CN113755725A - 一种多尺度颗粒改性的6000系合金线材及其制备方法 - Google Patents

一种多尺度颗粒改性的6000系合金线材及其制备方法 Download PDF

Info

Publication number
CN113755725A
CN113755725A CN202111047715.9A CN202111047715A CN113755725A CN 113755725 A CN113755725 A CN 113755725A CN 202111047715 A CN202111047715 A CN 202111047715A CN 113755725 A CN113755725 A CN 113755725A
Authority
CN
China
Prior art keywords
alloy
percent
alloy wire
aluminum
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111047715.9A
Other languages
English (en)
Other versions
CN113755725B (zh
Inventor
陈继强
韩双
周子翔
钟世标
文锋
管仁国
齐亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN202111047715.9A priority Critical patent/CN113755725B/zh
Publication of CN113755725A publication Critical patent/CN113755725A/zh
Application granted granted Critical
Publication of CN113755725B publication Critical patent/CN113755725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/047Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明涉及金属材料制备技术领域,具体涉及一种多尺度颗粒改性的6000系合金线材及其制备方法。包括:合金线材本体;所述合金线材按照各主元素化学成分及粒子含量百分比选取:Mg:1.2~1.8%;Si:0.8~1.2%;Cu:0.5~1.2%;Cr:0.05~0.2%;V:0.05~0.2%;TiB2:0.2~3%;TiC:0.2%~3%,其余为Al和不可避免的杂质元素。本发明可制备出含有及亚微米级TiB2和纳米级TiC颗粒的低热裂纹敏感性且高强Al‑Mg‑Si‑Cu合金线材,凝固裂纹敏感性极低,同时能够显著提高合金强度,经后续热处理可获得更高的强度性能,可用于高强铝合金结构件的增材制造及焊接。同时,Al‑Mg‑Si‑Cu合金中通过多尺度粒子改性和钒元素合金化复合作用,经焊接和增材制造后,铝合金硬度和强度提高的同时,耐磨性、耐腐蚀和抗蠕变性能也有较大提高。

Description

一种多尺度颗粒改性的6000系合金线材及其制备方法
技术领域
本发明涉及金属材料制备技术领域,具体涉及一种多尺度颗粒改性的高强 6000系合金线材及其制备方法。
背景技术
铝合金具有良好的导电导热性,较高的强度质量比、抗腐蚀性能和耐损伤性等优势,被广泛用于航空航天、轨道交通、汽车、船舶、压力容器、电子电器、家具等诸多领域,是目前工业应用最为广泛的金属材料之一。以6061位代表的 6000系列铝合金中的主要合金元素为镁与硅,具有中等强度、良好的抗腐蚀性、可焊接性,氧化效果较好。广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如制造卡车、塔式建筑、船舶、电车、铁道车辆、家具等。
6000系列Al-Mg-Si合金中的主要合金元素为镁与硅,具有中等强度、良好的抗腐蚀性、可焊接性,氧化效果较好,添加Cu元素后具有更高的强度性能。 6000系列铝合金也是应用最为广泛的铝合金系列,广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如轨道列车、船舶、新能源汽车、航空航天等领域。然而,对于高强Al-Mg-Si-Cu铝合金还存在凝固过程中(增材制造过程)热裂纹倾向比较高的问题,即在增材制造中高强铝合金中会出现明显的裂纹,且还存在凝固后合金强度不足的问题,从而严重影响高强铝合金构件的性能,构件的耐磨性,耐腐蚀和抗蠕变性能也是目前存在的短板,提高构件的耐磨性,耐腐蚀和抗蠕变性能能够极大的改善其服役寿命,进而降低使用成本。如何改善其焊接和增材制造构件的综合性能是关键。
因此本发明针对上述问题研发了一种适用于增材制造的多尺度粒子改性的高强6000系Al-Mg-Si-Cu铝合金线材及其制备方法,该合金线材熔化过程中凝固热裂纹敏感性低,且凝固后合金强度较高,同时通过多尺度粒子改性和V元素的合金化复合作用,能进一步提升合金的提高构件强度的同时,还能够改善合金的耐磨性、抗腐蚀性能和抗蠕变性能。该发明在高强耐磨抗蠕变6000系 Al-Mg-Si-Cu铝合金构件增材制造中具有十分重要的创新价值和工程应用意义。
发明内容
本方案的目的在于提供一种多尺度颗粒改性的高强6000系合金线材及其制备方法。
为了达到上述目的,本方案提供一种多尺度颗粒改性的6000系合金线材及其制备方法,包括:合金线材本体;所述合金线材按照各主元素化学成分及粒子含量百分比选取:Mg:1.2~1.8%;Si:0.8~1.2%;Cu:0.5~1.2%;Cr:0.05~0.2%; V:0.05~0.2%;TiB2:0.2~3%;TiC:0.2%~3%,其余为Al和不可避免的杂质元素。
本方案有益效果:本发明可制备出含有及亚微米级TiB2和纳米级TiC颗粒的低热裂纹敏感性且高强Al-Mg-Si-Cu合金线材,经3D打印熔化后晶粒组织均匀细小,凝固裂纹敏感性极低,同时能够显著提高合金强度,经后续热处理可获得更高的强度性能,可用于高强铝合金结构件的增材制造及焊接。
同时,Al-Mg-Si-Cu合金线材采用加入钒元素,针对钒的本身特性,熔点高,为难熔金属,有延展性,质坚硬,无磁性。具有耐盐酸和硫酸的本领,并且在耐气、耐盐、耐水腐蚀的性能要比大多数不锈钢好。Al-Mg-Si-Cu合金中通过多尺度粒子改性和钒元素合金化复合作用,经焊接和增材制造后,铝合金硬度和强度提高的同时,耐磨性、耐腐蚀和抗蠕变性能也有较大提高。
进一步,Mg/Si质量比在1.4~1.7范围
进一步,TiB2和TiC颗粒的总含量在1%~3.5%范围内。
进一步,所述TiC的颗粒大小为10~60nm。
进一步,所述TiB2的颗粒大小0.2-2μm。
进一步,所述方法包括如下步骤:
步骤一:采用原位反应生产、熔盐辅助以及振动外场多途径复合方式制备含有亚微米级TiB2颗粒及纳米尺度TiC颗粒的铝中间合金;;
步骤二:将含有亚微米级TiB2颗粒及纳米尺度TiC颗粒的铝中间合金作为主要原材料和Al-Si、Al-Cu、Al-V中间合金在温度控制在780-850℃的熔炼炉中熔炼,并采用惰性气体保护,待完全熔化后按质量比例加入纯Mg,充分搅拌均匀,然后进行精炼除气除渣的熔体净化工序;
步骤三;熔体净化后的控制合金熔体在780-820℃时导入到中间包保温,并在750-800℃时注入到连续半固态流变挤压机,制备出直径为8-10mm的铝合金线坯,连续流变挤压机挤压辊转速为5-30m/min,挤压辊中冷却水流量为40-60L/min;
步骤四:将线坯经热轧和拉拔、中间退火及表面处理,最后加工成
Figure RE-GDA0003285100980000031
Figure RE-GDA0003285100980000032
的盘卷线材;
进一步,步骤一中的中间合金制备方法步骤为:
步骤1:按比例配制K2TiF6、KBF4、KCl、BaCl2混合盐;
步骤2:将纳米TiC颗粒与混合盐均匀混合;
步骤3:将石墨坩埚放置到熔炼炉中,将纯铝放置到石墨坩埚,启用熔炼炉对石墨坩埚进行加热,使石墨坩埚内温度达到780℃温度将纯铝熔化;
步骤4:将均匀混合纳米颗粒的混合盐倒入铝熔体中;
步骤5:将铝熔体升温至800~850℃;
步骤6:均匀搅拌铝熔体15~30分钟;
步骤7:将装有铝熔体的坩埚从熔炼炉中取出并放置在高频振动板上,自然冷却;
步骤8:待熔体完全冷却后,去除表面的盐,即可获得多尺度混合颗粒的铝中间合金。
附图说明
图1为本发明实施例1所制备的多尺度粒子改性的Al-Mg-Si-Cu合金铸态组织金相图。
图2为未采用粒子改性的Al-Mg-Si-Cu合金铸态组织金相图。
图3为本发明实施例1和对比例1所制备的铸态Al-Mg-Si-Cu合金硬度对比图。
具体实施方式
下面通过具体实施方式进一步详细说明:
实施例:一种多尺度颗粒改性的6000系合金线材的其制备方法,包括如下步骤:
步骤一:选取材料Mg:1.2~1.8%;Si:0.8~1.2%;Cu:0.5~1.2%;Cr:0~0.2%;V:0.05~0.2%;TiB2:0.2~3%;TiC:0.2%~3%,其余为Al和不可避免的杂质元素;
步骤二:采用原位反应生产、熔盐辅助以及振动外场多途径复合方式制备含有亚微米级TiB2颗粒及纳米尺度TiC颗粒的铝中间合金;
步骤三:将含有亚微米级TiB2颗粒及纳米尺度TiC颗粒的铝中间合金作为主要原材料进行熔炼,并按比例添加Mg、Al-Si、Al-Cu、Al-V和Al-Cr中间合金,熔炼温度为X1℃,持续充分搅拌;
步骤四;熔体净化后的控制合金熔体在X1℃时导入到中间包保温,并在X2℃时注入到连续半固态流变挤压机,制备出直径为10mm的铝合金线坯,连续流变挤压机挤压辊转速为20m/min,挤压辊中冷却水流量为50L/min;
步骤五:将步骤四所得产物进行轧制、拉拔和表面处理工序,制得表面光洁线径为Cmm的Al-Mg-Si-Cu合金线材。
其中步骤一中各金属元素含量如表1所示;步骤二中TiB2和TiC含量、步骤三中熔炼温度、步骤四中将炉温和步骤五中光洁线径的所有变量由表2所示。
表1
Figure RE-GDA0003285100980000041
Figure RE-GDA0003285100980000051
表2
Figure RE-GDA0003285100980000052
Figure RE-GDA0003285100980000061
如表1和表2所示:
对比例1:对比例1与实施例1的区别在于步骤二中不添加TiB2和TiC其中任意一项,其他条件均相同。
对比例2:对比例1与实施例1的区别在于步骤一中Mg/Si质量比为2,大于范围1.4-1.7,其他条件均相同。
对比例3:对比例1与实施例1的区别在于步骤二中添加TiB2含量为3%和 TiC含量为3%,大于TiB2和TiC的总量0.5%~3.5%,其他条件均相同。
对比例4:对比例1与实施例1的区别在于步骤一中没有添加V,其他条件均相同。
将所有实施例与对比例在光学显微和硬度测试设备中进行观察,得到多尺度粒子改性的Al-Mg-Si-Cu合金铸态组织金相图和硬度对比图,结论如下:
图1为本发明实施例1所制备的多尺度粒子改性(TiB2+TiC含量为3.2%) 的Al-Zn-Mg-Cu合金铸态组织金相图片;
图2为对比例1所制备的未采用粒子改性的Al-Mg-Si-Cu合金铸态组织金相图片;
图3为本发明实施例1和对比例1所制备的铸态Al-Mg-Si-Cu合金硬度对比;
图1为采用粒子改性的Al-Mg-Si-Cu合金铸态组织金相图片;由图观察可知,合金铸态组织细小均匀的等轴晶粒,平均晶粒尺寸为30μm左右。
图2为对比例1中未采用粒子改性的Al-Mg-Si-Cu合金铸态组织金相图片;由图观察可知,无明显的等轴晶粒,为粗大枝晶组织结构,且有微观可见热裂纹。
图3为本发明实施例1和对比例1所制备的铸态Al-Mg-Si-Cu合金硬度对比;由图结果可知,采用粒子改性的Al-Mg-Si-Cu合金硬度要比未采用粒子改性的合金硬度高50%左右。
由实施例制得的多尺度粒子改性的Al-Mg-Si-Cu合金现在,均存在合金铸态组织细小均匀的等轴晶粒。而在对比例1和对比3中,无明显的等轴晶粒,为粗大枝晶组织结构,且有微观可见热裂纹。
由于对比例2中Mg/Si质量比为1.8,致使Al-Mg-Si-Cu合金的强度下降,延伸率小幅度减小。
对比例3中添加TiB2含量为3%和TiC含量为3%,总和为6%,大于TiB2和TiC的总量0.5%~3.5%,线材拉拔难度增加。
对比例4中由于添加V的含量为0,耐磨性和抗蠕变性能改善效果稍差。
综上所述,实施例中所制得的多尺度粒子改性的Al-Mg-Si-Cu合金,具有良好的硬度,同时在金相图中均存在等轴晶粒,而对比例所产出的多尺度粒子改性的Al-Mg-Si-Cu合金,不能同时兼备硬度和金相图中等轴晶粒。
以上是通过电镜扫描图从微观层面上观察得到的本实施例的性能,除此之外,还引入了更多的对比例,在宏观层面进行对比,以期证明依赖本发明所获得的产品性能的优越性。
具体情况如下:
将所有实施例与对比例中所得的多尺度粒子改性的Al-Mg-Si-Cu合金,按照 GB/T12967.1-2020中关于铝合金耐磨性试验。选取经增材制造及热处理后的合金件(相同高度为10cm),在ML-10型磨料磨损试验机下进行相同时间(30s) 和相同压力下(1000N)的磨损试验,对合金件(合金件为圆柱型)进行磨损试验。
将上述实施例和对比例,按照GB/T 12967.1-2020中关于铝合金耐磨性试验,对线材经增材制造后合金的耐磨性对比,测的结果如表3所示:
表3
Figure RE-GDA0003285100980000071
Figure RE-GDA0003285100980000081
由表3可知,实施例中所产的多尺度粒子改性的Al-Mg-Si-Cu合金经由磨损试验机试验后,实施例所产的多尺度粒子改性的Al-Mg-Si-Cu合金磨损的程度较低,抗磨损程度高,而对比例磨损程度较大。
综上所述,
本发明所产出的多尺度粒子改性的Al-Mg-Si-Cu合金,具有较强的耐磨性,能够显著提高合金强度。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (7)

1.一种多尺度颗粒改性的6000系合金线材,包括:合金线材本体;所述合金线材按照各主元素化学成分及粒子含量百分比选取:Mg: 1.2~1.8%;Si: 0.8~1.2%;Cu: 0.5~1.2%;Cr:0~0.2%;V: 0.05~0.2%; TiB2: 0.2~3%;TiC: 0.2%~3%,其余为Al和不可避免的杂质元素。
2.根据权利要求1所述的一种多尺度颗粒改性的6000系合金线材,其特征在于,Mg/Si质量比在1.4~1.7范围内。
3.根据权利要求1所述的一种多尺度颗粒改性的6000系合金线材,其特征在于,TiB2 和TiC颗粒的总含量在0.5%~3.5%范围内。
4.根据权利要求1所述的一种多尺度颗粒改性的6000系合金线材,其特征在于,所述TiC的颗粒大小为10~60 nm。
5.根据权利要求1所述的一种多尺度颗粒改性的6000系合金线材,其特征在于,所述TiB2的颗粒大小0.2-2 μm。
6.根据权利要求1-4任意一项所述的一种多尺度颗粒改性的7000系合金线材的其制备方法,其特征在于,所述方法包括如下步骤:
步骤一:采用原位反应生产、熔盐辅助以及振动外场多途径复合方式制备含有亚微米级TiB2颗粒及纳米尺度TiC颗粒的铝中间合金;
步骤二:将含有亚微米级TiB2颗粒及纳米尺度TiC颗粒的铝中间合金作为主要原材料和Al-Si、Al-Cu、Al-V中间合金在温度控制在780-850℃的熔炼炉中熔炼,并采用惰性气体保护,待完全熔化后按质量比例加入纯Mg,充分搅拌均匀,然后进行精炼除气除渣的熔体净化工序;
步骤三;熔体净化后的控制合金熔体在780-820℃时导入到中间包保温,并在750-800℃时注入到连续半固态流变挤压机,制备出直径为8-10 mm的铝合金线坯,连续流变挤压机挤压辊转速为5-30 m/min,挤压辊中冷却水流量为40-60 L/min;
步骤四:将线坯经热轧和拉拔、中间退火及表面处理,最后加工成φ1.2mm或φ1.6mm的盘卷线材。
7.根据权利要求5所述的一种多尺度颗粒改性的6000系合金线材的其制备方法,其特征在于,步骤一中的中间合金制备方法步骤为:
步骤1:按比例配制K2TiF6、KBF4、KCl、BaCl2混合盐;
步骤2:将纳米TiC颗粒与混合盐均匀混合;
步骤3:将纯铝放置到石墨坩埚中,启用熔炼炉对石墨坩埚进行加热,使石墨坩埚内温度达到780℃温度将纯铝熔化;
步骤4:将均匀混合纳米颗粒的混合盐倒入铝熔体中;
步骤5:将铝熔体升温至800~850℃;
步骤6:均匀搅拌铝熔体15~30分钟;
步骤7:采用高频振动板对铝熔体进行振动或者采用电磁搅拌对铝熔体进行持续搅拌,自然冷却;
步骤8:待熔体完全冷却后,去除表面的盐,即可获得多尺度混合颗粒的铝中间合金。
CN202111047715.9A 2021-09-08 2021-09-08 一种多尺度颗粒改性的6000系合金线材及其制备方法 Active CN113755725B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111047715.9A CN113755725B (zh) 2021-09-08 2021-09-08 一种多尺度颗粒改性的6000系合金线材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111047715.9A CN113755725B (zh) 2021-09-08 2021-09-08 一种多尺度颗粒改性的6000系合金线材及其制备方法

Publications (2)

Publication Number Publication Date
CN113755725A true CN113755725A (zh) 2021-12-07
CN113755725B CN113755725B (zh) 2022-11-22

Family

ID=78793685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111047715.9A Active CN113755725B (zh) 2021-09-08 2021-09-08 一种多尺度颗粒改性的6000系合金线材及其制备方法

Country Status (1)

Country Link
CN (1) CN113755725B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354248A (zh) * 2022-08-22 2022-11-18 昆山加迪豪铝业有限公司 高性能轻型铝合金
CN115747547A (zh) * 2022-10-26 2023-03-07 中冶赛迪工程技术股份有限公司 一种通过纳米颗粒改善合金微观形貌的冶金方法及其产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282162A (ja) * 1999-03-30 2000-10-10 Nippon Steel Corp 腐食疲労強度に優れたアルミニウム合金押出材
CN109609798A (zh) * 2018-12-27 2019-04-12 吉林大学 一种微量微纳米混杂颗粒增强Al-Cu-Mg-Si板材控轧制备方法
CN110205527A (zh) * 2019-06-28 2019-09-06 江西理工大学 一种增材制造用Al-Mg-Si合金线材及其制备方法
CN110662852A (zh) * 2017-05-26 2020-01-07 诺维尔里斯公司 高强度耐腐蚀6xxx系列铝合金和其制造方法
CN111394628A (zh) * 2020-05-15 2020-07-10 浙江大学宁波理工学院 一种原位双相颗粒增强富Fe活塞铝基复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282162A (ja) * 1999-03-30 2000-10-10 Nippon Steel Corp 腐食疲労強度に優れたアルミニウム合金押出材
CN110662852A (zh) * 2017-05-26 2020-01-07 诺维尔里斯公司 高强度耐腐蚀6xxx系列铝合金和其制造方法
CN109609798A (zh) * 2018-12-27 2019-04-12 吉林大学 一种微量微纳米混杂颗粒增强Al-Cu-Mg-Si板材控轧制备方法
CN110205527A (zh) * 2019-06-28 2019-09-06 江西理工大学 一种增材制造用Al-Mg-Si合金线材及其制备方法
CN111394628A (zh) * 2020-05-15 2020-07-10 浙江大学宁波理工学院 一种原位双相颗粒增强富Fe活塞铝基复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354248A (zh) * 2022-08-22 2022-11-18 昆山加迪豪铝业有限公司 高性能轻型铝合金
CN115747547A (zh) * 2022-10-26 2023-03-07 中冶赛迪工程技术股份有限公司 一种通过纳米颗粒改善合金微观形貌的冶金方法及其产品和应用

Also Published As

Publication number Publication date
CN113755725B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Jawalkar et al. Fabrication of aluminium metal matrix composites with particulate reinforcement: a review
Kumar et al. In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites
CN111206166B (zh) 一种原位三元纳米颗粒增强铝基复合材料的制备方法
Tao et al. Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite
CN103370429B (zh) 细化金属合金的方法
CN113755725B (zh) 一种多尺度颗粒改性的6000系合金线材及其制备方法
CN101407876A (zh) 适于大截面主承力结构件制造的铝合金材料及其制备方法
Yi et al. Effect of minor Zr and Sc on microstructures and mechanical properties of Al–Mg–Si–Cu–Cr–V alloys
JP2013528699A (ja) アルミニウムダイカスト合金
Wang et al. The bimodal effect of La on the microstructures and mechanical properties of in-situ A356–TiB2 composites
Wang et al. Conductive Al alloys: the contradiction between strength and electrical conductivity
JP6126235B2 (ja) 耐熱性アルミニウムベース合金を変形させてなる半製品およびその製造方法
Wang et al. Effect of Zr and Sc micro-additions on the microstructure and mechanical properties of as-cast Al-5Ce alloy
Dwivedi et al. Mechanical, physical and thermal behaviour of sic and mgo reinforced aluminium based composite material
Akbar et al. Experimental study of quenching agents on Al6061–Al2O3 composite: Effects of quenching treatment to microstructure and hardness characteristics
Xie et al. Nanoparticulate dispersion, microstructure refinement and strengthening mechanisms in Ni-coated SiCp/Al-Cu nanocomposites
JP2016505713A5 (zh)
US20160298217A1 (en) Aluminum Alloy Refiner Material and Preparation Method Thereof
CN110129596B (zh) 薄带状纳米Al3(Sc,Zr)/Al复合孕育剂的制备方法
Samal et al. Combining effect of annealing and reinforcement content on mechanical behavior of multi-walled CNT reinforced AA5052 composites
Pazhuhanfar et al. Processing and characterization of the microstructure and mechanical properties of Al6061-TiB2 composite
CN113373355A (zh) 一种多尺度颗粒改性的7000系合金线材及其制备方法
Verma et al. Microstructure evolution and mechanical properties of aluminium matrix composites reinforced with CoMoMnNiV high-entropy alloy
Tarai et al. Experimental study of microstructural and mechanical characterization of silicon-bronze copper alloy (C87600) hybrid composites reinforced with SiC-Gr particles by stir casting
CN104911410A (zh) 铝合金细化剂中间合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant