000133
Represents the estimated value generated according to the current calculation result, which is called a posteriori estimation, and the posterior estimation error is
Figure BDA0003208667640000134

定义先验估计误差的协方差矩阵为

Figure BDA0003208667640000135
Figure BDA0003208667640000136
Figure BDA0003208667640000137
定义后验估计误差的协方差矩阵为
Figure BDA0003208667640000138
Figure BDA0003208667640000139
The covariance matrix that defines the prior estimation error is
Figure BDA0003208667640000135
but
Figure BDA0003208667640000136
Figure BDA0003208667640000137
The covariance matrix that defines the posterior estimation error is
Figure BDA0003208667640000138
but
Figure BDA0003208667640000139

状态空间线性递归拟合模型的目标函数是,在系统结构已知的情况下,给定k时刻的状态观测向量y(k),求k时刻的系统状态向量的最优估计

Figure BDA00032086676400001310
使得
Figure BDA00032086676400001311
最小。The objective function of the state space linear recursive fitting model is to find the optimal estimate of the system state vector at time k given the state observation vector y(k) at time k when the system structure is known.
Figure BDA00032086676400001310
make
Figure BDA00032086676400001311
minimum.

首先,需要根据

Figure BDA00032086676400001312
计算出k时刻(即第k个采样时刻)的先验估计
Figure BDA00032086676400001313
其中,在计算k时刻的先验估计(即
Figure BDA00032086676400001314
)时,应该使用经过修正的后验估计数值,即
Figure BDA00032086676400001315
又因为此处是进行线性递归拟合,所以可以得到
Figure BDA00032086676400001316
其中,前面得到的随机状态空间方程为:
Figure BDA00032086676400001317
因此,可以得到
Figure BDA00032086676400001318
Figure BDA00032086676400001319
进而可以确定
Figure BDA00032086676400001320
B=0(表示没有外部控制因素干预)。First, it is necessary to
Figure BDA00032086676400001312
Calculate the prior estimate of the k time (ie the kth sampling time)
Figure BDA00032086676400001313
Among them, when calculating the prior estimate at time k (ie
Figure BDA00032086676400001314
), a revised posterior estimate should be used, i.e.
Figure BDA00032086676400001315
And because the linear recursive fitting is performed here, we can get
Figure BDA00032086676400001316
Among them, the stochastic state space equation obtained earlier is:
Figure BDA00032086676400001317
Therefore, it can be obtained
Figure BDA00032086676400001318
Figure BDA00032086676400001319
to determine
Figure BDA00032086676400001320
B=0 (indicates no external control factors intervene).

但由于w(k)的存在,先验估计误差的协方差矩阵

Figure BDA00032086676400001321
的递推公式中需要加入噪声干扰Q(k),且Q(k)量级与abs(Para·(1-ρX,K))相同,其中abs(·)为绝对值函数。即有:
Figure BDA00032086676400001322
Figure BDA00032086676400001323
Figure BDA00032086676400001324
But due to the existence of w(k), the covariance matrix of the prior estimation error
Figure BDA00032086676400001321
Noise interference Q(k) needs to be added to the recursive formula of , and the magnitude of Q(k) is the same as abs(Para·(1-ρ X,K )), where abs(·) is an absolute value function. That is:
Figure BDA00032086676400001322
Figure BDA00032086676400001323
Figure BDA00032086676400001324

然后,可以根据先验估计

Figure BDA00032086676400001325
计算出k时刻的观测向量的估计
Figure BDA00032086676400001326
即定义
Figure BDA0003208667640000141
其中,H=[1 0]。Then, it can be estimated from the prior
Figure BDA00032086676400001325
Calculate the estimate of the observation vector at time k
Figure BDA00032086676400001326
i.e. definition
Figure BDA0003208667640000141
where H=[1 0].

再次,可以计算实测值

Figure BDA0003208667640000142
与估计值
Figure BDA0003208667640000143
差值,以修正先验估计
Figure BDA0003208667640000144
得到后验估计
Figure BDA0003208667640000145
Figure BDA0003208667640000146
其中,y(k)=Hx(k)+v(k),
Figure BDA0003208667640000147
则可以得到
Figure BDA0003208667640000148
Figure BDA0003208667640000149
进而可以得到
Figure BDA00032086676400001410
Figure BDA00032086676400001411
Figure BDA00032086676400001412
进而得到
Figure BDA00032086676400001413
其中,v(k)为传感器测量噪声,量级一般由传感器制造商给出,I为单位矩阵。Again, the measured value can be calculated
Figure BDA0003208667640000142
with estimated value
Figure BDA0003208667640000143
difference, to correct the prior estimate
Figure BDA0003208667640000144
get a posterior estimate
Figure BDA0003208667640000145
which is
Figure BDA0003208667640000146
Among them, y(k)=Hx(k)+v(k),
Figure BDA0003208667640000147
then you can get
Figure BDA0003208667640000148
Figure BDA0003208667640000149
which can be obtained
Figure BDA00032086676400001410
Figure BDA00032086676400001411
Figure BDA00032086676400001412
to get
Figure BDA00032086676400001413
Among them, v(k) is the sensor measurement noise, the magnitude is generally given by the sensor manufacturer, and I is the identity matrix.

而前述已经得到

Figure BDA00032086676400001414
因此,可以得到
Figure BDA00032086676400001415
Figure BDA00032086676400001416
Figure BDA00032086676400001417
其中,R(k)为v(k)的协方差。while the aforementioned has been
Figure BDA00032086676400001414
Therefore, it can be obtained
Figure BDA00032086676400001415
Figure BDA00032086676400001416
Figure BDA00032086676400001417
where R(k) is the covariance of v(k).

再次,模型估计原则是使最优状态估计下的

Figure BDA00032086676400001418
最小,则令
Figure BDA00032086676400001419
得到:
Figure BDA00032086676400001420
从而将
Figure BDA00032086676400001421
代入
Figure BDA00032086676400001422
Figure BDA00032086676400001423
可以得到最优估计状态的
Figure BDA00032086676400001424
为:
Figure BDA00032086676400001425
Figure BDA00032086676400001426
Again, the model estimation principle is to make the optimal state estimation
Figure BDA00032086676400001418
minimum, then let
Figure BDA00032086676400001419
get:
Figure BDA00032086676400001420
thus will
Figure BDA00032086676400001421
substitute
Figure BDA00032086676400001422
Figure BDA00032086676400001423
The optimal estimated state can be obtained
Figure BDA00032086676400001424
for:
Figure BDA00032086676400001425
Figure BDA00032086676400001426

至此,已推导出卡尔曼滤波方程所包括的上述五个方程。So far, the above five equations included in the Kalman filter equation have been derived.

此外,还需说明的是,上述卡尔曼滤波方程所包括的五个方程(也可称为增强型自适应递归拟合算法中包含5个核心方程),分为时间信息更新方程和测量参数更新方程。In addition, it should be noted that the five equations included in the above-mentioned Kalman filter equation (which may also be referred to as the five core equations included in the enhanced adaptive recursive fitting algorithm) are divided into time information update equations and measurement parameter update equations. equation.

具体的,时间信息参数更新方程包括上述所述的状态预测方程(即

Figure BDA00032086676400001427
)和均方误差预测方程(即
Figure BDA00032086676400001428
Figure BDA00032086676400001429
)。测量信息参数更新方程包括上述所述的滤波增益方程(即
Figure BDA00032086676400001430
)和滤波估计方程(即
Figure BDA0003208667640000151
),以及状态迭代方程(即
Figure BDA0003208667640000152
Figure BDA0003208667640000153
)。Specifically, the time information parameter update equation includes the above-mentioned state prediction equation (ie
Figure BDA00032086676400001427
) and the mean squared error prediction equation (ie
Figure BDA00032086676400001428
Figure BDA00032086676400001429
). The measurement information parameter update equation includes the filter gain equation described above (ie
Figure BDA00032086676400001430
) and the filtered estimation equation (i.e.
Figure BDA0003208667640000151
), and the state iteration equation (ie
Figure BDA0003208667640000152
Figure BDA0003208667640000153
).

综上所述,本申请实施例的过程参数估计方法的具体实施方式可如下所述:To sum up, the specific implementation of the process parameter estimation method in the embodiment of the present application may be as follows:

例如在一个监测系统中,启动源信号u随时间t的变化规律呈现指数形式(理想情况下),即

Figure BDA0003208667640000154
其中,T是测量信号(即启动源信号u)的e倍增周期,其数值大小反映了该系统的运行状态。而在实际信号监测过程中,通常会引入测量噪声等干扰,而噪声分布一般服从高斯分布或者泊松分布,假设噪声为N,则测量信号的表达式为:
Figure BDA0003208667640000155
其中v0,vt为真值,u0,ut为测量值,N0,Nt为噪声。化简测量信号的表达式则可得:
Figure BDA0003208667640000156
进而可以得到:
Figure BDA0003208667640000157
其中,
Figure BDA0003208667640000158
为等效噪声。For example, in a monitoring system, the variation law of the starting source signal u with time t presents an exponential form (ideally), that is,
Figure BDA0003208667640000154
Among them, T is the e multiplication period of the measurement signal (ie, the starting source signal u), and its numerical value reflects the operating state of the system. In the actual signal monitoring process, interference such as measurement noise is usually introduced, and the noise distribution generally obeys the Gaussian distribution or the Poisson distribution. Assuming that the noise is N, the expression of the measurement signal is:
Figure BDA0003208667640000155
Where v 0 , v t are true values, u 0 , u t are measured values, and N 0 , N t are noise. Simplifying the expression of the measurement signal can get:
Figure BDA0003208667640000156
And then you can get:
Figure BDA0003208667640000157
in,
Figure BDA0003208667640000158
is the equivalent noise.

由此可知,在上述监测系统中,可以根据监测量ut,求待求量T的后验估计值。而由监测量与待求量之间的函数关系

Figure BDA0003208667640000159
可以得到lnut为本申请实施例中的第一变量,
Figure BDA00032086676400001510
为本申请实施例中的第二变量。It can be seen that, in the above monitoring system, the a posteriori estimated value of the quantity T to be obtained can be obtained according to the monitoring quantity ut. And by the functional relationship between the monitored quantity and the quantity to be sought
Figure BDA0003208667640000159
It can be obtained that lnu t is the first variable in the embodiment of the present application,
Figure BDA00032086676400001510
is the second variable in this embodiment of the present application.

因此,确定待求量T的后验估计值的过程可包括如下所述的步骤L1至L5。Thus, the process of determining the a posteriori estimate of the quantity T to be sought may include steps L1 to L5 as described below.

步骤L1:按照预设采样间隔时间,采集ut的测量值,进而计算lnut的测量值,其中,采集的ut的测量值可如图2中的第一图201和第三图203所示,lnut的测量值可如图2中的第二图202和第四图204所示;Step L1: collect the measured value of ut according to the preset sampling interval time, and then calculate the measured value of lnut , wherein the collected measured value of ut can be as shown in the first graph 201 and the third graph 203 in FIG. 2 . shown, the measured value of lnut can be shown in the second graph 202 and the fourth graph 204 in FIG. 2;

步骤L2:计算lnut的测量值组成的离散序列的差分信号;Step L2: Calculate the differential signal of the discrete sequence composed of the measured values of lnu t ;

步骤L3:从采样起始时刻开始,按照预设步长移动预先设置的滑动窗口,并在每移动一次所述滑动窗口之后,根据滑动窗口内的lnut的测量值组得到的差分信号,计算第一参数(即偏差均值比Para)和第二参数(即相关系数ρX,K),即得到偏差均值比Para和相关系数ρX,K在不同采样时刻下的取值,如图3所示;进而可以得到在噪声信号在不同采样时刻的量级;Step L3: From the sampling start time, move the preset sliding window according to the preset step size, and after each moving of the sliding window, calculate according to the differential signal obtained from the measured value group of lnu t in the sliding window. The first parameter (that is, the deviation mean ratio Para) and the second parameter (that is, the correlation coefficient ρ X,K ), that is, the values of the deviation mean ratio Para and the correlation coefficient ρ X, K at different sampling times are obtained, as shown in Figure 3. Then, the magnitude of the noise signal at different sampling moments can be obtained;

步骤L4:将噪声参数的量级和预先确定的卡尔曼方程的初始参数,代入预先确定的卡尔曼滤波方程中,得到

Figure BDA0003208667640000161
在不同采样时刻的后验估计值;Step L4: Substitute the magnitude of the noise parameter and the initial parameters of the predetermined Kalman equation into the predetermined Kalman filter equation to obtain
Figure BDA0003208667640000161
Posterior estimates at different sampling times;

步骤L5:根据

Figure BDA0003208667640000162
在不同采样时刻的后验估计值,得到T在不同采样时刻的后验估计值,如图4中的第五图401所示。Step L5: According to
Figure BDA0003208667640000162
Posterior estimated values of T at different sampling times are obtained, as shown in the fifth graph 401 in FIG. 4 .

此外,为了验证本申请实施例提供的过程参数估计方法的有效性,采用其他信号滤波或曲线拟合方法对确定前述反应堆监测系统的T的后验估计值,这些方法主要包括直接估计法、随机抽样一致算法、最小乘方自适应滤波算法、最大似然算法以及卡尔曼滤波算法等。具体的,如图4所示的第六图402表示采用直接估计法确定的T的后验估计值,第七图403表示采用随机抽样一致算法确定的T的后验估计值,第八图404表示采用最小乘方自适应滤波算法确定的T的后验估计值,第九图405表示采用最大似然算法确定的T的后验估计值,第十图406表示采用卡尔曼滤波算法确定的T的后验估计值。In addition, in order to verify the effectiveness of the process parameter estimation method provided by the embodiments of the present application, other signal filtering or curve fitting methods are used to determine the posterior estimation value of T of the aforementioned reactor monitoring system. These methods mainly include direct estimation methods, random Sampling consensus algorithm, least square adaptive filtering algorithm, maximum likelihood algorithm and Kalman filtering algorithm, etc. Specifically, the sixth graph 402 as shown in FIG. 4 represents the posterior estimated value of T determined by the direct estimation method, the seventh graph 403 represents the posterior estimated value of T determined by the random sampling consensus algorithm, and the eighth graph 404 Represents the posterior estimated value of T determined using the least squares adaptive filtering algorithm, the ninth graph 405 represents the posterior estimated value of T determined using the maximum likelihood algorithm, and the tenth graph 406 represents the T determined using the Kalman filtering algorithm The posterior estimate of .

其中,在仿真实验中,采用计算精度(误差)、响应时间和算法运行时间作为评估计法性能表现的考核指标。其中计算精度以百分制误差的形式体现,是对算法的基础要求;而响应时间则是待求量输出趋于稳定时所需要的时间。指定计算精度为1.00%(百分制误差形式),上述六种对比算法的响应时间和运行时间结果见表1。其中最小乘方自适应滤波算法计算精度无法达到指定要求。Among them, in the simulation experiment, the calculation accuracy (error), the response time and the algorithm running time are used as the evaluation indicators to evaluate the performance of the calculation method. Among them, the calculation accuracy is reflected in the form of percent error, which is the basic requirement for the algorithm; and the response time is the time required when the output of the quantity to be calculated becomes stable. The specified calculation accuracy is 1.00% (in the form of percentile error), and the response time and running time results of the above six comparison algorithms are shown in Table 1. Among them, the calculation accuracy of the least square adaptive filtering algorithm cannot meet the specified requirements.

表1各种信号处理算法计算精度和响应时间对比Table 1 Comparison of calculation accuracy and response time of various signal processing algorithms

Figure BDA0003208667640000163
Figure BDA0003208667640000163

Figure BDA0003208667640000171
Figure BDA0003208667640000171

由上述表1以及图4可知,本申请实施例提供的过程参数估计方法达到相同计算精度的响应时间最短,效果最佳。It can be seen from the above Table 1 and FIG. 4 that the process parameter estimation method provided by the embodiment of the present application has the shortest response time to achieve the same calculation accuracy, and has the best effect.

参照图5,本申请实施例提供的一种过程参数估计装置的结构框图,该过程参数估计装置500可以包括以下模块:5, which is a structural block diagram of a process parameter estimation apparatus provided by an embodiment of the present application, the process parameter estimation apparatus 500 may include the following modules:

采集模块501,用于按照预设采样间隔时间,采集第一变量的测量值;a collection module 501, configured to collect the measured value of the first variable according to a preset sampling interval;

参数获取模块502,用于根据所述测量值,获取所述第一变量的第一参数和第二参数,其中,所述第一参数用于表示噪声信号对所述第一变量在所述预设采样间隔时间内的增量的影响程度,所述第二参数用于表示所述测量值随时间变化的程度;A parameter obtaining module 502, configured to obtain a first parameter and a second parameter of the first variable according to the measured value, wherein the first parameter is used to indicate that the noise signal has a Suppose the influence degree of the increment within the sampling interval, and the second parameter is used to represent the degree of the change of the measurement value with time;

噪声量级确定模块503,用于根据所述第一参数和所述第二参数,确定所述噪声信号的量级;a noise level determination module 503, configured to determine the magnitude of the noise signal according to the first parameter and the second parameter;

第一估计模块504,用于基于所述噪声信号的量级,确定第二变量的后验估计值;a first estimation module 504, configured to determine a posteriori estimated value of the second variable based on the magnitude of the noise signal;

其中,所述第一变量与所述第二变量存在函数关系。Wherein, there is a functional relationship between the first variable and the second variable.

可选的,所述装置还包括:Optionally, the device further includes:

变量获取模块,用于获取待监测系统的监测量和待求量;The variable acquisition module is used to acquire the monitoring quantity and the quantity to be demanded of the system to be monitored;

关系获取模块,用于获取所述监测量和所述待求量之间的线性函数关系表达式,其中,所述线性函数关系表达式的因变量包括所述监测量,所述线性函数关系表达式的自变量的系数包括所述待求量;A relationship acquisition module for acquiring a linear functional relationship expression between the monitored quantity and the to-be-determined quantity, wherein the dependent variable of the linear functional relationship expression includes the monitored quantity, and the linear functional relationship expression The coefficient of the independent variable of the formula includes the quantity to be calculated;

变量确定模块,用于将所述线性函数关系表达式的因变量确定为所述第一变量,并将所述线性函数关系表达式的自变量的系数确定为所述第二变量。A variable determination module, configured to determine the dependent variable of the linear functional relationship expression as the first variable, and determine the coefficient of the independent variable of the linear functional relationship expression as the second variable.

可选的,所述装置还包括:Optionally, the device further includes:

第二估计模块,用于根据所述第二变量的后验估计值,确定所述待求量的后验估计值。The second estimation module is configured to determine the a posteriori estimated value of the quantity to be calculated according to the posterior estimated value of the second variable.

可选的,所述参数获取模块具体用于:Optionally, the parameter acquisition module is specifically used for:

从所述第一变量的采样起始时刻开始,按照预设步长移动预先设置的滑动窗口,并在每移动一次所述滑动窗口之后,根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第一参数和所述第二参数;Starting from the sampling start time of the first variable, the preset sliding window is moved according to the preset step size, and after each moving of the sliding window, according to the measurement value in the sliding window, calculate the the first parameter and the second parameter of the first variable;

其中,所述预设步长包括预设数量的采样点。Wherein, the preset step size includes a preset number of sampling points.

可选的,所述参数获取模块在根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第一参数时,具体用于:Optionally, when the parameter acquisition module calculates the first parameter of the first variable according to the measurement value in the sliding window, it is specifically used for:

确定离散序列的差分信号,其中,所述离散序列包括所述滑动窗口内的所述测量值;determining a differential signal of a discrete sequence, wherein the discrete sequence includes the measurements within the sliding window;

计算所述差分信号的平均值和标准差;calculating the mean and standard deviation of the differential signal;

计算所述标准差与所述平均值之比,得到所述第一参数。The ratio of the standard deviation to the mean is calculated to obtain the first parameter.

可选的,所述参数获取模块在根据所述滑动窗口内的所述测量值,计算所述第一变量的所述第二参数时,具体用于:Optionally, when the parameter acquisition module calculates the second parameter of the first variable according to the measurement value in the sliding window, it is specifically used for:

计算离散序列与所述测量值的采样时间的相关系数,并将所述相关系数确定为所述第二参数,其中,所述离散序列包括所述滑动窗口内的所述测量值。A correlation coefficient between a discrete sequence and a sampling time of the measurement value is calculated, and the correlation coefficient is determined as the second parameter, wherein the discrete sequence includes the measurement value within the sliding window.

可选的,所述噪声量级确定模块具体用于:Optionally, the noise level determination module is specifically used for:

根据第一预设公式|Para*(1-ρ)|=Q,计算所述噪声信号的量级Q,其中,Para表示所述第一参数,ρ表示所述第二参数。The magnitude Q of the noise signal is calculated according to a first preset formula |Para*(1-ρ)|=Q, where Para represents the first parameter and ρ represents the second parameter.

可选的,所述第一估计模块具体用于:Optionally, the first estimation module is specifically used for:

将所述噪声参数的量级和预先确定的卡尔曼方程的初始参数,代入预先确定的卡尔曼滤波方程中,得到所述第二变量在不同采样时刻的后验估计值。The magnitude of the noise parameter and the predetermined initial parameters of the Kalman equation are substituted into the predetermined Kalman filter equation to obtain a posteriori estimated value of the second variable at different sampling times.

可选的,所述装置还包括:Optionally, the device further includes:

状态空间方程确定模块,用于根据所述第一变量与所述第二变量之间的函数关系,确定随机状态空间方程;a state space equation determination module, configured to determine a random state space equation according to the functional relationship between the first variable and the second variable;

卡尔曼滤波方程确定模块,用于基于所述随机状态空间方程,确定所述卡尔曼滤波方程。A Kalman filter equation determination module, configured to determine the Kalman filter equation based on the stochastic state space equation.

由上述可知,本申请的实施例,根据第一变量的测量值预估噪声信号的量级,从而根据噪声信号的量级,确定与第一变量存在函数关系的第二变量的后验估计。这样,即使在初始阶段系统不稳定,也可以对系统噪声的量级进行准确的预估,进而可以基于预估的噪声量级,更加准确估计过程参数(即更加准确的确定第二变量的后验估计值)。因此,本申请的实施例,可以缓解系统噪声对过程参数估计的影响,从而在达到更高的估计精度,进而可以缩短达到相同精度的响应时间。It can be seen from the above that in the embodiment of the present application, the magnitude of the noise signal is estimated according to the measured value of the first variable, so that the posterior estimation of the second variable having a functional relationship with the first variable is determined according to the magnitude of the noise signal. In this way, even if the system is unstable in the initial stage, the magnitude of the system noise can be accurately estimated, and then the process parameters can be more accurately estimated based on the estimated noise level (that is, after the second variable is more accurately determined. test estimate). Therefore, the embodiments of the present application can alleviate the influence of the system noise on the estimation of the process parameters, so as to achieve higher estimation accuracy, and further shorten the response time to achieve the same accuracy.

对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。As for the apparatus embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and reference may be made to the partial description of the method embodiment for related parts.

本申请实施例还提供了一种电子设备,包括:The embodiment of the present application also provides an electronic device, including:

一个或多个处理器;和其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述电子设备执行本申请实施例所述的方法。One or more processors; and one or more machine-readable media having instructions stored thereon, which, when executed by the one or more processors, cause the electronic device to perform the methods described in the embodiments of the present application .

本申请实施例还提供了一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得所述处理器执行本申请实施例所述的方法。The embodiments of the present application further provide one or more machine-readable media on which instructions are stored, and when executed by one or more processors, cause the processors to execute the methods described in the embodiments of the present application.

本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments may be referred to each other.

本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the embodiments of the present application may be provided as methods, apparatuses, or computer program products. Accordingly, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The embodiments of the present application are described with reference to the flowcharts and/or block diagrams of the methods, terminal devices (systems), and computer program products according to the embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal equipment to produce a machine that causes the instructions to be executed by the processor of the computer or other programmable data processing terminal equipment Means are created for implementing the functions specified in a flow or flows of the flowcharts and/or a block or blocks of the block diagrams.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operational steps are performed on the computer or other programmable terminal equipment to produce a computer-implemented process, thereby executing on the computer or other programmable terminal equipment The instructions executed on the above provide steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。Although the preferred embodiments of the embodiments of the present application have been described, those skilled in the art may make additional changes and modifications to these embodiments once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiments as well as all changes and modifications that fall within the scope of the embodiments of the present application.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or terminal device comprising a list of elements includes not only those elements, but also a non-exclusive list of elements. other elements, or also include elements inherent to such a process, method, article or terminal equipment. Without further limitation, an element defined by the phrase "comprises a..." does not preclude the presence of additional identical elements in the process, method, article or terminal device comprising said element.

以上对本申请所提供的一种封面图片的显示方法及装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。A method and device for displaying a cover image provided by the present application have been described above in detail. The principles and implementations of the present application are described with specific examples in this paper. The method of the application and its core idea; at the same time, for those skilled in the art, according to the idea of the application, there will be changes in the specific implementation and application scope. In summary, the content of this description should not be understood to limit this application.

Claims (12)

1. A method of process parameter estimation, the method comprising:
collecting a measured value of a first variable according to a preset sampling interval time;
acquiring a first parameter and a second parameter of the first variable according to the measured value, wherein the first parameter is used for representing the influence degree of a noise signal on the increment of the first variable in the preset sampling interval time, and the second parameter is used for representing the change degree of the measured value along with the time;
determining the magnitude of the noise signal according to the first parameter and the second parameter;
determining a posteriori estimate of a second variable based on the magnitude of the noise signal;
wherein the first variable has a functional relationship with the second variable.
2. The method of process parameter estimation according to claim 1, wherein prior to collecting the measured value of the first variable at the predetermined sampling interval, the method further comprises:
acquiring the monitoring quantity and the quantity to be calculated of a system to be monitored;
acquiring a linear function relation expression between the monitored quantity and the quantity to be solved, wherein a dependent variable of the linear function relation expression comprises the monitored quantity, and a coefficient of an independent variable of the linear function relation expression comprises the quantity to be solved;
and determining the dependent variable of the linear function relational expression as the first variable, and determining the coefficient of the independent variable of the linear function relational expression as the second variable.
3. The method of claim 2, wherein after determining the a posteriori estimate of the second variable based on the magnitude of the noise signal, the method further comprises:
and determining the posterior estimated value of the quantity to be solved according to the posterior estimated value of the second variable.
4. The method of claim 1, wherein said obtaining a first parameter and a second parameter of the first variable from the measured value comprises:
moving a preset sliding window according to a preset step length from the sampling start time of the first variable, and calculating the first parameter and the second parameter of the first variable according to the measured value in the sliding window after moving the sliding window once;
the preset step length comprises a preset number of sampling points.
5. The process parameter estimation method of claim 4, wherein the process of calculating the first parameter of the first variable from the measurements within the sliding window comprises:
determining a discrete sequence of differential signals, wherein the discrete sequence comprises the measurements within the sliding window;
calculating the mean and standard deviation of the differential signal;
and calculating the ratio of the standard deviation to the average value to obtain the first parameter.
6. The process parameter estimation method of claim 4, wherein the process of calculating the second parameter of the first variable from the measured values within the sliding window comprises:
calculating a correlation coefficient of a discrete sequence comprising the measurement values within the sliding window with a sampling time of the measurement values and determining the correlation coefficient as the second parameter.
7. The method of claim 1, wherein determining the magnitude of the noise signal based on the first parameter and the second parameter comprises:
the magnitude Q of the noise signal is calculated according to a first preset formula | Para (1- ρ) | ═ Q, where Para represents the first parameter and ρ represents the second parameter.
8. The process parameter estimation method of claim 1, wherein determining a posteriori estimates of a second variable based on the magnitude of the noise signal comprises:
and substituting the magnitude of the noise parameter and the predetermined initial parameter of the Kalman equation into the predetermined Kalman filtering equation to obtain the posterior estimation values of the second variable at different sampling moments.
9. The method of process parameter estimation according to claim 8, wherein the determining of the kalman filter equation comprises:
determining a random state space equation according to the functional relation between the first variable and the second variable;
and determining the Kalman filtering equation based on the random state space equation.
10. A process parameter estimation apparatus, the apparatus comprising:
the acquisition module is used for acquiring the measured value of the first variable according to the preset sampling interval time;
a parameter obtaining module, configured to obtain a first parameter and a second parameter of the first variable according to the measured value, where the first parameter is used to indicate a degree of influence of a noise signal on an increment of the first variable in the preset sampling interval time, and the second parameter is used to indicate a degree of change of the measured value with time;
a noise magnitude determination module, configured to determine a magnitude of the noise signal according to the first parameter and the second parameter;
a first estimation module for determining a posteriori estimate of a second variable based on the magnitude of the noise signal;
wherein the first variable has a functional relationship with the second variable.
11. An electronic device, comprising: memory, a processor and a computer program stored on the memory and executable on the processor, the computer program, when executed by the processor, implementing the steps of the process parameter estimation method according to any one of claims 1 to 9.
12. A computer-readable storage medium, characterized in that the computer-readable storage medium has stored thereon a computer program which, when being executed by a processor, carries out the steps of the process parameter estimation method according to one of claims 1 to 9.
CN202110924502.3A 2021-08-12 2021-08-12 A process parameter estimation method, device, electronic device and storage medium Active CN113758503B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110924502.3A CN113758503B (en) 2021-08-12 2021-08-12 A process parameter estimation method, device, electronic device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110924502.3A CN113758503B (en) 2021-08-12 2021-08-12 A process parameter estimation method, device, electronic device and storage medium

Publications (2)

Publication Number Publication Date
CN113758503A true CN113758503A (en) 2021-12-07
CN113758503B CN113758503B (en) 2022-03-18

Family

ID=78789129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110924502.3A Active CN113758503B (en) 2021-08-12 2021-08-12 A process parameter estimation method, device, electronic device and storage medium

Country Status (1)

Country Link
CN (1) CN113758503B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118113787A (en) * 2024-04-30 2024-05-31 中增智慧城市建设发展有限公司 Smart city Internet of things data processing method and system based on edge calculation

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206601A (en) * 1992-04-29 1993-04-27 Elanix Inc. Order statistic signal processor for estimating values of signal parameters and demodulating amplitude-, phase-, and frequency-modulated signals
CN1458500A (en) * 2003-06-17 2003-11-26 北京交通大学 Dynamic measurement time domain compensation method
US20050281451A1 (en) * 2004-06-17 2005-12-22 Alexander Starikov Process variable of interest monitoring and control
WO2006050409A1 (en) * 2004-11-01 2006-05-11 University Of Florida Research Foundation, Inc. Methods for machining process parameter estimation and systems thereof
CN101542901A (en) * 2007-01-23 2009-09-23 株式会社石田 Noise removing device, weight measuring device, noise removing method, and digital filter designing method
CN103092078A (en) * 2013-01-07 2013-05-08 北京中医药大学 Whole-process optimizing method of multi-stage batch production process
CN104253776A (en) * 2013-06-26 2014-12-31 英特尔Ip公司 Method and device for processing signal based on first and second covariance measure
JP2015052491A (en) * 2013-09-06 2015-03-19 沖電気工業株式会社 Signal processing apparatus, signal processing method and computer program
CN105785324A (en) * 2016-03-11 2016-07-20 西安电子科技大学 MGCSTFT-based chirp signal parameter estimation method
JP2016143959A (en) * 2015-01-30 2016-08-08 富士通株式会社 Estimation device and estimation method
CN106814608A (en) * 2016-12-08 2017-06-09 浙江中控软件技术有限公司 PREDICTIVE CONTROL adaptive filter algorithm based on Posterior probability distribution
CN107290688A (en) * 2017-08-24 2017-10-24 合肥工业大学 A kind of lithium battery SOC methods of estimation based on adaptive fuzzy Kalman filtering
CN108696305A (en) * 2018-04-17 2018-10-23 东南大学 High-precision frequency deviation measurement method suitable for LTE-A MIMO signal analysis systems
CN109061686A (en) * 2018-07-09 2018-12-21 太原理工大学 Adaptive multipath estimation method based on recurrence broad sense maximum cross-entropy
CN109508510A (en) * 2018-12-20 2019-03-22 国网河南省电力公司焦作供电公司 A kind of rubidium atomic clock parameter estimation algorithm based on improved Kalman filtering
WO2019075014A1 (en) * 2017-10-12 2019-04-18 Diversey, Inc. Filtered and integrated sensor measurement for process condition determination and method thereof
JP6581276B1 (en) * 2018-10-18 2019-09-25 株式会社ショーワ State quantity estimation apparatus, control apparatus, and state quantity estimation method
CN110532621A (en) * 2019-07-30 2019-12-03 北京航空航天大学 A kind of rudders pneumatic power parameter on-line identification method
CN110596593A (en) * 2019-08-26 2019-12-20 浙江大学 Lithium-ion battery SOC estimation method based on intelligent adaptive extended Kalman filter
CN112487708A (en) * 2020-11-24 2021-03-12 山西三友和智慧信息技术股份有限公司 Resistance spot welding quality prediction method based on ensemble learning
CN112883787A (en) * 2021-01-14 2021-06-01 中国人民解放军陆军勤务学院 Short sample low-frequency sinusoidal signal parameter estimation method based on spectrum matching
CN112969967A (en) * 2018-11-07 2021-06-15 Asml荷兰有限公司 Determining corrections to a process

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206601A (en) * 1992-04-29 1993-04-27 Elanix Inc. Order statistic signal processor for estimating values of signal parameters and demodulating amplitude-, phase-, and frequency-modulated signals
CN1458500A (en) * 2003-06-17 2003-11-26 北京交通大学 Dynamic measurement time domain compensation method
US20050281451A1 (en) * 2004-06-17 2005-12-22 Alexander Starikov Process variable of interest monitoring and control
WO2006050409A1 (en) * 2004-11-01 2006-05-11 University Of Florida Research Foundation, Inc. Methods for machining process parameter estimation and systems thereof
CN101542901A (en) * 2007-01-23 2009-09-23 株式会社石田 Noise removing device, weight measuring device, noise removing method, and digital filter designing method
CN103092078A (en) * 2013-01-07 2013-05-08 北京中医药大学 Whole-process optimizing method of multi-stage batch production process
CN104253776A (en) * 2013-06-26 2014-12-31 英特尔Ip公司 Method and device for processing signal based on first and second covariance measure
JP2015052491A (en) * 2013-09-06 2015-03-19 沖電気工業株式会社 Signal processing apparatus, signal processing method and computer program
JP2016143959A (en) * 2015-01-30 2016-08-08 富士通株式会社 Estimation device and estimation method
CN105785324A (en) * 2016-03-11 2016-07-20 西安电子科技大学 MGCSTFT-based chirp signal parameter estimation method
CN106814608A (en) * 2016-12-08 2017-06-09 浙江中控软件技术有限公司 PREDICTIVE CONTROL adaptive filter algorithm based on Posterior probability distribution
CN107290688A (en) * 2017-08-24 2017-10-24 合肥工业大学 A kind of lithium battery SOC methods of estimation based on adaptive fuzzy Kalman filtering
WO2019075014A1 (en) * 2017-10-12 2019-04-18 Diversey, Inc. Filtered and integrated sensor measurement for process condition determination and method thereof
CN108696305A (en) * 2018-04-17 2018-10-23 东南大学 High-precision frequency deviation measurement method suitable for LTE-A MIMO signal analysis systems
CN109061686A (en) * 2018-07-09 2018-12-21 太原理工大学 Adaptive multipath estimation method based on recurrence broad sense maximum cross-entropy
JP6581276B1 (en) * 2018-10-18 2019-09-25 株式会社ショーワ State quantity estimation apparatus, control apparatus, and state quantity estimation method
CN112969967A (en) * 2018-11-07 2021-06-15 Asml荷兰有限公司 Determining corrections to a process
CN109508510A (en) * 2018-12-20 2019-03-22 国网河南省电力公司焦作供电公司 A kind of rubidium atomic clock parameter estimation algorithm based on improved Kalman filtering
CN110532621A (en) * 2019-07-30 2019-12-03 北京航空航天大学 A kind of rudders pneumatic power parameter on-line identification method
CN110596593A (en) * 2019-08-26 2019-12-20 浙江大学 Lithium-ion battery SOC estimation method based on intelligent adaptive extended Kalman filter
CN112487708A (en) * 2020-11-24 2021-03-12 山西三友和智慧信息技术股份有限公司 Resistance spot welding quality prediction method based on ensemble learning
CN112883787A (en) * 2021-01-14 2021-06-01 中国人民解放军陆军勤务学院 Short sample low-frequency sinusoidal signal parameter estimation method based on spectrum matching

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
R.N.K. LOH ET.AL: "Properties of one-step prediction observers (identifiers) for system parameter identification", 《6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING》 *
W.-X. ZHENG: "Estimation of the parameters of autoregressive signals from colored noise-corrupted measurements", 《IEEE SIGNAL PROCESSING LETTERS》 *
张秀杰等: "自适应Kalman滤波的运动物体跟踪算法研究", 《燕山大学学报》 *
陈军锋等: "非侵入式负荷识别边缘计算颜色编码研究", 《仪器仪表学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118113787A (en) * 2024-04-30 2024-05-31 中增智慧城市建设发展有限公司 Smart city Internet of things data processing method and system based on edge calculation

Also Published As

Publication number Publication date
CN113758503B (en) 2022-03-18

Similar Documents

Publication Publication Date Title
Beintema et al. Nonlinear state-space identification using deep encoder networks
US8589329B2 (en) Method and apparatus for incremental tracking of multiple quantiles
CN103927436A (en) Self-adaptive high-order volume Kalman filtering method
Cheng et al. Background error covariance iterative updating with invariant observation measures for data assimilation
Wang cts: an R package for continuous time autoregressive models via Kalman filter
CN112909931B (en) A dynamic stability analysis method and device for a linear periodic time-varying system
CN113758503B (en) A process parameter estimation method, device, electronic device and storage medium
Andrieu et al. Continuous discrete observer with updated sampling period
Levin et al. Estimation of the regularization parameter in linear discrete ill-posed problems using the Picard parameter
Chen et al. Monitoring memory parameter change-points in long-memory time series
CN103268403A (en) A Target Tracking Method Based on Volumetric Strong Tracking Information Filter
US11572664B2 (en) Asphalt density estimation system, and related method of reducing signal noise
CN114152299A (en) Ultrasonic gas meter, flow stabilizing and filtering method and system for flow meter
Gerth et al. Estimating solution smoothness and data noise with Tikhonov regularization
KR20130077377A (en) A non-parametric numerical analysis method based on response data for dissipative nonlinear dynamical system
CN109784661A (en) A kind of thermal process steady state detecting method for use and system
CN113193929B (en) Online judgment method and device for noise interference level of advanced observer
CN115310260B (en) Fatigue life distribution model modeling method, system, device, computer-readable medium
CN113640115B (en) Optimization method and system suitable for solving inverse problem of quasi-isentropic compression experimental data
CN114563045B (en) Detection method and device for hospital logistics system, electronic equipment and medium
WO2012071046A1 (en) Causal dynamic model for revenue
US8135563B2 (en) Apparatus and method for evaluating the performance of systems having time-varying output characteristics
Lu et al. Aplication of Gaussian Filtering Technique in Surface Roughness Extraction Based on Qt
Lixin et al. Improvement algorithm of dynamic Allan variance and its application in analysis of FOG start-up signal
Pal et al. Efficient parameter estimation for second order plus dead time systems in process plant control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant