CN113755419B - Recombinant plasmid for producing hexamethylenediamine and application thereof - Google Patents

Recombinant plasmid for producing hexamethylenediamine and application thereof Download PDF

Info

Publication number
CN113755419B
CN113755419B CN202111014720.XA CN202111014720A CN113755419B CN 113755419 B CN113755419 B CN 113755419B CN 202111014720 A CN202111014720 A CN 202111014720A CN 113755419 B CN113755419 B CN 113755419B
Authority
CN
China
Prior art keywords
gene
recombinant plasmid
hexamethylenediamine
seq
nucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111014720.XA
Other languages
Chinese (zh)
Other versions
CN113755419A (en
Inventor
王丹
罗若诗
周丹
王永忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202111014720.XA priority Critical patent/CN113755419B/en
Publication of CN113755419A publication Critical patent/CN113755419A/en
Application granted granted Critical
Publication of CN113755419B publication Critical patent/CN113755419B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01081Hydroxypyruvate reductase (1.1.1.81)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/030132-Isopropylmalate synthase (2.3.3.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01001Pyruvate decarboxylase (4.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01072Branched-chain-2-oxoacid decarboxylase (4.1.1.72)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01074Indolepyruvate decarboxylase (4.1.1.74)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/010333-Isopropylmalate dehydratase (4.2.1.33)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01036Homoaconitate hydratase (4.2.1.36)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to the field of bioengineering, and particularly discloses a recombinant plasmid for producing hexamethylenediamine and application thereof. The invention constructs homologous or heterologous extension paths through reconstructing paths of alpha-keto acid, fatty acid, leucine and the like of microorganisms, and realizes superposition of "+n" groups of cheap renewable substrates. By integrating the alpha-keto acid pathway and the leucine synthesis pathway, acetyl coenzyme A is used as a superposition monomer, L-lysine is used as a raw material, and the controllable extension of a carbon chain is realized, so that the synthesis of a nylon material monomer hexamethylenediamine can be realized. By combining genome and metabonomics analysis and computer simulation calculation, the high yield of hexamethylenediamine is realized through the directed evolution of a leucine pathway, and the production of amine substances with other chain lengths can be directionally produced. And integrating lysine production strains, finally endowing cells with new anabolic capability, obtaining engineering cells capable of synthesizing polyamide material monomers from the head, and realizing the production of bio-based chemical materials.

Description

Recombinant plasmid for producing hexamethylenediamine and application thereof
Technical Field
The invention relates to the field of bioengineering, in particular to recombinant plasmid for producing hexamethylenediamine and application thereof.
Background
With the increasing demand for pharmaceutical chemicals, material monomers, synthetic polymers, the problems of raw material exhaustion, environmental pollution, high cost and the like caused by the increasing demand are increasing. The advent of microbial-mediated chemical production would provide an opportunity for development from mineral-dependent fuels to sustainable society.
In vivo carbon chain extension is a great potential approach, can be used for synthesizing similar acids and alcohols with different chain lengths, are important constituent substances of biofuels and materials, and have great value in producing bio-based products from renewable and cheap raw materials.
Nylon is one of the most common polyamide materials, whose synthesis of the material monomer hexamethylenediamine (Hexamethylene diamine) is a "neck" technique, and conventional production techniques from hexamethylenenitrile will produce a large amount of greenhouse gases and render the production non-renewable due to the dependence on fossil oils. Therefore, microbial production of chemicals and materials from renewable carbon sources is becoming critical to establishing a sustainable chemical industry. In the last decades, biological and chemical combination methods have been used to produce more and more chemicals, L-lysine being an important commercial amino acid, with a capacity of millions of tons worldwide, produced by microbial fermentation from genetically engineered Corynebacterium glutamicum or recombinant Escherichia coli.
At present, the biosynthesis method based on hexamethylenediamine only teaches Alexander F.Yakunin to use adipic acid as a substrate, and the production of hexamethylenediamine is realized through decarboxylation and ammonia conversion. However, the path is still low in yield and is limited by the ability of the substrate to produce adipic acid. In addition, patent CN112079725a discloses a process for producing hexamethylenediamine: mixing and gasifying ammonia, hydrogen and caprolactam to obtain mixed gas; adding a catalyst into the obtained mixed gas to perform catalytic ammonification reaction and catalytic hydrogenation reaction; then, condensing and separating the material obtained by the reaction to obtain a reaction liquid, and distilling the obtained reaction liquid to obtain hexamethylenediamine. Although the method simplifies the production steps to a certain extent, the process is complicated, more materials are added, and the process has high requirements on temperature.
In conclusion, a high-yield biosynthesis method of hexamethylenediamine is lacking, the cost is reduced, and the production of bio-based chemical materials is realized.
Disclosure of Invention
In order to solve the problems, the invention provides two groups of recombinant plasmids for producing hexamethylenediamine and two genetic engineering bacteria for producing hexamethylenediamine, simultaneously provides two groups of recombinant plasmid compositions and construction methods of corresponding genetic engineering bacteria, and provides the two groups of recombinant plasmids and the application of the genetic engineering bacteria in cell fermentation, cell catalysis and enzyme catalysis for producing hexamethylenediamine.
The invention aims at providing a recombinant plasmid capable of assisting in producing hexamethylenediamine engineering bacteria, wherein the recombinant plasmid is pRLABCD recombinant plasmid, and the recombinant plasmid comprises a raip gene, a leuA gene, a leuB gene, a leuC gene and a leuD gene.
Specifically, the nucleotide sequence of the raip gene is shown in SEQ ID NO: 1.
Specifically, the nucleotide sequences of the leuA gene, the leuB gene, the leuC gene and the leuD gene are shown in SEQ ID NO: 2.
The second purpose of the invention is to provide a preparation method of the pRLABCD recombinant plasmid, which comprises the following specific technical scheme:
the preparation method of the pRLABCD recombinant plasmid comprises the following specific steps:
(1) Designing a primer:
raip-F:cggaattcgatggagcacctggcagact;
raip-R:caactgcagttacagttcgtccttggtatgctcg;
leuABCD-F:cgagactccatatgagccagcaagtcattattttcg;
leuABCD-R:ccgctcgagttaattcataaacgcaggttg;
(2) Synthesizing a target gene raip, and carrying out PCR amplification by taking total DNA of escherichia coli as a template;
(3) And purifying the PCR product, and connecting the PCR product to the pet21a vector to obtain the pRLABCD recombinant plasmid.
The invention also aims to provide a recombinant plasmid composition for producing hexamethylenediamine engineering bacteria, which has the following specific technical scheme:
a recombinant plasmid composition for producing hexamethylenediamine engineering bacteria, which consists of any pRLABCD recombinant plasmid and pKV recombinant plasmid in the technical scheme, wherein the pKV recombinant plasmid comprises kivD gene and vfl gene.
In the construction process of the pKV recombinant plasmid, the designed primers are as follows:
kivD-BamHI-F:cgcggatccgatgtataccgtgggtgactatc,
kivD-SalI-R:acgcgtcgacttagctcttattttgttcggc,
vfl-NdeI-F:cgagactccatatgaataaaccccaatcatgggaagc,
vfl-XhoI-R:ccgctcgagttacgcgacctcggcgaaca。
specifically, the nucleotide sequence of the kivD gene is shown in SEQ ID NO: 3.
Specifically, the nucleotide sequence of the vfl gene is shown in SEQ ID NO: 4.
The fourth purpose of the invention is to protect the genetic engineering bacteria LRKV which can produce hexamethylenediamine and is prepared by the recombinant plasmid composition.
The fifth object of the present invention is to provide a method for preparing hexamethylenediamine using the recombinant plasmid composition according to the above scheme, comprising the following steps:
1) Transferring the recombinant plasmid composition into escherichia coli BL21 to obtain genetic engineering bacteria LRKV;
2) Culturing lysine serving as a fermentation substrate with the genetically engineered bacterium LRKV to obtain hexamethylenediamine.
Specifically, 2g/L alanine and 2g/L glutamine were added as amine donors in step 2).
Specifically, the lysine content is 5g/L.
Specifically, the content of the obtained hexamethylenediamine is 3.62-6.65 g/L.
The invention aims at providing another recombinant plasmid composition for producing hexamethylenediamine engineering bacteria, which has the following specific technical scheme:
a recombinant plasmid composition for producing hexamethylenediamine engineering bacteria, which consists of any pRLABCD recombinant plasmid and pAD recombinant plasmid in the technical scheme, wherein the pAD recombinant plasmid comprises kdcA gene and dat gene.
In the construction process of pAD recombinant plasmid, the designed primers are as follows:
kdcA-BamHI-F:cgcggatccgatgtatacagtaggagactacctattag,
kdcA-SalI-R:gcgcgtcgacttatttgttttgttcggca,
dat-NdeI-F:ccggcctccatatgaaagtattagttaatggaaggc,
dat-XhoI-R:ccgctcgagttaggaaatggacgcagcct。
specifically, the nucleotide sequence of the kdcA gene is shown in SEQ ID NO: shown at 6.
Specifically, the nucleotide sequence of the dat gene is shown in SEQ ID NO: shown at 7.
Specifically, the nucleotide sequence of the pAD recombinant plasmid is shown as SEQ ID NO: shown at 8.
The seventh object of the invention is to provide a method for preparing hexamethylenediamine, which comprises the following specific technical scheme:
a method for preparing hexamethylenediamine by using the recombinant plasmid composition in the scheme, which is characterized by comprising the following specific steps:
(1) Transferring the recombinant plasmid composition into escherichia coli BL21 to obtain genetically engineered bacterium LRAD;
(2) And culturing lysine serving as a fermentation substrate with the genetically engineered bacterium LRAD to obtain hexamethylenediamine.
Specifically, 2g/L alanine and 2g/L glutamine are added as amine donors in step (2).
Specifically, the lysine content is 5g/L to 100g/L.
Specifically, the content of the obtained hexamethylenediamine is 2.18-3.32 g/L.
The invention has the advantages that: the invention adopts metabolic engineering means to optimize the catalysis method so as to increase the cell yield, the directional mutation of enzyme so as to increase the product specificity, the construction of an amine donor regeneration system so as to increase the cell activity, and finally the high-yield strain of hexamethylenediamine is obtained, the LRAD strain can produce 2.18-3.32 g/L of hexamethylenediamine in fermentation, and the LRKV strain can produce 3.62-6.65 g/L of hexamethylenediamine in fermentation.
Drawings
FIG. 1 is a schematic diagram of a pRLABCD recombinant plasmid of the present invention;
FIG. 2 is a schematic diagram of a pKV recombinant plasmid of the invention;
FIG. 3 is a schematic diagram of the pAD recombinant plasmid of the present invention;
FIG. 4 is a diagram of a raip electrophoresis;
FIG. 5 is a drawing of a leuABCD electrophoresis;
FIG. 6 is a kivD electrophoretogram;
FIG. 7 is a vfl electrophoretogram;
FIG. 8 is a graph of kdcA electrophoresis;
FIG. 9 is a plot of dat electrophoresis;
FIG. 10 is a PCR identification map of LRAD strains;
FIG. 11 is an LRAD-LCMS spectrum;
FIG. 12 is a LRKV-LCMS spectrum;
FIG. 13 is a diagram of the primary identification of the fermentation performance of the engineering strain of the present invention;
FIG. 14 is a diagram of a two-stage shake flask fermentation of hexamethylenediamine according to the present invention;
FIG. 15 is a diagram of the reactor fermentation synthesis of hexamethylenediamine according to the present invention.
Detailed Description
The present invention will be further described in detail by the following examples, it being understood that the specific examples described herein are intended to be illustrative only and not to be limiting of the invention, and it will be understood by those skilled in the art that the details and forms of the technical solution of the present invention may be modified or substituted without departing from the structural spirit and scope of the invention, but that the modifications and substitutions fall within the scope of the invention.
The basic technical concept of the invention is as follows: by means of having-NH 2 Functional group lysine derived alpha-keto acid is used as a substrate for leuABCD catalyzed carbon chain extension, and hexamethylenediamine-producing strains are screened by heterologously expressing different amine-converting decarboxylation combined enzymes. The cell yield is increased by optimizing the catalysis method through the metabolic engineering means, the product specificity is increased by the directional mutation of the enzyme, the cell activity is increased by the construction of an amine donor regeneration system, and finally the high-yield bacterial strain of hexamethylenediamine is obtained.
EXAMPLE 1pRLABCD recombinant plasmid and preparation method thereof
The embodiment provides a recombinant plasmid capable of assisting in producing hexamethylenediamine engineering bacteria, wherein the recombinant plasmid is pRLABCD recombinant plasmid, as shown in figure 1, and the recombinant plasmid comprises a raip gene, a leuA gene, a leuB gene, a leuC gene and a leuD gene, wherein the raip electrophoresis chart is shown in figure 4, and the leuABCD electrophoresis chart is shown in figure 5.
Specifically, the nucleotide sequence of the raip gene is shown in SEQ ID NO: 1.
Specifically, the nucleotide sequences of the leuA gene, the leuB gene, the leuC gene and the leuD gene are shown in SEQ ID NO: 2.
The preparation method of the pRLABCD recombinant plasmid comprises the following specific technical scheme that firstly, a primer is designed:
raip-F:cggaattcgatggagcacctggcagact;
raip-R:caactgcagttacagttcgtccttggtatgctcg;
leuABCD-F:cgagactccatatgagccagcaagtcattattttcg;
leuABCD-R:ccgctcgagttaattcataaacgcaggttg;
then, the raip gene is synthesized by a gene synthesis technology, such as SEQ ID NO:1, carrying out PCR amplification by taking total DNA of escherichia coli as a template; finally, purifying the PCR product, and connecting the PCR product to a pet21a vector to obtain a leuA gene, a leuB gene, a leuC gene and a leuD gene combination, wherein the nucleotide sequence of the combination is shown in SEQ ID NO: 2.
Example 2pKV recombinant plasmid and method for preparing same
The present example provides a pKV recombinant plasmid, as shown in fig. 2, comprising kivD gene (gene fragment sequence is 1647 bp) and vfl gene (gene fragment sequence is 1362 bp), the construction method is similar to that of example 1, and the primers designed are:
kivD-BamHI-F:cgcggatccgatgtataccgtgggtgactatc,
kivD-SalI-R:acgcgtcgacttagctcttattttgttcggc,
vfl-NdeI-F:cgagactccatatgaataaaccccaatcatgggaagc,
vfl-XhoI-R:ccgctcgagttacgcgacctcggcgaaca。
specifically, the nucleotide sequence of the kivD gene is shown in SEQ ID NO: 3.
Specifically, the nucleotide sequence of the vfl gene is shown in SEQ ID NO: 4.
Sequencing shows that the coding sequences of the kivD and vfl genes are correct (the electrophoresis patterns of the kivD and vfl genes are respectively shown in figures 6 and 7), and the kivD and vfl genes are connected to the pet21a vector; obtaining pKV recombinant plasmid.
Example 3pAD recombinant plasmid and method for preparing same
The present example provides a pAD recombinant plasmid as shown in FIG. 3, which comprises the kdcA gene and the dat gene (corresponding electrophoreses are shown in FIGS. 8 and 9). The pAD recombinant plasmid construction method is similar to the construction method in example 1, and specifically, the primers designed are:
kdcA-BamHI-F:cgcggatccgatgtatacagtaggagactacctattag,
kdcA-SalI-R:gcgcgtcgacttatttgttttgttcggca,
dat-NdeI-F:ccggcctccatatgaaagtattagttaatggaaggc,
dat-XhoI-R:ccgctcgagttaggaaatggacgcagcct。
specifically, the nucleotide sequence of the kdcA gene is shown in SEQ ID NO: shown at 6.
Specifically, the nucleotide sequence of the dat gene is shown in SEQ ID NO: shown at 7.
Specifically, the nucleotide sequence of the pAD recombinant plasmid is shown as SEQ ID NO: shown at 8.
EXAMPLE 4 Synthesis of hexamethylenediamine
The present example describes in detail the conditions of the parameters for the preparation of the recombinant plasmids described above, and the recombinant pRLABCD plasmids of example 1 were combined with the recombinant plasmid pKV of example 2 and the recombinant pAD plasmid of example 3 in pairs, respectively, to prepare the hexamethylenediamine-producing genetically engineered bacteria LRKV and LRAD. The experimental methods in which specific experimental conditions are not specified are generally performed according to conventional conditions or according to conditions recommended by manufacturers.
1. Preparing culture medium
The LB medium contains 5g/L yeast powder, 10g/L tryptone and 10g/L NaCl. The solid culture medium is liquid medium, and 1.5% of agar powder is added. To increase the selectivity of the medium, ampicillin (Amp) was used at a concentration of 0.1mg/m and Kara penicillin (Kan) was used at a concentration of 0.1mg/mL.
2. Extraction of E.coli DNA genome by using kit
1-5mL of culture of the escherichia coli DH5 alpha is taken, and the DNA group of the escherichia coli DH5 alpha is extracted according to the specification of a bacterial DNA extraction kit. The kit used was a bacterial genomic DNA extraction kit (6 packs) supplied by century corporation.
3. Construction of recombinant plasmids
1) The target gene is obtained by a PCR method, and the PCR reaction system is as follows:
2) Gel cutting, recovering and purifying target gene
3) The gene of interest was ligated into pet21a vector as follows:
pet21a (from TaKaRa) 0.8μL
Target gene 2.2μL
Solution 1 (from TaKaRa) 3μL
Total volume of 6μL
The reaction was carried out at 16℃for 180 minutes, and the whole amount (6. Mu.L) was added to 60. Mu.L of BL21 competent cells.
4) BL21 E.coli LRAD with recombinant plasmid pRLABCD and pAD were selected by plates with ampicillin resistance and plates with kara resistance. BL21 E.coli LRKV with recombinant plasmid pRLABCD and pKV were selected.
5) And (3) carrying out PCR verification on the screened engineering strains, and loading the engineering strains into a sample for electrophoresis detection after the PCR verification is finished, wherein the electrophoresis is shown in fig. 10.
4. Transformation reaction of plasmid and construction of engineering strain
Competent cells were purchased from the Optimago company. The conversion reaction was carried out by heat shock under the reaction condition of 42℃for 90 seconds. After heat-shock 800. Mu.L of LB medium was added, activated at 37℃for 45 minutes and plated on LB plates containing 100. Mu.L/mL of ampicillin and kara for overnight incubation at 37 ℃. And selecting a single colony to obtain the LRAD and LRKV engineering strain.
5. Preliminary fermentation of recombinant bacteria
Single colonies of LRAD and LRKV were selected, and cultured in a tube containing 2mL of LB, 50. Mu.g/mL of ampicillin, and 50. Mu.g/mL of calicheamicin for 8 hours to obtain seed solutions.
Transferring the seed solution into 50mL LB medium with 1% inoculation amount, culturing at 37deg.C and 200rpm, adding 0.5mM IPTG when the OD is 0.4-0.6, adding 2g/L alanine and 2g/L glutamine as amine donor, 0.5mM thiamine pyrophosphate, 1mM NAD + Fermenting and culturing at 30 deg.C and 180rpm for 72 hr, collecting supernatant, and performing LC-MS detection as shown in FIGS. 11-12, and comparing fermentation performance of two engineering strains as shown in FIG. 13.
6. Double-stage shake flask fermentation synthesis of hexamethylenediamine
Adding 10OD engineering strains LRAD and LRKV into 100mL of optimized catalytic medium, catalyzing at 150RPM and 30 ℃ for 12h, and introducing CO 2 And (3) entering an anaerobic fermentation stage, taking a sample at the moment as a 0h sample, and selecting the yield within 24h for analysis according to a time yield graph, wherein the catalysis result is as follows. By the end of the fermentation, the yields of hexamethylenediamine reached 2.18 and 3.62g/L, respectively, as shown in FIG. 14.
7. Reactor fermentation synthesis of hexamethylenediamine
Adding 5OD engineering strain LRAD and LRKV seeds into optimized 5L catalytic culture medium, culturing in 10L reactor at 250RPM at 30deg.C for 8 hr, adding lactose to induce exogenous gene expression, introducing CO after 10 hr 2 Entering anaerobic fermentation stage, taking sample at this time as 0h sample, selecting according to time yield mapThe yield over 24h was analyzed and the catalytic results were as follows. By the end of the fermentation, the yields of hexamethylenediamine reached 3.32 and 6.65g/L, respectively, as shown in FIG. 15.
The foregoing description of the preferred embodiments of the invention is not intended to limit the invention to the precise form disclosed, and any such modifications, equivalents, and alternatives falling within the spirit and scope of the invention are intended to be included within the scope of the invention.
Sequence listing
<110> university of Chongqing
<120> recombinant plasmid for producing hexamethylenediamine and use thereof
<130> 20210831
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1491
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
atgatggagc acctggcaga ctgtctggag gacaaagact acgacacact gctgcaaacc 60
ctggataatg gcctgccgca catcaatacc agccaccacg tggttatcgt gggtgcaggc 120
atggcaggcc tgacagccgc aaagctgtta caagacgcag gccataccgt gaccattctg 180
gaagcaaatg atcgcgtggg cggccgcgtg gaaacctatc gcaacgagaa agagggctgg 240
tacgcagaaa tgggcgccat gcgcattccg agcagccacc gcatcgttca gtggtttgtg 300
aagaagctgg gcgttgagat gaacgagttt gtgatgaccg acgacaacac cttctatctg 360
gtgaatggcg tgcgtgagcg cacctatgtg gtgcaggaga accctgatgt gctgaaatac 420
aatgtgagcg aaagcgaaaa aggcattagt gccgacgacc tgctggaccg tgccttacaa 480
aaggtgaaag aagaggtgga agccaatggc tgcaaagcag ccctggagaa gtatgaccgc 540
tatagcgtta aagaatatct gaaagaagaa ggtggtctga gtccgggtgc cgtgcgtatg 600
atcggcgatc tgctgaacga acagagcctg atgtataccg cactgagcga aatgatctat 660
gatcaggcag atgtgaacga cagcgtgagt tatcacgaag tgaccggtgg tagtgacctg 720
ctgccggaag cctttctgag cgtgctggac gtgccgatcc tgctgaacag caaagtgaaa 780
catatccgcc agagcgataa gggtgtgatc gtgagctatc agacaggcaa cgaaagcagc 840
ctgatggatc tgagcgcaga tattgtgctg gtgaccacca ccgccaaagc cgccctgttt 900
atcgacttcg atcctccgct gagcatcagc aaaatggagg ccctgcgcag cgtgcactat 960
gatagcagca ccaagatcct gctgaccttc cgcgacaagt tctgggaaga tgacggtatc 1020
cgtggcggca aaagcattac agacggtccg agccgctaca tttactaccc gagccacagc 1080
tttcacacca acgaaaccat tggtgtgctg ctggccagtt atacctggag tgacgaaagt 1140
ctgctgttcc tgggtgccag cgatgaggag ctgaaagagc tggccctgcg tgatctggca 1200
aagattcatg gtgaacaggt gtgggacaag tgcaccggcg tgatcgtgaa aaagtggagt 1260
gcagacccgt atagcctggg cgcctttgcc ctgttcacac cgtaccagca tctggagtat 1320
gcccaggaac tgtttagcag tgagggtcgt gtgcactttg ccggtgaaca taccgccttt 1380
ccgcatgcct ggatcgagac cagcatgaaa agtgccatcc gcgccgccac caacattaac 1440
aaagtggcaa atgaagaaag caccatcgag cataccaagg acgaactgta a 1491
<210> 2
<211> 4682
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 2
atgagccagc aagtcattat tttcgatacc acattgcgcg acggtgaaca ggcgttacag 60
gcaagcttga gtgtgaaaga aaaactgcaa attgcgctgg cccttgagcg tatgggtgtt 120
gacgtgatgg aagtcggttt ccccgtctct tcgccgggcg attttgaatc ggtgcaaacc 180
atcgcccgcc aggttaaaaa cagccgcgta tgtgcgttag ctcgctgcgt ggaaaaagat 240
atcgacgtgg cggccgaatc cctgaaagtc gccgaagcct tccgtattca tacctttatt 300
gccacttcgc caatgcacat cgccaccaag ctgcgcagca cgctggacga ggtgatcgaa 360
cgcgctatct atatggtgaa acgcgcccgt aattacaccg atgatgttga attttcttgc 420
gaagatgccg ggcgtacacc cattgccgat ctggcgcgag tggtcgaagc ggcgattaat 480
gccggtgcca ccaccatcaa cattccggac accgtgggct acaccatgcc gtttgagttc 540
gccggaatca tcagcggcct gtatgaacgc gtgcctaaca tcgacaaagc cattatctcc 600
gtacataccc acgacgattt gggcctggcg gtcggaaact cactggcggc ggtacatgcc 660
ggtgcacgcc aggtggaagg cgcaatgaac gggatcggcg agcgtgccgg aaactgttcc 720
ctggaagaag tcatcatggc gatcaaagtt cgtaaggata ttctcaacgt ccacaccgcc 780
attaatcacc aggagatatg gcgcaccagc cagttagtta gccagatttg taatatgccg 840
atcccggcaa acaaagccat tgttggcagc ggcgcattcg cacactcctc cggtatacac 900
caggatggcg tgctgaaaaa ccgcgaaaac tacgaaatca tgacaccaga atctattggt 960
ctgaaccaaa tccagctgaa tctgacctct cgttcggggc gtgcggcggt gaaacatcgc 1020
atggatgaga tggggtataa agaaagtgaa tataatttag acaatttgta cgatgctttc 1080
ctgaagctgg cggacaaaaa aggtcaggtg tttgattacg atctggaggc gctggccttc 1140
atcggtaagc agcaagaaga gccggagcat ttccgtctgg attacttcag cgtgcagtct 1200
ggctctaacg atatcgccac cgccgccgtc aaactggcct gtggcgaaga agtcaaagca 1260
gaagccgcca acggtaacgg tccggtcgat gccgtctatc aggcaattaa ccgcatcact 1320
gaatataacg tcgaactggt gaaatacagc ctgaccgcca aaggccacgg taaagatgcg 1380
ctggatcagg tggatatcgt cgctaactac aacggtcgcc gcttccacgg cgtcggcctg 1440
gctaccgata ttgtcgagtc atctgccaaa gccatggtgc acgttctgaa caatatctgg 1500
cgtgccgcag aagtcgaaaa agagttgcaa cgcaaagctc aacacaacga aaacaacaag 1560
gaaaccgtgt gatgtcgaag aattaccata ttgccgtatt gccgggggac ggtattggtc 1620
cggaagtgat gacccaggcg ctgaaagtgc tggatgccgt gcgcaaccgc tttgcgatgc 1680
gcatcaccac cagccattac gatgtaggcg gcgcagccat tgataaccac gggcaaccac 1740
tgccgcctgc gacggttgaa ggttgtgagc aagccgatgc cgtgctgttt ggctcggtag 1800
gcggcccgaa gtgggaacat ttaccaccag accagcaacc agaacgcggc gcgctgctgc 1860
ctctgcgtaa gcacttcaaa ttattcagca acctgcgccc ggcaaaactg tatcaggggc 1920
tggaagcatt ctgtccgctg cgtgcagaca ttgccgcaaa cggcttcgac atcctgtgtg 1980
tgcgcgaact gaccggcggc atctatttcg gtcagccaaa aggccgcgaa ggtagcggac 2040
aatatgaaaa agcctttgat accgaggtgt atcaccgttt tgagatcgaa cgtatcgccc 2100
gcatcgcgtt tgaatctgct cgcaagcgtc gccacaaagt gacgtcgatc gataaagcca 2160
acgtgctgca atcctctatt ttatggcggg agatcgttaa cgagatcgcc acggaatacc 2220
cggatgtcga actggcgcat atgtacatcg acaacgccac catgcagctg attaaagatc 2280
catcacagtt tgacgttctg ctgtgctcca acctgtttgg cgacattctg tctgacgagt 2340
gcgcaatgat cactggctcg atggggatgt tgccttccgc cagcctgaac gagcaaggtt 2400
ttggactgta tgaaccggcg ggcggctcgg caccagatat cgcaggcaaa aacatcgcca 2460
acccgattgc acaaatcctt tcgctggcac tgctgctgcg ttacagcctg gatgccgatg 2520
atgcggcttg cgccattgaa cgcgccatta accgcgcatt agaagaaggc attcgcaccg 2580
gggatttagc ccgtggcgct gccgccgtta gtaccgatga aatgggcgat atcattgccc 2640
gctatgtagc agaaggggtg taatcatggc taagacgtta tacgaaaaat tgttcgacgc 2700
tcacgttgtg tacgaagccg aaaacgaaac cccactgtta tatatcgacc gccacctggt 2760
gcatgaagtg acctcaccgc aggcgttcga tggtctgcgc gcccacggtc gcccggtacg 2820
tcagccgggc aaaaccttcg ctaccatgga tcacaacgtc tctacccaga ccaaagacat 2880
taatgcctgc ggtgaaatgg cgcgtatcca gatgcaggaa ctgatcaaaa actgcaaaga 2940
atttggcgtc gaactgtatg acctgaatca cccgtatcag gggatcgtcc acgtaatggg 3000
gccggaacag ggcgtcacct tgccggggat gaccattgtc tgcggcgact cgcataccgc 3060
cacccacggc gcgtttggcg cactggcctt tggtatcggc acttccgaag ttgaacacgt 3120
actggcaacg caaaccctga aacagggccg cgcaaaaacc atgaaaattg aagtccaggg 3180
caaagccgcg ccgggcatta ccgcaaaaga tatcgtgctg gcaattatcg gtaaaaccgg 3240
tagcgcaggc ggcaccgggc atgtggtgga gttttgcggc gaagcaatcc gtgatttaag 3300
catggaaggt cgtatgaccc tgtgcaatat ggcaatcgaa atgggcgcaa aagccggtct 3360
ggttgcaccg gacgaaacca cctttaacta tgtcaaaggc cgtctgcatg cgccgaaagg 3420
caaagatttc gacgacgccg ttgcctactg gaaaaccctg caaaccgacg aaggcgcaac 3480
tttcgatacc gttgtcactc tgcaagcaga agaaatttca ccgcaggtca cctggggcac 3540
caatcccggc caggtgattt ccgtgaacga caatattccc gatccggctt cgtttgccga 3600
tccggttgaa cgcgcgtcgg cagaaaaagc gctggcctat atggggctga aaccgggtat 3660
tccgctgacc gaagtggcta tcgacaaagt gtttatcggt tcctgtacca actcgcgcat 3720
tgaagattta cgcgcggcag cggagatcgc caaagggcga aaagtcgcgc caggcgtgca 3780
ggcactggtg gttcccggct ctggcccggt aaaagcccag gcggaagcgg aaggtctgga 3840
taaaatcttt attgaagccg gttttgaatg gcgcttgcct ggctgctcaa tgtgtctggc 3900
gatgaacaac gaccgtctga atccgggcga acgttgtgcc tccaccagca accgtaactt 3960
tgaaggccgc caggggcgcg gcgggcgcac gcatctggtc agcccggcaa tggctgccgc 4020
tgctgctgtg accggacatt tcgccgacat tcgcaacatt aaataaggag cacaccatgg 4080
cagagaaatt tatcaaacac acaggcctgg tggttccgct ggatgccgcc aatgtcgata 4140
ccgatgcaat catcccgaaa cagtttttgc agaaagtgac ccgtacgggt tttggcgcgc 4200
atctgtttaa cgactggcgt tttctggatg aaaaaggcca acagccaaac ccggacttcg 4260
tgctgaactt cccgcagtat cagggcgctt ccattttgct ggcacgagaa aacttcggct 4320
gtggctcttc gcgtgagcac gcgccctggg cattgaccga ctacggtttt aaagtggtga 4380
ttgcgccgag ttttgctgac atcttctacg gcaatagctt taacaaccag ctgctgccgg 4440
tgaaattaag cgatgcagaa gtggacgaac tgtttgcgct ggtgaaagct aatccgggga 4500
tccatttcga cgtggatctg gaagcgcaag aggtgaaagc gggagagaaa acctatcgct 4560
ttaccatcga tgccttccgc cgccactgca tgatgaacgg tctggacagt attgggctta 4620
ccttgcagca cgacgacgcc attgccgctt atgaagcaaa acaacctgcg tttatgaatt 4680
aa 4682
<210> 3
<211> 1647
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
atgtataccg tgggtgacta tctgctggac cgcctgcacg agctgggtat cgaagaaatt 60
ttcggcgtgc cgggcgacta taacctgcag ttcttagacc agatcatcag ccgcaaggat 120
atgaaatggg tgggtaacgc caatgaactg aacgcaagtt acatggccga tggctatgca 180
cgtacaaaga aggccgcagc cttcctgacc accttcggcg ttggcgaact gagcgccgtt 240
aacggcctgg ccggcagtta cgccgaaaat ctgccggttg tggaaatcgt gggcagtcct 300
accagtaaag tgcagaacga gggcaaattc gtgcaccata ccctggccga tggtgatttt 360
aaacacttta tgaaaatgca cgaacctgtt acagcagccc gtaccctgct gaccgcagaa 420
aacgccacag tggaaatcga tcgtgtgctg agtgccctgc tgaaggagcg caagccggtt 480
tacatcaacc tgccggttga cgtggcagcc gccaaagccg agaaaccgag cttaccgctg 540
aagaaagaaa acccgaccag caatacaagc gaccaggaga ttctgaataa aattcaggaa 600
agcctgaaaa acgccaaaaa accgatcgtg atcaccggtc acgagatcat cagctttggc 660
ctggagaata cagtgaccca atttattagc aaaaccaaac tgccgatcac caccctgaac 720
ttcggtaaaa gcagtgtgga cgagaccctg cctagttttt taggcattta caatggcaag 780
ctgagcgagc cgaatctgaa agaattcgtg gaaagcgccg attttatcct gatgctgggc 840
gtgaagctga ccgatagcag caccggcgcc tttacccatc atctgaatga gaacaaaatg 900
atcagcctga atattgatga aggtaaaatc tttaatgaaa gtattcagaa cttcgacttc 960
gagagcctga tcagtagtct gctggatctg agcggtatcg aatataaagg caaatacatt 1020
gataaaaaac aagaagattt tgttccgagc aatgccctgc tgagccaaga tcgtttatgg 1080
caggccgtgg aaaacctgac acagagcaat gaaaccatcg tggcagagca gggcaccagc 1140
gcattcggtg caagcagcat cttcctgaag cctaagagcc acttcattgg ccaacctctg 1200
tggggtagca tcggctatac cttcccggca gccctgggca gccagatcgc cgataaggag 1260
agtcgccatc tgctgttcat tggcgatggt agtctgcagc tgacagttca agaactgggc 1320
ctggccattc gtgaaaagat caatccgatc tgcttcatca tcaacaacga cggctatacc 1380
gcagaacgtg agattcacgg cccgaaccag agctataacg atatcccgat gtggaactac 1440
agcaagctgc ctgaaagctt tggcgccaca gaagagcgcg ttgtgagcaa aattgtgcgc 1500
accgaaaatg agttcgtgag cgttatgaaa gaagcccaag ccgacccgaa tcgcatgtac 1560
tggatcgagc tggtgttagc caaagaagat gccccgaaag tgctgaagaa ggccggcaag 1620
ctgttcgccg aacaaaataa gagctaa 1647
<210> 4
<211> 1362
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
atgaataaac cccaatcatg ggaagctagg gcggagacgt acagccttta tggtttcacc 60
gacatgccga gcctgcatca gcgtggcacc gtggtggtta cccatggcga gggcccttac 120
atcgtggatg ttaatggtcg ccgttatctg gatgcgaact ctggcctgtg gaatatggtt 180
gccggtttcg accacaaggg cttgatcgac gcggcaaaag ctcaatatga acgcttcccg 240
ggttaccatg cgtttttcgg ccgcatgagc gatcaaaccg ttatgctgtc tgagaagttg 300
gttgaagtgt ccccgtttga tagcggccgc gtgttttaca ccaattctgg tagcgaggca 360
aacgatacca tggttaaaat gctgtggttc ctgcacgctg cggagggtaa accgcagaaa 420
cgtaagatct tgacgcgttg gaatgcatat cacggcgtta ccgcggtctc ggctagcatg 480
accgggaaac cgtataactc ggtgtttggt ttaccgctgc cgggattcgt gcacctgacg 540
tgcccgcatt attggcgtta cggcgaagag ggtgagacgg aggagcaatt tgtggcccgt 600
ctcgcccgtg aactggaaga aaccatccag cgcgaaggtg cggatacgat cgctggcttc 660
ttcgcagaac cggtgatggg tgcgggcggt gtgatccctc cggcaaaagg ttacttccag 720
gcaattctcc cgatcttacg caaatacgat attccggtca tcagcgacga agttatctgc 780
ggtttcggtc gcaccggaaa cacctggggt tgcgttacgt acgacttcac tccggatgcg 840
atcatctcca gcaagaacct gaccgcgggt ttctttccga tgggcgcggt aatcctgggc 900
ccagaactga gcaaacgttt ggagactgcg atcgaagcga ttgaagaatt tccgcacggc 960
tttaccgcta gcggtcatcc ggtaggttgt gcaattgccc tgaaggcgat tgacgttgtg 1020
atgaatgaag gcttggctga gaacgtgcgt cgtctggcac cgcgttttga agagcgttta 1080
aagcacattg cggagcgtcc caacattggt gagtatagag gcattggttt catgtgggca 1140
ctggaagccg ttaaagacaa agcatccaag accccgtttg acggcaacct gagcgtctcc 1200
gagcggattg cgaacacctg caccgacctg ggtctgattt gccgtccgct gggccagtca 1260
gttgttctgt gtccgccatt tattttgact gaggcccaaa tggatgaaat gtttgacaag 1320
ctggagaagg ctttggacaa ggtgttcgcc gaggtcgcgt aa 1362
<210> 5
<211> 849
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
atgaaagtat tagttaatgg aaggctaata ggccgtagcg aagcgtccat cgatttggaa 60
gaccgtggtt atcagttcgg tgatggcatt tatgaagtga ttcgtgttta caagggtgtt 120
ttgtttggtc tgcgtgaaca cgccgaacgt ttcttccgct ctgcagctga gatcggcatt 180
tctctgccat tcagcatcga ggacctggag tgggatctgc aaaagctggt tcaggagaac 240
gcggtttctg agggagcggt gtacatccaa accactcgcg gtgtggcccc tcgtaaacac 300
cagtatgagg cgggtcttga accgcagacc acggcgtata cctttaccgt gaaaaagccg 360
gaacaagagc aggcgtacgg cgtcgcggcg attaccgatg aggacctacg ctggctgcgc 420
tgcgacatca agagcctgaa tctgttgtac aacgtaatga ccaagcaacg cgcatacgag 480
gcgggtgcgt ttgaagccat cctgttgcgt gatggtgtag tgacggaagg cactagcagt 540
aatgtctacg ctgttatcaa cggtacggtc agaacacatc cggcaaatcg tctgattctt 600
aacggcatca cccgtatgaa catcctgggt ctgatcgaaa aaaacggcat taagctggac 660
gaaaccccgg tgagcgagga agagctgaaa caagcggaag agatctttat cagcagcacc 720
accgctgaga ttatcccggt tgttacgctg gacggccaaa gcattggcag cggtaaaccg 780
ggtccggtga ccaagcaact gcaggcagcc ttccaggaga gcattcagca ggctgcgtcc 840
atttcctaa 849
<210> 6
<211> 1584
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
atgtatacag taggagacta cctattagat cgcctgcatg agctgggtat cgaagaaatt 60
ttcggcgttc cgggtgacta taacctgcaa tttctggatc agattattag tcgcgaggac 120
atgaagtgga tcggtaatgc aaatgagttg aatgcgtcct acatggcaga cggttacgcc 180
cgtaccaaga aagcagcggc gtttctcacc accttcggtg tcggtgagtt gtcagcgatt 240
aatggtttgg ctggtagcta cgctgagaac ctgccggtgg ttgaaattgt tggcagcccg 300
acgtcgaagg tgcagaatga tggtaaattc gtgcaccaca ccctggccga cggcgatttc 360
aaacacttca tgaaaatgca tcgtgtgctg agccaattgc ttaaggaacg caaaccggtc 420
tatatcaacc tgccggtcga tgtagcggcg gctaaagcgg aaaagccggc tctgtcattg 480
gagaaggagt ctagcacgac gaacaccact gaacaggtta tcctgtctaa gatcgaggaa 540
tccctgaaaa acgcccagaa accggtggtc atcgcgggcc atgaagttat cagcttcggt 600
ctggagaaga ctgttaccca gttcgtgagc gaaaccaaac tgccgatcac cactctgaac 660
ttcggcaagt ctgcggtgga tgagagcttg ccttcgttcc tggggattta taacggtaaa 720
ttgagcgaga tttccctcaa gaacttcgtg gagtcagcgg acttcatcct gatgctgggc 780
gtgaaattga ccgacagctc caccggtgct tttacccatc acctggacga gaacaagatg 840
atcagcctga acattgacga gggcattatc tttaacaaag tggtggagga cttcgatttc 900
cgtgcagttg tttctagctt atctgagctc aagggaatcg agtatgaagg tcagtacatc 960
gataaacagt acgaagaatt tattccgagc tccgcgccac tgtcgcaaga tcgtctgtgg 1020
caggcagtcg aaagcctcac ccaatctaac gaaacgatcg tagcggagca gggcaccagc 1080
ttttttggcg cgagcaccat tttcttaaag agcaattctc gttttatcgg ccagccgctg 1140
tggggtagca tcggctacac ctttccggct gctctgggca gccaaattgc ggataaagag 1200
tcgcgccacc tgctgttcat tggtgatggt agccttcagc tgaccgttca agaattaggt 1260
ctgagcattc gtgaaaagtt aaatccgatt tgctttatca tcaacaacga cggttacacc 1320
gtggaacgtg agatccacgg cccaacgcag tcctacaacg acatcccgat gtggaattat 1380
agcaagctgc cggaaacgtt tggcgcaacc gaagatcgtg ttgtttccaa aattgttaga 1440
actgaaaacg agttcgtctc cgtgatgaag gaggcccaag cggacgttaa tcgtatgtat 1500
tggattgagc tggttttgga gaaagaggac gccccgaagt tgctgaagaa gatgggtaaa 1560
ctatttgccg aacaaaacaa ataa 1584
<210> 7
<211> 6672
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
tttgcaaacg ctcgcatgtc accgaaggcg caacagctcc gattttgaaa tttccaacac 60
ggccctcaag ttgaaagttt tccaaaaaaa tttaaacacc tccgcccatg tgaatgtgaa 120
gtgaaattcg ggtttggcat tcggcattgg ttgtgtggag cttttttcta agttttctgg 180
atatttttca aaagtctcaa ggattattta acaatggatt ggagcaacta catgatttga 240
gcttgatatt tataaggtaa gtaagcatat aaaccagttt ttaggtatgc attcaaataa 300
ctgcgatggg aattataaaa tcgaatgagg agaataactg aataatttaa agcgagcaac 360
aaataaacaa cataatatct ttaagaacct agttttcaag tgcagctggc ttaaagagat 420
caaaaattaa atattcatta gctgaatcat gttgggcatg gtgttaaaaa atcgctgtaa 480
aatgcaaaaa tttaaaatgt taatgattac agatggaaat actgataggt gataacttca 540
aaatgtgttg tatgtttgat aagaaagcaa taaagaaaga atgtaaaatt taaacactaa 600
tttaaagttg ttaatttaaa caccacacca aatttttaat attctttaat attactgtaa 660
tactttgtaa actggccaac taagattgcc atcgaatctg gaacaaaaag atggattcta 720
gtcataaatt aacccagcgc agctccgagt actttaagca ctcaatctgc atttcgctta 780
attgatcgca actcagggca attaaagtca gcggggagga attaagtaga tcagattaat 840
tgtttgacgt gtttgtggtt tcattacacg caaagatgcc cgagagttgg gcacatacat 900
atagacggat atatgtacat atgtatgtat gttcttgttc tgtggtgtgg atggtcaagt 960
gtttgctgcc cagtgtgttt gaacatgcca cctgtcgtat gcgtaatgtg ccaacgagct 1020
cttcaagggc tgggtaagca catgtcgttg ccaaacaggt ttcaagtgcc ctggacacac 1080
acttattgaa gcccattgat tggtgaaggg ttttggattt tgcgtggggt actgggattt 1140
aaatcattga atatggttct tatttctggc atatctgcgc aactgaccca ttttgagtgc 1200
tgcgattttc acagatttca aagtgcggcg gcgggatctc cacattttgg gtcaaggaca 1260
cgacgggtta tatagtcgca gatgtcacca accggacata tatccaaatc aaagacgccc 1320
acgccacacg ataacgataa caatagcatc agcgacgagc gcgaaacatg gagcggcaaa 1380
gtggattttt tattatcggt tattggattc gccgtcgatt tagcaaacgt ctggagattt 1440
ccctatttgt gctacaaaaa tggcggtggt aagtagattc ttttagatcc tacactatta 1500
tacagaagaa gatcactatt aaattggata cataaataaa aaaaaggtgt ctaaaggcgc 1560
tctaatgtta ttagactgtt ttatgataat cttaaaacca tatcatacct ttaagatact 1620
ttctttatac ttcatttaag atactttcag ccaatgttgg tgatttttct ccgtgtgaac 1680
tggccaatta ggggataaag acatttcgtc aatcgctctg gctgagtgaa tataatttat 1740
atggctttac acatcattgg gctcgccacg gaacccgtcg ctttcctctt tccgctttct 1800
gaatttccct ttcggccttg ttaacacttt gtcaaagtgg tgcgaagtgc tgtcggtggg 1860
gtggtgcggg aatggttcct ttgtcaaatt gcagggcttt tccccgctaa aagagcggca 1920
aaggacacac agtcgaacac ttacttcgct tcctgatcct catcgccgac gccatcattc 1980
aaaacaattc caaaagttaa gtgcttctgt atgacaacta aatctggcag tcataatcgc 2040
atttggcctg cttaccctct gtcacacttt ttcaccccat tttcttggca atatgtcagc 2100
ctgcttatgt ggagttctct aggcttttgt tgctggagca ctttccacca tcgcattgtg 2160
ggaaattcat gtgcgaaaca tgtctccatg tctccacctc cccattttcc ctctgattgc 2220
ggcactttcc cgctgatgcg tcgtgaatgg atgtggcaca cagggccttc gatatagtta 2280
ttactatttt atgagttttc tttttttcct cctgctaacc cccggtcgct gctgctgctg 2340
ctgctttaaa atcataataa taaattgtta tatttatacg cttcattgcg ttcaatcagt 2400
ggttccagct ccatcttcag cttaagttcc attttatgtc cgttgccagg ggcagcaact 2460
cgctcaggtt gcgattatta ccacagctta gtcggtatta tttattctgt ttcccatttt 2520
cctgctgcct gcaactcgga agtggaagct ttggtggcag caacaggctg tgccatccac 2580
attgttctgg attagggcta aaactcaagg agctgcctgg ctttttttca aactaagatc 2640
gcgcatacgc acttgattgt acttgggtta actatgtatt tcaataaatt atattcttta 2700
ttcttaaatt tgtctaaaag tttagatttc tatttggaac tgaaggactt aatggtgaga 2760
ctttgcacct cagcttaaac cagaatagtc ctacacaaat acatgtaaaa agttattcac 2820
aagcatttaa gtaggcataa ctttcaataa ttcaatagaa tatcaatttg ctagtcaagc 2880
aataaccaac acttggccgt ttaaaattgg acaagttttg accgaattac gggatgggaa 2940
tcgaattaga ggcacatatt tccacagtgt ctccgacgag ctgctggaaa atggtggaaa 3000
tgcacttgaa gcaacggaaa ttatggcttc aacaacagag acgagcgtca tggatgcccc 3060
cgacttcagt ttagacggtt ttgttttaaa tttccgacat aattgacacg acagaaggaa 3120
gcaccgtagc tggcagaccc tttgtagata tactttgcac cgaacgccct tgcatacagt 3180
tgggtgtatg tgggttttgg ccctagacga ctttgtcgtc ggccactttg cctgctaata 3240
gacataatca aatcatagaa catcatcccc tgccactcga caaagtatcg atggcactct 3300
aaccaattgt ctggcccaaa aggggcgtgt aactttggct cggctgcttt tccggaggtg 3360
acggagatga cggcgatgac tgcaggagac agccgagttg ggtttttccc cgcatattcc 3420
gcctctcacc cgccagcttg ctgctgctgt taatgttttt aaaatgtcct tagagtggca 3480
cttgtaaaac aatttgattt tgtgtgccat cgaacatata cataaaggtc gagtgtgtct 3540
atatagaaac tgtgtgtgta attatgtttg tcgatgaggg ggcagcgcga acaatgcaca 3600
gattgtgaca cgggtcagtc tcaatatgtg atggttatga tgcaatcatt atcatagaaa 3660
acatattgat tgtttctaca gctcgaaaat aagttggtta aaaattaccg gatgtaatgc 3720
ggagaatatc tacgattgtg atttggaatc gtagcttcca gttcattgaa atataatcaa 3780
attttattga atccgtatgt tctcttagac tagatttaat ttaaaaatat gtgaaatttt 3840
aggcgctttt cttgtgccct acggcattat gttggtggtc ggtggcattc ctctgttcta 3900
tatggaattg gccctgggtc agcacaatcg taagggtgcc ataacctgct ggggtcgctt 3960
ggtgcccctc ttcaaaggta attactaact actaactaat taatcacaag aacttcatgg 4020
ataagacact ttaacttaca ggaattggat atgccgtggt gctgatagcc ttctatgtgg 4080
acttctatta caatgtgatt attgcctggt cgttgcgttt cttttttgca tccttcacca 4140
actcgctgcc ttggacgtcg tgtaataata tttggaacac accaaattgt agaccggtaa 4200
ctagatacat aaccatttaa tataaatgaa tccttattaa ttctaacttc ttatcagttt 4260
gagagccaaa atgcatctcg tgttccggtt attggtaact atagtgactt gtatgccatg 4320
ggaaatcaaa gcctgctcta caatgagaca tatatgaatg gttcgagctt ggatacgtca 4380
gcggttggcc atgtggaggg ttttcagtcc gcagcatcgg aatattttaa gtgagtttgc 4440
tgaaatattc actttataat tgtagttaaa tttaatttct cgtatagccg ctacattttg 4500
gagctgaacc gcagcgaggg aatccatgac ttgggcgcca tcaaatggga catggcgctg 4560
tgccttctga ttgtctactt aatttgttac ttctccctgt ggaagggtat cagcacttcg 4620
ggcaaggttg tgtggtttac tgccctcttt ccctatgcag tgctactgat tcttctaatc 4680
agagggctca cactgccggg atcttttctg ggcattcagt attatcttac gcccaacttt 4740
agtgccatct ataaggctga ggtctgggtg gatgctgcca cccaggtgtt tttctcattg 4800
ggtccaggat ttggagtgct gctggcctat gcatcctata ataaatacca taacaatgta 4860
tacaagtagg ttgcaagtct tatacttcaa taattcctca cttaaattat tacttaactt 4920
gattacaggg atgctttgtt aaccagtttc attaactcgg ctaccagctt tatagccggc 4980
tttgtgatat tctccgtgct gggttacatg gcccacacac tgggtgtaag aattgaagat 5040
gttgccaccg aaggacctgg tctggttttc gtggtctatc cagctgccat tgccaccatg 5100
ccggccagca ctttctgggc tctaatattc ttcatgatgc tgctaacttt gggcttggat 5160
agttcggtag atataaccta tactctatat cgaccttaaa ctaattgtac aactcttaca 5220
gtttggtggt tcagaggcta taatcacagc tttgagcgac gagtttccca agatcaaaag 5280
aaaccgagag ctgtttgtag ctggactgtt ttccctgtac ttcgtggtcg gtttggccag 5340
ttgcactcag ggtggcttct atttcttcca tctgctggat cgttacgctg ctggctactc 5400
gattttggtg gccgtgttct ttgaggcaat cgccgtgtcc tggatctacg gaaccaatcg 5460
atttagcgag gatatacggg acatgattgg ttttccaccg ggaagatact ggcaggtgtg 5520
ttggcgattt gtggcaccaa ttttcctgct cttcatcacg gtttacgggc tgattggcta 5580
cgagccactg acatatgcgg actatgtgta tcccagttgg gccaatgcgc tgggttggtg 5640
catagctggt tcctcggttg tgatgattcc tgccgtggcg atatttaaac tactttccac 5700
gccgggaagt ctgcgtcagc ggttcacaat tttgaccaca ccatggcgag atcagcaatc 5760
gatggcaatg gtgctgaacg gggtcaccac cgaggtcacc gtggtgcgat taaccgacac 5820
ggagaccgcc aaggaacccg tcgatgtctg agttcgacca gtggcccgtt ttcaaattta 5880
ctacgtttag atttggaaat ttaccaacaa ccgatgttca cgtatgtaga ttgtggcttt 5940
gcaggagagt ttgtgttttt ggttcgacat ttggcgcaga tccgcagaag gatcggcagc 6000
aatttcgcaa acaacgtact taggtttcgg caccaaagaa aaaaaagaag aaaacccaca 6060
agcaaacgca gcttcaaacc ataagttcta agttaagatt agcttgtagt tcgtatggtt 6120
aatgcccagt tatagcatac tcatatatat acgatgctgt gtagataata tcaagtccga 6180
aagtgcgaaa cacttgtcag ttaatctatc gagaactcct tgaaagaatg tttgcatatg 6240
ccaatggaat taacgacacg atcgaggctc aaaattattg ggcacataat ctgtacatac 6300
acaagtcgat gatgtaaaag ctttaaaaca cgttatagga tatctcatgg aactgaagca 6360
aaagctgcca gagttgaact acaaaatccg ctcaaacagc catgagggga ttttgtcata 6420
tgcaaaggtt tgttctagac taattaaccc cgtccaaaaa aaaaaaacta cgattgtttg 6480
cttaaagcag ccattttaag caaacaattg agagttatcg aaataataca ttccctttta 6540
taaactcatt tctgtacata gatgtatgat attttagcat tgttttaaga gtttctttca 6600
cgctgaagcg gaactaacag ccatgagttc tgtttcaatt tgttgaaata aattattata 6660
ctttgagtta ct 6672
<210> 8
<211> 8256
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
atgtatacag taggagacta cctattagat cgcctgcatg agctgggtat cgaagaaatt 60
ttcggcgttc cgggtgacta taacctgcaa tttctggatc agattattag tcgcgaggac 120
atgaagtgga tcggtaatgc aaatgagttg aatgcgtcct acatggcaga cggttacgcc 180
cgtaccaaga aagcagcggc gtttctcacc accttcggtg tcggtgagtt gtcagcgatt 240
aatggtttgg ctggtagcta cgctgagaac ctgccggtgg ttgaaattgt tggcagcccg 300
acgtcgaagg tgcagaatga tggtaaattc gtgcaccaca ccctggccga cggcgatttc 360
aaacacttca tgaaaatgca tcgtgtgctg agccaattgc ttaaggaacg caaaccggtc 420
tatatcaacc tgccggtcga tgtagcggcg gctaaagcgg aaaagccggc tctgtcattg 480
gagaaggagt ctagcacgac gaacaccact gaacaggtta tcctgtctaa gatcgaggaa 540
tccctgaaaa acgcccagaa accggtggtc atcgcgggcc atgaagttat cagcttcggt 600
ctggagaaga ctgttaccca gttcgtgagc gaaaccaaac tgccgatcac cactctgaac 660
ttcggcaagt ctgcggtgga tgagagcttg ccttcgttcc tggggattta taacggtaaa 720
ttgagcgaga tttccctcaa gaacttcgtg gagtcagcgg acttcatcct gatgctgggc 780
gtgaaattga ccgacagctc caccggtgct tttacccatc acctggacga gaacaagatg 840
atcagcctga acattgacga gggcattatc tttaacaaag tggtggagga cttcgatttc 900
cgtgcagttg tttctagctt atctgagctc aagggaatcg agtatgaagg tcagtacatc 960
gataaacagt acgaagaatt tattccgagc tccgcgccac tgtcgcaaga tcgtctgtgg 1020
caggcagtcg aaagcctcac ccaatctaac gaaacgatcg tagcggagca gggcaccagc 1080
ttttttggcg cgagcaccat tttcttaaag agcaattctc gttttatcgg ccagccgctg 1140
tggggtagca tcggctacac ctttccggct gctctgggca gccaaattgc ggataaagag 1200
tcgcgccacc tgctgttcat tggtgatggt agccttcagc tgaccgttca agaattaggt 1260
ctgagcattc gtgaaaagtt aaatccgatt tgctttatca tcaacaacga cggttacacc 1320
gtggaacgtg agatccacgg cccaacgcag tcctacaacg acatcccgat gtggaattat 1380
agcaagctgc cggaaacgtt tggcgcaacc gaagatcgtg ttgtttccaa aattgttaga 1440
actgaaaacg agttcgtctc cgtgatgaag gaggcccaag cggacgttaa tcgtatgtat 1500
tggattgagc tggttttgga gaaagaggac gccccgaagt tgctgaagaa gatgggtaaa 1560
ctatttgccg aacaaaacaa ataatttgca aacgctcgca tgtcaccgaa ggcgcaacag 1620
ctccgatttt gaaatttcca acacggccct caagttgaaa gttttccaaa aaaatttaaa 1680
cacctccgcc catgtgaatg tgaagtgaaa ttcgggtttg gcattcggca ttggttgtgt 1740
ggagcttttt tctaagtttt ctggatattt ttcaaaagtc tcaaggatta tttaacaatg 1800
gattggagca actacatgat ttgagcttga tatttataag gtaagtaagc atataaacca 1860
gtttttaggt atgcattcaa ataactgcga tgggaattat aaaatcgaat gaggagaata 1920
actgaataat ttaaagcgag caacaaataa acaacataat atctttaaga acctagtttt 1980
caagtgcagc tggcttaaag agatcaaaaa ttaaatattc attagctgaa tcatgttggg 2040
catggtgtta aaaaatcgct gtaaaatgca aaaatttaaa atgttaatga ttacagatgg 2100
aaatactgat aggtgataac ttcaaaatgt gttgtatgtt tgataagaaa gcaataaaga 2160
aagaatgtaa aatttaaaca ctaatttaaa gttgttaatt taaacaccac accaaatttt 2220
taatattctt taatattact gtaatacttt gtaaactggc caactaagat tgccatcgaa 2280
tctggaacaa aaagatggat tctagtcata aattaaccca gcgcagctcc gagtacttta 2340
agcactcaat ctgcatttcg cttaattgat cgcaactcag ggcaattaaa gtcagcgggg 2400
aggaattaag tagatcagat taattgtttg acgtgtttgt ggtttcatta cacgcaaaga 2460
tgcccgagag ttgggcacat acatatagac ggatatatgt acatatgtat gtatgttctt 2520
gttctgtggt gtggatggtc aagtgtttgc tgcccagtgt gtttgaacat gccacctgtc 2580
gtatgcgtaa tgtgccaacg agctcttcaa gggctgggta agcacatgtc gttgccaaac 2640
aggtttcaag tgccctggac acacacttat tgaagcccat tgattggtga agggttttgg 2700
attttgcgtg gggtactggg atttaaatca ttgaatatgg ttcttatttc tggcatatct 2760
gcgcaactga cccattttga gtgctgcgat tttcacagat ttcaaagtgc ggcggcggga 2820
tctccacatt ttgggtcaag gacacgacgg gttatatagt cgcagatgtc accaaccgga 2880
catatatcca aatcaaagac gcccacgcca cacgataacg ataacaatag catcagcgac 2940
gagcgcgaaa catggagcgg caaagtggat tttttattat cggttattgg attcgccgtc 3000
gatttagcaa acgtctggag atttccctat ttgtgctaca aaaatggcgg tggtaagtag 3060
attcttttag atcctacact attatacaga agaagatcac tattaaattg gatacataaa 3120
taaaaaaaag gtgtctaaag gcgctctaat gttattagac tgttttatga taatcttaaa 3180
accatatcat acctttaaga tactttcttt atacttcatt taagatactt tcagccaatg 3240
ttggtgattt ttctccgtgt gaactggcca attaggggat aaagacattt cgtcaatcgc 3300
tctggctgag tgaatataat ttatatggct ttacacatca ttgggctcgc cacggaaccc 3360
gtcgctttcc tctttccgct ttctgaattt ccctttcggc cttgttaaca ctttgtcaaa 3420
gtggtgcgaa gtgctgtcgg tggggtggtg cgggaatggt tcctttgtca aattgcaggg 3480
cttttccccg ctaaaagagc ggcaaaggac acacagtcga acacttactt cgcttcctga 3540
tcctcatcgc cgacgccatc attcaaaaca attccaaaag ttaagtgctt ctgtatgaca 3600
actaaatctg gcagtcataa tcgcatttgg cctgcttacc ctctgtcaca ctttttcacc 3660
ccattttctt ggcaatatgt cagcctgctt atgtggagtt ctctaggctt ttgttgctgg 3720
agcactttcc accatcgcat tgtgggaaat tcatgtgcga aacatgtctc catgtctcca 3780
cctccccatt ttccctctga ttgcggcact ttcccgctga tgcgtcgtga atggatgtgg 3840
cacacagggc cttcgatata gttattacta ttttatgagt tttctttttt tcctcctgct 3900
aacccccggt cgctgctgct gctgctgctt taaaatcata ataataaatt gttatattta 3960
tacgcttcat tgcgttcaat cagtggttcc agctccatct tcagcttaag ttccatttta 4020
tgtccgttgc caggggcagc aactcgctca ggttgcgatt attaccacag cttagtcggt 4080
attatttatt ctgtttccca ttttcctgct gcctgcaact cggaagtgga agctttggtg 4140
gcagcaacag gctgtgccat ccacattgtt ctggattagg gctaaaactc aaggagctgc 4200
ctggcttttt ttcaaactaa gatcgcgcat acgcacttga ttgtacttgg gttaactatg 4260
tatttcaata aattatattc tttattctta aatttgtcta aaagtttaga tttctatttg 4320
gaactgaagg acttaatggt gagactttgc acctcagctt aaaccagaat agtcctacac 4380
aaatacatgt aaaaagttat tcacaagcat ttaagtaggc ataactttca ataattcaat 4440
agaatatcaa tttgctagtc aagcaataac caacacttgg ccgtttaaaa ttggacaagt 4500
tttgaccgaa ttacgggatg ggaatcgaat tagaggcaca tatttccaca gtgtctccga 4560
cgagctgctg gaaaatggtg gaaatgcact tgaagcaacg gaaattatgg cttcaacaac 4620
agagacgagc gtcatggatg cccccgactt cagtttagac ggttttgttt taaatttccg 4680
acataattga cacgacagaa ggaagcaccg tagctggcag accctttgta gatatacttt 4740
gcaccgaacg cccttgcata cagttgggtg tatgtgggtt ttggccctag acgactttgt 4800
cgtcggccac tttgcctgct aatagacata atcaaatcat agaacatcat cccctgccac 4860
tcgacaaagt atcgatggca ctctaaccaa ttgtctggcc caaaaggggc gtgtaacttt 4920
ggctcggctg cttttccgga ggtgacggag atgacggcga tgactgcagg agacagccga 4980
gttgggtttt tccccgcata ttccgcctct cacccgccag cttgctgctg ctgttaatgt 5040
ttttaaaatg tccttagagt ggcacttgta aaacaatttg attttgtgtg ccatcgaaca 5100
tatacataaa ggtcgagtgt gtctatatag aaactgtgtg tgtaattatg tttgtcgatg 5160
agggggcagc gcgaacaatg cacagattgt gacacgggtc agtctcaata tgtgatggtt 5220
atgatgcaat cattatcata gaaaacatat tgattgtttc tacagctcga aaataagttg 5280
gttaaaaatt accggatgta atgcggagaa tatctacgat tgtgatttgg aatcgtagct 5340
tccagttcat tgaaatataa tcaaatttta ttgaatccgt atgttctctt agactagatt 5400
taatttaaaa atatgtgaaa ttttaggcgc ttttcttgtg ccctacggca ttatgttggt 5460
ggtcggtggc attcctctgt tctatatgga attggccctg ggtcagcaca atcgtaaggg 5520
tgccataacc tgctggggtc gcttggtgcc cctcttcaaa ggtaattact aactactaac 5580
taattaatca caagaacttc atggataaga cactttaact tacaggaatt ggatatgccg 5640
tggtgctgat agccttctat gtggacttct attacaatgt gattattgcc tggtcgttgc 5700
gtttcttttt tgcatccttc accaactcgc tgccttggac gtcgtgtaat aatatttgga 5760
acacaccaaa ttgtagaccg gtaactagat acataaccat ttaatataaa tgaatcctta 5820
ttaattctaa cttcttatca gtttgagagc caaaatgcat ctcgtgttcc ggttattggt 5880
aactatagtg acttgtatgc catgggaaat caaagcctgc tctacaatga gacatatatg 5940
aatggttcga gcttggatac gtcagcggtt ggccatgtgg agggttttca gtccgcagca 6000
tcggaatatt ttaagtgagt ttgctgaaat attcacttta taattgtagt taaatttaat 6060
ttctcgtata gccgctacat tttggagctg aaccgcagcg agggaatcca tgacttgggc 6120
gccatcaaat gggacatggc gctgtgcctt ctgattgtct acttaatttg ttacttctcc 6180
ctgtggaagg gtatcagcac ttcgggcaag gttgtgtggt ttactgccct ctttccctat 6240
gcagtgctac tgattcttct aatcagaggg ctcacactgc cgggatcttt tctgggcatt 6300
cagtattatc ttacgcccaa ctttagtgcc atctataagg ctgaggtctg ggtggatgct 6360
gccacccagg tgtttttctc attgggtcca ggatttggag tgctgctggc ctatgcatcc 6420
tataataaat accataacaa tgtatacaag taggttgcaa gtcttatact tcaataattc 6480
ctcacttaaa ttattactta acttgattac agggatgctt tgttaaccag tttcattaac 6540
tcggctacca gctttatagc cggctttgtg atattctccg tgctgggtta catggcccac 6600
acactgggtg taagaattga agatgttgcc accgaaggac ctggtctggt tttcgtggtc 6660
tatccagctg ccattgccac catgccggcc agcactttct gggctctaat attcttcatg 6720
atgctgctaa ctttgggctt ggatagttcg gtagatataa cctatactct atatcgacct 6780
taaactaatt gtacaactct tacagtttgg tggttcagag gctataatca cagctttgag 6840
cgacgagttt cccaagatca aaagaaaccg agagctgttt gtagctggac tgttttccct 6900
gtacttcgtg gtcggtttgg ccagttgcac tcagggtggc ttctatttct tccatctgct 6960
ggatcgttac gctgctggct actcgatttt ggtggccgtg ttctttgagg caatcgccgt 7020
gtcctggatc tacggaacca atcgatttag cgaggatata cgggacatga ttggttttcc 7080
accgggaaga tactggcagg tgtgttggcg atttgtggca ccaattttcc tgctcttcat 7140
cacggtttac gggctgattg gctacgagcc actgacatat gcggactatg tgtatcccag 7200
ttgggccaat gcgctgggtt ggtgcatagc tggttcctcg gttgtgatga ttcctgccgt 7260
ggcgatattt aaactacttt ccacgccggg aagtctgcgt cagcggttca caattttgac 7320
cacaccatgg cgagatcagc aatcgatggc aatggtgctg aacggggtca ccaccgaggt 7380
caccgtggtg cgattaaccg acacggagac cgccaaggaa cccgtcgatg tctgagttcg 7440
accagtggcc cgttttcaaa tttactacgt ttagatttgg aaatttacca acaaccgatg 7500
ttcacgtatg tagattgtgg ctttgcagga gagtttgtgt ttttggttcg acatttggcg 7560
cagatccgca gaaggatcgg cagcaatttc gcaaacaacg tacttaggtt tcggcaccaa 7620
agaaaaaaaa gaagaaaacc cacaagcaaa cgcagcttca aaccataagt tctaagttaa 7680
gattagcttg tagttcgtat ggttaatgcc cagttatagc atactcatat atatacgatg 7740
ctgtgtagat aatatcaagt ccgaaagtgc gaaacacttg tcagttaatc tatcgagaac 7800
tccttgaaag aatgtttgca tatgccaatg gaattaacga cacgatcgag gctcaaaatt 7860
attgggcaca taatctgtac atacacaagt cgatgatgta aaagctttaa aacacgttat 7920
aggatatctc atggaactga agcaaaagct gccagagttg aactacaaaa tccgctcaaa 7980
cagccatgag gggattttgt catatgcaaa ggtttgttct agactaatta accccgtcca 8040
aaaaaaaaaa actacgattg tttgcttaaa gcagccattt taagcaaaca attgagagtt 8100
atcgaaataa tacattccct tttataaact catttctgta catagatgta tgatatttta 8160
gcattgtttt aagagtttct ttcacgctga agcggaacta acagccatga gttctgtttc 8220
aatttgttga aataaattat tatactttga gttact 8256

Claims (4)

1. A recombinant plasmid composition for producing hexamethylenediamine engineering bacteria, which is characterized by consisting of pRLABCD recombinant plasmid and pKV recombinant plasmid, wherein the pKV recombinant plasmid comprises kivD gene and vfl gene; the nucleotide sequence of the kivD gene is shown as SEQ ID NO:3, the nucleotide sequence of the vfl gene is shown as SEQ ID NO:4 is shown in the figure; the pRLABCD recombinant plasmid comprises a leuA gene, a leuB gene, a leuC gene, a leuD gene and a target gene raip gene; the nucleotide sequence of the target gene raip gene is shown in SEQ ID NO:1, the nucleotide sequence of the combination of the leuA gene, the leuB gene, the leuC gene and the leuD gene is shown as SEQ ID NO: 2.
2. A recombinant plasmid composition for producing hexamethylenediamine engineering bacteria, characterized in that the recombinant plasmid composition consists of a pRLABCD recombinant plasmid and a pAD recombinant plasmid, wherein the pAD recombinant plasmid comprises a kdcA gene and a dat gene; the nucleotide sequence of the kdcA gene is shown in SEQ ID NO:6, the nucleotide sequence of the dat gene is shown as SEQ ID NO: shown in figure 7; the pRLABCD recombinant plasmid comprises a leuA gene, a leuB gene, a leuC gene, a leuD gene and a target gene raip gene; the nucleotide sequence of the target gene raip gene is shown in SEQ ID NO:1, the nucleotide sequence of the combination of the leuA gene, the leuB gene, the leuC gene and the leuD gene is shown as SEQ ID NO: 2.
3. A method for preparing hexamethylenediamine using the recombinant plasmid composition according to claim 2, characterized by comprising the specific steps of:
(1) Transferring the recombinant plasmid composition into escherichia coli BL21 to obtain genetically engineered bacterium LRAD;
(2) And culturing lysine serving as a fermentation substrate with the genetically engineered bacterium LRAD to obtain hexamethylenediamine.
4. A method according to claim 3, wherein the lysine content is 5g/L to 100g/L.
CN202111014720.XA 2021-08-31 2021-08-31 Recombinant plasmid for producing hexamethylenediamine and application thereof Active CN113755419B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111014720.XA CN113755419B (en) 2021-08-31 2021-08-31 Recombinant plasmid for producing hexamethylenediamine and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111014720.XA CN113755419B (en) 2021-08-31 2021-08-31 Recombinant plasmid for producing hexamethylenediamine and application thereof

Publications (2)

Publication Number Publication Date
CN113755419A CN113755419A (en) 2021-12-07
CN113755419B true CN113755419B (en) 2024-01-12

Family

ID=78792171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111014720.XA Active CN113755419B (en) 2021-08-31 2021-08-31 Recombinant plasmid for producing hexamethylenediamine and application thereof

Country Status (1)

Country Link
CN (1) CN113755419B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013202447A1 (en) * 2009-05-07 2013-05-02 Genomatica, Inc. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
CN107119065B (en) * 2017-04-27 2019-06-14 重庆大学 It is a kind of for producing the recombinant plasmid, engineering strain and method of piperidinecarboxylic acid

Also Published As

Publication number Publication date
CN113755419A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
CN111197021B (en) Recombinant corynebacterium glutamicum with improved L-lysine yield and construction method thereof
CN109777763B (en) Genetically engineered bacterium for producing L-theanine and construction and application thereof
CN105331642B (en) Method for catalytically producing α -ketoglutaric acid by using L-glutamic acid oxidase
CN112210524B (en) Genetic engineering bacterium for co-production of 3-hydroxypropionic acid and 1, 3-propanediol and construction method and application thereof
CN111100832B (en) Gene engineering bacterium for synthesizing pyruvic acid and D-alanine and construction method and application thereof
CN105829524B (en) Recombinant microorganism having enhanced D (-) type 2, 3-butanediol productivity and method for producing D (-) type 2, 3-butanediol using the same
DK1761557T4 (en) New gene from Bacillus licheniformis, AS FORMING OR DEPLETE polyaminoacids AND BASES END END IMPROVED BIOTEKNOLOGIKSE PRODUCTION METHODS
CN104093836A (en) Hydrocarbon synthase gene, and use thereor
CN113755419B (en) Recombinant plasmid for producing hexamethylenediamine and application thereof
CN109929853B (en) Application of thermophilic bacteria source heat shock protein gene
CN105593368B (en) Recombinant microorganism having increased ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same
CN112226422A (en) EstWY enzyme mutant with improved activity
US9222110B2 (en) Microorganism and method for lactic acid production
EP3591044A1 (en) A long-chain dibasic acid with low content of monobasic acid impurity and the production method thereof
CN101892228B (en) Engineering bacteria with high tolerance to acrylamide and acrylonitrile for producing nitrile hydratase and application thereof
CN105349507B (en) A kind of lipase LIPDa6 and its encoding gene and application
CN114606172B (en) Bacillus amyloliquefaciens engineering bacteria for improving heme yield and construction method thereof
CN110628800A (en) Construction method for efficiently producing recombinant bacteria by chiral alcohol and application thereof
CN114149955B (en) Genetically engineered bacterium for efficiently producing glycerol and construction method and application thereof
CN114874963B (en) Recombinant vibrio natriegens for producing hydroxytyrosol and application thereof
CN114875087B (en) Method for synthesizing 5-hydroxy beta-indolylalanine by taking beta-indolylalanine as substrate and application thereof
CN114250237B (en) Tyrosine phenol lyase mutant, engineering bacterium and application thereof in catalytic synthesis of levodopa
CN115124605B (en) High temperature resistant element mutant and application thereof in amino acid production
CN111334445B (en) Long-chain dicarboxylic acid producing strain and preparation method and application thereof
CN107955805B (en) NADH oxidase with improved stability and application thereof in acetoin production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant