CN113748734A - 物理上行链路控制信道资源配置 - Google Patents

物理上行链路控制信道资源配置 Download PDF

Info

Publication number
CN113748734A
CN113748734A CN202080031740.5A CN202080031740A CN113748734A CN 113748734 A CN113748734 A CN 113748734A CN 202080031740 A CN202080031740 A CN 202080031740A CN 113748734 A CN113748734 A CN 113748734A
Authority
CN
China
Prior art keywords
slot
pucch
sub
pucch resource
uplink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080031740.5A
Other languages
English (en)
Other versions
CN113748734B (zh
Inventor
S·侯赛尼
S·A·A·法库里安
杨桅
P·加尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN113748734A publication Critical patent/CN113748734A/zh
Application granted granted Critical
Publication of CN113748734B publication Critical patent/CN113748734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

概括而言,本公开内容的各个方面涉及无线通信。在一些方面中,用户设备(UE)可以接收包括用于UE的多个子时隙物理上行链路控制信道(PUCCH)资源的PUCCH资源配置。UE可以确定多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界。UE可以至少部分地基于确定子时隙PUCCH资源跨越时隙边界来调整上行链路传输。提供了大量其它方面。

Description

物理上行链路控制信道资源配置
相关申请的交叉引用
本专利申请要求享受以下申请的优先权:于2019年5月3日提交的名称为“PHYSICAL UPLINK CONTROL CHANNEL RESOURCE CONFIGURATION”的美国临时专利申请62/842,976号;以及于2020年4月30日提交的名称为“PHYSICAL UPLINK CONTROL CHANNELRESOURCE CONFIGURATION”的美国非临时专利申请16/863,674号,据此将上述申请通过引用的方式明确地并入本文中。
技术领域
概括地说,本公开内容的各方面涉及无线通信以及用于物理上行链路控制信道(PUCCH)资源配置的技术和装置。
背景技术
无线通信系统被广泛地部署以提供诸如电话、视频、数据、消息传送以及广播之类的各种电信服务。典型的无线通信系统可以采用能够通过共享可用的系统资源(例如,带宽、发射功率等)来支持与多个用户进行通信的多址技术。这样的多址技术的示例包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统、时分同步码分多址(TD-SCDMA)系统以及长期演进(LTE)。LTE/改进的LTE是对由第三代合作伙伴计划(3GPP)发布的通用移动电信系统(UMTS)移动标准的增强集。
无线通信网络可以包括能够支持针对多个用户设备(UE)的通信的多个基站(BS)。用户设备(UE)可以经由下行链路和上行链路与基站(BS)进行通信。下行链路(或前向链路)指代从BS到UE的通信链路,而上行链路(或反向链路)指代从UE到BS的通信链路。如本文将更加详细描述的,BS可以被称为节点B、gNB、接入点(AP)、无线电头端、发射接收点(TRP)、新无线电(NR)BS、5G节点B等。
已经在各种电信标准中采用了以上的多址技术以提供公共协议,该公共协议使得不同的用户设备能够在城市、国家、地区、以及甚至全球层面上进行通信。新无线电(NR)(其也可以被称为5G)是对由第三代合作伙伴计划(3GPP)发布的LTE移动标准的增强集。NR被设计为通过提高频谱效率、降低成本、改进服务、利用新频谱以及在下行链路(DL)上使用具有循环前缀(CP)的正交频分复用(OFDM)(CP-OFDM)、在上行链路(UL)上使用CP-OFDM和/或SC-FDM(例如,也被称为离散傅里叶变换扩频OFDM(DFT-s-OFDM))来更好地与其它开放标准集成,从而更好地支持移动宽带互联网接入,以及支持波束成形、多输入多输出(MIMO)天线技术和载波聚合。然而,随着对移动宽带接入的需求持续增长,存在对LTE和NR技术进行进一步改进的需求。优选地,这些改进应当适用于其它多址技术以及采用这些技术的电信标准。
发明内容
在一些方面中,一种由用户设备(UE)执行的无线通信的方法可以包括:接收包括用于所述UE的多个子时隙物理上行链路控制信道(PUCCH)资源的PUCCH资源配置;确定所述多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界;以及至少部分地基于确定所述子时隙PUCCH资源跨越所述时隙边界来调整所述上行链路传输。
在一些方面中,一种由UE执行的无线通信的方法可以包括:接收一个或多个配置消息,所述一个或多个配置消息标识多个子时隙PUCCH资源以及对所述多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示;至少部分地基于所述一个或多个配置消息来确定用于在所述多个子时隙PUCCH资源中传输的PUCCH重复数量;至少部分地基于所述PUCCH重复数量和一个或多个其它传输的调度来确定是否修改所述特定子时隙PUCCH资源;以及至少部分地基于确定是否修改所述特定子时隙PUCCH资源的结果来选择性地发送上行链路控制信息(UCI)。
在一些方面中,一种用于无线通信的UE可以包括存储器和耦合到所述存储器的一个或多个处理器。所述存储器和所述一个或多个处理器可以被配置为:接收包括用于所述UE的多个子时隙PUCCH资源的PUCCH资源配置;确定所述多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界;以及至少部分地基于确定所述子时隙PUCCH资源跨越所述时隙边界来调整所述上行链路传输。
在一些方面中,一种用于无线通信的UE可以包括存储器和耦合到所述存储器的一个或多个处理器。所述存储器和所述一个或多个处理器可以被配置为:接收一个或多个配置消息,所述一个或多个配置消息标识多个子时隙PUCCH资源以及对所述多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示;至少部分地基于所述一个或多个配置消息来确定用于在所述多个子时隙PUCCH资源中传输的PUCCH重复数量;至少部分地基于所述PUCCH重复数量和一个或多个其它传输的调度来确定是否修改所述特定子时隙PUCCH资源;以及至少部分地基于确定是否修改所述特定子时隙PUCCH资源的结果来选择性地发送UCI。
在一些方面中,一种非暂时性计算机可读介质可以存储用于无线通信的一个或多个指令。所述一个或多个指令在由UE的一个或多个处理器执行时,可以使得所述一个或多个处理器进行以下操作:接收包括用于所述UE的多个子时隙PUCCH资源的PUCCH资源配置;确定所述多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界;以及至少部分地基于确定所述子时隙PUCCH资源跨越所述时隙边界来调整所述上行链路传输。
在一些方面中,一种非暂时性计算机可读介质可以存储用于无线通信的一个或多个指令。所述一个或多个指令在由UE的一个或多个处理器执行时,可以使得所述一个或多个处理器进行以下操作:接收一个或多个配置消息,所述一个或多个配置消息标识多个子时隙PUCCH资源以及对所述多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示;至少部分地基于所述一个或多个配置消息来确定用于在所述多个子时隙PUCCH资源中传输的PUCCH重复数量;至少部分地基于所述PUCCH重复数量和一个或多个其它传输的调度来确定是否修改所述特定子时隙PUCCH资源;以及至少部分地基于确定是否修改所述特定子时隙PUCCH资源的结果来选择性地发送UCI。
在一些方面中,一种用于无线通信的装置可以包括:用于接收包括用于UE的多个子时隙PUCCH资源的PUCCH资源配置的单元;用于确定所述多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界的单元;以及用于至少部分地基于确定所述子时隙PUCCH资源跨越所述时隙边界来调整所述上行链路传输的单元。
在一些方面中,一种用于无线通信的装置可以包括:用于接收一个或多个配置消息的单元,所述一个或多个配置消息标识多个子时隙PUCCH资源以及对所述多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示;用于至少部分地基于所述一个或多个配置消息来确定用于在所述多个子时隙PUCCH资源中传输的PUCCH重复数量的单元;用于至少部分地基于所述PUCCH重复数量和一个或多个其它传输的调度来确定是否修改所述特定子时隙PUCCH资源的单元;以及用于至少部分地基于确定是否修改所述特定子时隙PUCCH资源的结果来选择性地发送UCI的单元。
在一些方面中,一种由用户设备执行的无线通信方法可以包括:接收多个PUCCH资源配置,其中,所述多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置;在使用所述第一PUCCH资源配置操作时,识别门限信道条件的发生;以及至少部分地基于识别所述门限信道条件的所述发生来从所述第一PUCCH资源配置切换到所述第二PUCCH资源配置。
在一些方面中,一种用于无线通信的UE可以包括存储器和耦合到所述存储器的一个或多个处理器。所述存储器和所述一个或多个处理器可以被配置为:接收多个PUCCH资源配置,其中,所述多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置;在使用所述第一PUCCH资源配置操作时,识别门限信道条件的发生;以及至少部分地基于识别所述门限信道条件的所述发生来从所述第一PUCCH资源配置切换到所述第二PUCCH资源配置。
在一些方面中,一种非暂时性计算机可读介质可以存储用于无线通信的一个或多个指令。所述一个或多个指令在由UE的一个或多个处理器执行时,可以使得所述一个或多个处理器进行以下操作:接收多个PUCCH资源配置,其中,所述多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置;在使用所述第一PUCCH资源配置操作时,识别门限信道条件的发生;以及至少部分地基于识别所述门限信道条件的所述发生来从所述第一PUCCH资源配置切换到所述第二PUCCH资源配置。
在一些方面中,一种用于无线通信的装置可以包括:用于接收多个PUCCH资源配置的单元,其中,所述多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置;用于在使用所述第一PUCCH资源配置操作时,识别门限信道条件的发生的单元;以及用于至少部分地基于识别所述门限信道条件的所述发生来从所述第一PUCCH资源配置切换到所述第二PUCCH资源配置的单元。
概括地说,各方面包括如本文中参照附图和说明书充分描述的并且如通过附图和说明书示出的方法、装置、系统、计算机程序产品、非暂时性计算机可读介质、用户设备、基站、无线通信设备和处理系统。
前文已经相当宽泛地概述了根据本公开内容的示例的特征和技术优点,以便可以更好地理解以下的详细描述。下文将描述额外的特征和优点。所公开的概念和特定示例可以容易地用作用于修改或设计用于实现本公开内容的相同目的的其它结构的基础。这样的等效构造不脱离所附的权利要求的范围。当结合附图考虑时,根据下文的描述,将更好地理解本文公开的概念的特性(它们的组织和操作方法二者)以及相关联的优点。附图中的每个附图是出于说明和描述的目的而提供的,而并不作为对权利要求的限制的定义。
附图说明
为了可以详尽地理解本公开内容的上述特征,通过参照各方面(其中一些方面在附图中示出),可以获得对上文简要概述的发明内容的更加具体的描述。然而,要注意的是,附图仅示出了本公开内容的某些典型的方面并且因此不被认为是限制本公开内容的范围,因为该描述可以容许其它同等有效的方面。不同附图中的相同的附图标记可以标识相同或相似元素。
图1是概念性地示出了根据本公开内容的各个方面的无线通信网络的示例的框图。
图2是概念性地示出了根据本公开内容的各个方面的无线通信网络中的基站与UE相通信的示例的框图。
图3A是概念性地示出了根据本公开内容的各个方面的无线通信网络中的帧结构的示例的框图。
图3B是概念性地示出了根据本公开内容的各个方面的无线通信网络中的示例同步通信层级的框图。
图4是概念性地示出了根据本公开内容的各个方面的具有普通循环前缀的示例时隙格式的框图。
图5示出了根据本公开内容的各个方面的分布式无线电接入网络(RAN)的示例逻辑架构。
图6示出了根据本公开内容的各个方面的分布式RAN的示例物理架构。
图7-9是示出根据本公开内容的各个方面的物理上行链路控制信道(PUCCH)资源配置的示例的图。
图10-12是示出了根据本公开内容的各个方面的例如由用户设备执行的示例过程的图。
具体实施方式
下文参考附图更加充分描述了本公开内容的各个方面。然而,本公开内容可以以许多不同的形式来体现,并且不应当被解释为限于贯穿本公开内容所呈现的任何特定的结构或功能。更确切地说,提供了这些方面使得本公开内容将是透彻和完整的,并且将向本领域技术人员充分传达本公开内容的范围。至少部分地基于本文的教导,本领域技术人员应当明白的是,本公开内容的范围旨在涵盖本文所公开的本公开内容的任何方面,无论该方面是独立于本公开内容的任何其它方面来实现的还是与任何其它方面结合地来实现的。例如,使用本文所阐述的任何数量的方面,可以实现一种装置或可以实施一种方法。此外,本公开内容的范围旨在涵盖使用除了本文所阐述的本公开内容的各个方面之外或不同于本文所阐述的本公开内容的各个方面的其它结构、功能、或者结构和功能来实施的这样的装置或方法。应当理解的是,本文所公开的本公开内容的任何方面可以由权利要求的一个或多个元素来体现。
现在将参考各种装置和技术来给出电信系统的若干方面。这些装置和技术将通过各种框、模块、组件、电路、步骤、过程、算法等(被统称为“元素”),在以下详细描述中进行描述,以及在附图中进行示出。这些元素可以使用硬件、软件或其组合来实现。至于这样的元素是实现为硬件还是软件,取决于特定的应用以及施加在整个系统上的设计约束。
应当注意的是,虽然本文可能使用通常与3G和/或4G无线技术相关联的术语来描述各方面,但是本公开内容的各方面可以应用于基于其它代的通信系统(例如,5G及之后(包括NR技术)的通信系统)中。
图1是示出了可以在其中实施本公开内容的各方面的无线网络100的图。无线网络100可以是LTE网络或某种其它无线网络(例如,5G或NR网络)。无线网络100可以包括多个BS110(被示为BS 110a、BS 110b、BS 110c和BS 110d)和其它网络实体。BS是与用户设备(UE)进行通信的实体并且也可以被称为基站、NR BS、节点B、gNB、5G节点B(NB)、接入点、发射接收点(TRP)等。每个BS可以提供针对特定地理区域的通信覆盖。在3GPP中,术语“小区”可以指代BS的覆盖区域和/或为该覆盖区域服务的BS子系统,这取决于使用该术语的上下文。
BS可以提供针对宏小区、微微小区、毫微微小区和/或另一种类型的小区的通信覆盖。宏小区可以覆盖相对大的地理区域(例如,半径为若干千米),并且可以允许由具有服务订制的UE进行的不受限制的接入。微微小区可以覆盖相对小的地理区域,并且可以允许由具有服务订制的UE进行的不受限制的接入。毫微微小区可以覆盖相对小的地理区域(例如,住宅),并且可以允许由与该毫微微小区具有关联的UE(例如,封闭用户组(CSG)中的UE)进行的受限制的接入。用于宏小区的BS可以被称为宏BS。用于微微小区的BS可以被称为微微BS。用于毫微微小区的BS可以被称为毫微微BS或家庭BS。在图1中示出的示例中,BS 110a可以是用于宏小区102a的宏BS,BS 110b可以是用于微微小区102b的微微BS,以及BS 110c可以是用于毫微微小区102c的毫微微BS。BS可以支持一个或多个(例如,三个)小区。术语“eNB”、“基站”、“NR BS”、“gNB”、“TRP”、“AP”、“节点B”、“5G NB”和“小区”在本文中可以互换地使用。
在一些方面中,小区可能未必是静止的,并且小区的地理区域可以根据移动BS的位置进行移动。在一些方面中,BS可以通过各种类型的回程接口(例如,直接物理连接、虚拟网络、和/或使用任何适当的传输网络的类似接口)来彼此互连和/或与无线网络100中的一个或多个其它BS或网络节点(未示出)互连。
无线网络100还可以包括中继站。中继站是可以从上游站(例如,BS或UE)接收数据传输并且将数据传输发送给下游站(例如,UE或BS)的实体。中继站还可以是能够为其它UE中继传输的UE。在图1中示出的示例中,中继站110d可以与宏BS 110a和UE 120d进行通信,以便促进BS 110a与UE 120d之间的通信。中继站还可以被称为中继BS、中继基站、中继器等。
无线网络100可以是包括不同类型的BS(例如,宏BS、微微BS、毫微微BS、中继BS等)的异构网络。这些不同类型的BS可以具有不同的发射功率电平、不同的覆盖区域以及对无线网络100中的干扰的不同影响。例如,宏BS可以具有高发射功率电平(例如,5到40瓦特),而微微BS、毫微微BS和中继BS可以具有较低的发射功率电平(例如,0.1到2瓦特)。
网络控制器130可以耦合到一组BS,并且可以提供针对这些BS的协调和控制。网络控制器130可以经由回程与BS进行通信。BS还可以例如经由无线或有线回程直接地或间接地与彼此进行通信。
UE 120(例如,120a、120b、120c)可以散布于整个无线网络100中,并且每个UE可以是静止的或移动的。UE还可以被称为接入终端、终端、移动站、用户单元、站等。UE可以是蜂窝电话(例如,智能电话)、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话、无线本地环路(WLL)站、平板设备、相机、游戏设备、上网本、智能本、超级本、医疗设备或装置、生物计量传感器/设备、可穿戴设备(智能手表、智能服装、智能眼镜、智能腕带、智能珠宝(例如,智能指环、智能手链等))、娱乐设备(例如,音乐或视频设备、或卫星无线电单元等)、车辆组件或传感器、智能仪表/传感器、工业制造设备、全球定位系统设备或者被配置为经由无线或有线介质进行通信的任何其它适当的设备。
一些UE可以被认为是机器类型通信(MTC)或者演进型或增强型机器类型通信(eMTC)UE。MTC和eMTC UE包括例如机器人、无人机、远程设备、传感器、仪表、监视器、位置标签等,它们可以与基站、另一个设备(例如,远程设备)或某个其它实体进行通信。无线节点可以例如经由有线或无线通信链路来提供针对网络(例如,诸如互联网或蜂窝网络之类的广域网)的连接或到网络的连接。一些UE可以被认为是物联网(IoT)设备,和/或可以被实现成NB-IoT(窄带物联网)设备。一些UE可以被认为是客户驻地设备(CPE)。UE 120可以被包括在容纳UE 120的组件(诸如处理器组件、存储器组件等)的壳体内部。
通常,可以在给定的地理区域中部署任意数量的无线网络。每个无线网络可以支持特定的RAT并且可以在一个或多个频率上操作。RAT还可以被称为无线电技术、空中接口等。频率还可以被称为载波、频道等。每个频率可以在给定的地理区域中支持单种RAT,以便避免不同RAT的无线网络之间的干扰。在一些情况下,可以部署NR或5G RAT网络。
在一些方面中,两个或更多个UE 120(例如,被示为UE 120a和UE 120e)可以使用一个或多个侧行链路(sidelink)信道直接进行通信(例如,而不使用基站110作为彼此进行通信的中介)。例如,UE 120可以使用对等(P2P)通信、设备到设备(D2D)通信、运载工具到万物(V2X)协议(例如,其可以包括运载工具到运载工具(V2V)协议、运载工具到基础设施(V2I)协议等)、网状网络等进行通信。在这种情况下,UE 120可以执行调度操作、资源选择操作和/或本文中在别处被描述为由基站110执行的其它操作。
如上所指出的,图1是作为示例来提供的。其它示例可以不同于关于图1所描述的示例。
图2示出了基站110和UE 120(它们可以是图1中的基站中的一个基站以及UE中的一个UE)的设计200的框图。基站110可以被配备有T个天线234a至234t,以及UE 120可以被配备有R个天线252a至252r,其中一般而言,T≥1且R≥1。
在基站110处,发送处理器220可以从数据源212接收针对一个或多个UE的数据,至少部分地基于从每个UE接收的信道质量指示符(CQI)来选择用于该UE的一个或多个调制和编码方案(MCS),至少部分地基于被选择用于每个UE的MCS来处理(例如,编码和调制)针对该UE的数据,以及为所有UE提供数据符号。发送处理器220还可以处理系统信息(例如,针对半静态资源划分信息(SRPI)等)和控制信息(例如,CQI请求、授权、上层信令等),以及提供开销符号和控制符号。发送处理器220还可以生成用于参考信号(例如,特定于小区的参考信号(CRS))和同步信号(例如,主同步信号(PSS)和辅同步信号(SSS))的参考符号。发送(TX)多输入多输出(MIMO)处理器230可以对数据符号、控制符号、开销符号和/或参考符号执行空间处理(例如,预编码)(如果适用的话),并且可以向T个调制器(MOD)232a至232t提供T个输出符号流。每个调制器232可以(例如,针对OFDM等)处理相应的输出符号流以获得输出采样流。每个调制器232可以进一步处理(例如,转换到模拟、放大、滤波以及上变频)输出采样流以获得下行链路信号。可以分别经由T个天线234a至234t来发送来自调制器232a至232t的T个下行链路信号。根据以下更加详细描述的各个方面,可以利用位置编码生成同步信号以传送额外的信息。
在UE 120处,天线252a至252r可以从基站110和/或其它基站接收下行链路信号,并且可以分别向解调器(DEMOD)254a至254r提供接收的信号。每个解调器254可以调节(例如,滤波、放大、下变频以及数字化)接收的信号以获得输入采样。每个解调器254可以(例如,针对OFDM等)进一步处理输入采样以获得接收符号。MIMO检测器256可以从所有R个解调器254a至254r获得接收符号,对接收符号执行MIMO检测(如果适用的话),以及提供检测到的符号。接收处理器258可以处理(例如,解调和解码)所检测到的符号,向数据宿260提供针对UE 120的经解码的数据,以及向控制器/处理器280提供经解码的控制信息和系统信息。信道处理器可以确定参考信号接收功率(RSRP)、接收信号强度指示符(RSSI)、参考信号接收质量(RSRQ)、信道质量指示符(CQI)等。在一些方面中,UE 120的一个或多个组件可以被包括在壳体中。
在上行链路上,在UE 120处,发送处理器264可以接收并且处理来自数据源262的数据和来自控制器/处理器280的控制信息(例如,用于包括RSRP、RSSI、RSRQ、CQI等的报告)。发送处理器264还可以生成用于一个或多个参考信号的参考符号。来自发送处理器264的符号可以由TX MIMO处理器266进行预编码(如果适用的话),由调制器254a至254r(例如,针对DFT-s-OFDM、CP-OFDM等)进一步处理,以及被发送给基站110。在基站110处,来自UE120和其它UE的上行链路信号可以由天线234接收,由解调器232处理,由MIMO检测器236检测(如果适用的话),以及由接收处理器238进一步处理,以获得由UE 120发送的经解码的数据和控制信息。接收处理器238可以向数据宿239提供经解码的数据,并且向控制器/处理器240提供经解码的控制信息。基站110可以包括通信单元244并且经由通信单元244来与网络控制器130进行通信。网络控制器130可以包括通信单元294、控制器/处理器290和存储器292。
基站110的控制器/处理器240、UE 120的控制器/处理器280和/或图2中的任何其它组件可以执行与物理上行链路控制信道(PUCCH)资源配置相关联的一种或多种技术,如本文中在别处更详细描述的。例如,基站110的控制器/处理器240、UE 120的控制器/处理器280和/或图2中的任何其它组件可以执行或指导例如图10的过程1000、图11的过程1100、图12的过程1200和/或如本文描述的其它过程的操作。存储器242和282可以分别存储用于基站110和UE 120的数据和程序代码。调度器246可以调度UE用于下行链路和/或上行链路上的数据传输。
在一些方面中,UE 120可以包括:用于接收包括用于UE的多个子时隙PUCCH资源的PUCCH资源配置的单元;用于确定多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界的单元;用于至少部分地基于确定子时隙PUCCH资源跨越时隙边界来调整上行链路传输的单元;等等。在一些方面中,UE 120可以包括:用于接收一个或多个配置消息的单元,该一个或多个配置消息标识多个子时隙PUCCH资源以及对多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示;用于至少部分地基于一个或多个配置消息来确定用于在多个子时隙PUCCH资源中传输的PUCCH重复数量的单元;用于至少部分地基于PUCCH重复数量和一个或多个其它传输的调度来确定是否修改特定子时隙PUCCH资源的单元;用于至少部分地基于确定是否修改特定子时隙PUCCH资源的结果来选择性地发送上行链路控制信息(UCI)的单元;等等。在一些方面中,这样的单元可以包括结合图2描述的UE 120的一个或多个组件。
如上所指出的,图2是作为示例来提供的。其它示例可以不同于关于图2所描述的示例。
图3A示出了用于电信系统(例如,NR)中的频分双工(FDD)的示例帧结构300。可以将用于下行链路和上行链路中的每一者的传输时间线划分成无线帧(有时被称为帧)的单元。每个无线帧可以具有预先确定的持续时间(例如,10毫秒(ms)),并且可以被划分成Z(Z≥1)个子帧(例如,具有0至Z-1的索引)的集合。每个子帧可以具有预先确定的持续时间(例如,1ms),并且可以包括时隙集合(例如,图3A中示出了每个子帧2m个时隙,其中m是用于传输的数字方案,诸如0、1、2、3、4等)。每个时隙可以包括L个符号周期的集合。例如,每个时隙可以包括十四个符号周期(例如,如图3A中所示)、七个符号周期或另一数量的符号周期。在子帧包括两个时隙的情况下(例如,当m=1时),子帧可以包括2L个符号周期,其中,每个子帧中的2L个符号周期可以被指派0至2L-1的索引。在一些方面中,用于FDD的调度单元可以是基于帧的、基于子帧的、基于时隙的、基于符号的等。
虽然一些技术在本文中是结合帧、子帧、时隙等来描述的,但是这些技术同样可以应用于其它类型的无线通信结构,其在5G NR中可以使用除了“帧”、“子帧”、“时隙”等之外的术语来提及。在一些方面中,无线通信结构可以指代由无线通信标准和/或协议定义的周期性的时间界定的通信单元。另外或替代地,可以使用与图3A中示出的那些无线通信结构的配置不同的配置。
在某些电信(例如,NR)中,基站可以发送同步信号。例如,基站可以针对该基站所支持的每个小区在下行链路上发送主同步信号(PSS)、辅同步信号(SSS)等。PSS和SSS可以由UE用于小区搜索和捕获。例如,PSS可以由UE用于确定符号定时,并且SSS可以由UE用于确定与基站相关联的物理小区标识符和帧定时。基站还可以发送物理广播信道(PBCH)。PBCH可以携带某些系统信息,例如,支持UE进行初始接入的系统信息。
在一些方面中,基站可以根据包括多个同步通信(例如,SS块)的同步通信层级(例如,同步信号(SS)层级)来发送PSS、SSS和/或PBCH,如下文结合图3B描述的。
图3B是概念性地示出了示例SS层级的框图,该示例SS层级是同步通信层级的示例。如图3B中所示,SS层级可以包括SS突发集合,其可以包括多个SS突发(被标识为SS突发0至SS突发B-1,其中B是可以由基站发送的SS突发的重复的最大数量)。如进一步示出的,每个SS突发可以包括一个或多个SS块(被标识为SS块0至SS块(bmax_SS-1),其中bmax_SS-1是能够由SS突发携带的SS块的最大数量)。在一些方面中,可以以不同的方式来对不同的SS块进行波束成形。无线节点可以周期性地发送SS突发集合,比如每X毫秒,如图3B中所示。在一些方面中,SS突发集合可以具有固定或动态的长度,在图3B中被示为Y毫秒。
图3B中示出的SS突发集合是同步通信集合的示例,并且可以结合本文描述的技术来使用其它同步通信集合。此外,图3B中示出的SS块是同步通信的示例,并且可以结合本文描述的技术来使用其它同步通信。
在一些方面中,SS块包括携带PSS、SSS、PBCH和/或其它同步信号(例如,第三同步信号(TSS))和/或同步信道的资源。在一些方面中,在SS突发中包括多个SS块,并且在SS突发的每个SS块之间,PSS、SSS和/或PBCH可以是相同的。在一些方面中,可以在SS突发中包括单个SS块。在一些方面中,SS块在长度上可以是至少四个符号周期,其中每个符号携带PSS(例如,占用一个符号)、SSS(例如,占用一个符号)和/或PBCH(例如,占用两个符号)中的一项或多项。
在一些方面中,如图3B中所示,SS块的符号是连续的。在一些方面中,SS块的符号是不连续的。类似地,在一些方面中,可以在一个或多个时隙期间的连续的无线资源(例如,连续的符号周期)中发送SS突发的一个或多个SS块。另外或替代地,可以在不连续的无线资源中发送SS突发的一个或多个SS块。
在一些方面中,SS突发可以具有突发周期,由此基站可以根据突发周期来发送SS突发的SS块。换句话说,SS块可以在每个SS突发期间重复。在一些方面中,SS突发集合可以具有突发集合周期,由此基站可以根据固定的突发集合周期来发送SS突发集合的SS突发。换句话说,SS突发可以在每个SS突发集合期间重复。
BS可以在某些时隙中的物理下行链路共享信道(PDSCH)上发送系统信息(例如,系统信息块(SIB))。基站可以在时隙的C个符号周期中的物理下行链路控制信道(PDCCH)上发送控制信息/数据,其中B可以是针对每个时隙可配置的。基站可以在每个时隙的剩余的符号周期中的PDSCH上发送业务数据和/或其它数据。
如上所指出的,图3A和3B是作为示例来提供的。其它示例可以不同于关于图3A和3B所描述的示例。
图4示出了具有普通循环前缀的示例时隙格式410。可用的时间频率资源可以被划分成资源块。每个资源块可以覆盖一个时隙中的一组子载波(例如,12个子载波)并且可以包括多个资源元素。每个资源元素可以覆盖一个符号周期(例如,以时间为单位)中的一个子载波,并且可以用于发送一个调制符号,调制符号可以是实值或复值。
交织结构可以用于针对某些电信系统(例如,NR)中的FDD的下行链路和上行链路中的每一者。例如,可以定义具有0至Q-1的索引的Q个交织体,其中,Q可以等于4、6、8、10或某个其它值。每个交织体可以包括被间隔开Q个帧的时隙。具体地,交织体q可以包括时隙q、q+Q、q+2Q等,其中q∈{0,...,Q-1}。
UE可以位于多个BS的覆盖内。可以选择这些BS中的一个BS来为UE服务。服务BS可以是至少部分地基于各种准则(例如,接收信号强度、接收信号质量、路径损耗等)来选择的。接收信号质量可以由信号与噪声干扰比(SNIR)、或参考信号接收质量(RSRQ)、或某个其它度量来量化。UE可以在显著干扰场景中操作,其中,UE可以观察到来自一个或多个干扰BS的高干扰。
虽然本文所描述的示例的各方面可以与NR或5G技术相关联,但是本公开内容的各方面可以与其它无线通信系统一起应用。新无线电(NR)可以指代被配置为根据新空中接口(例如,除了基于正交频分多址(OFDMA)的空中接口以外)或固定的传输层(例如,除了互联网协议(IP)以外)操作的无线电。在各方面中,NR可以在上行链路上利用具有CP的OFDM(本文中被称为循环前缀OFDM或CP-OFDM)和/或SC-FDM,可以在下行链路上利用CP-OFDM并且包括对使用时分双工(TDD)的半双工操作的支持。在各方面中,NR可以例如在上行链路上利用具有CP的OFDM(本文中被称为CP-OFDM)和/或离散傅里叶变换扩频正交频分复用(DFT-s-OFDM),可以在下行链路上利用CP-OFDM并且包括对使用TDD的半双工操作的支持。NR可以包括以宽带宽(例如,80兆赫兹(MHz)及更大)为目标的增强型移动宽带(eMBB)服务、以高载波频率(例如,60千兆赫兹(GHz))为目标的毫米波(mmW)、以非向后兼容的MTC技术为目标的大规模MTC(mMTC)、和/或以超可靠低时延通信(URLLC)服务为目标的任务关键。
在一些方面中,可以支持100MHz的单分量载波带宽。NR资源块可以在0.1ms持续时间内跨越具有60或120千赫兹(kHz)的子载波带宽的12个子载波。每个无线帧可以包括40个时隙并且可以具有10毫秒(ms)的长度。因此,每个时隙可以具有0.25ms的长度。每个时隙可以指示用于数据传输的链路方向(例如,DL或UL),并且可以动态地切换用于每个时隙的链路方向。每个时隙可以包括DL/UL数据以及DL/UL控制数据。
可以支持波束成形并且可以动态地配置波束方向。也可以支持利用预编码的MIMO传输。DL中的MIMO配置可以支持多达8个发射天线,其中多层DL传输多达8个流并且每个UE多达2个流。可以支持在每个UE多达2个流的情况下的多层传输。可以支持具有多达8个服务小区的多个小区的聚合。替代地,NR可以支持除了基于OFDM的接口以外的不同的空中接口。NR网络可以包括诸如中央单元或分布式单元之类的实体。
如上所指出的,图4是作为示例来提供的。其它示例可以不同于关于图4所描述的示例。
图5示出了根据本公开内容的各方面的分布式RAN 500的示例逻辑架构。5G接入节点506可以包括接入节点控制器(ANC)502。ANC可以是分布式RAN 500的中央单元(CU)。到下一代核心网(NG-CN)504的回程接口可以在ANC处终止。到相邻的下一代接入节点(NG-AN)的回程接口可以在ANC处终止。ANC可以包括一个或多个TRP 508(其也可以被称为BS、NR BS、节点B、5G NB、AP、gNB或某种其它术语)。如上所述,TRP可以与“小区”可互换地使用。
TRP 508可以是分布式单元(DU)。TRP可以连接到一个ANC(ANC 502)或一个以上的ANC(未示出)。例如,对于RAN共享、无线电作为服务(RaaS)和特定于服务的AND部署,可以将TRP连接到一个以上的ANC。TRP可以包括一个或多个天线端口。TRP可以被配置为单独地(例如,动态选择)或联合地(例如,联合传输)向UE提供业务。
RAN 500的本地架构可以用于示出前传定义。该架构可以被定义成支持跨越不同部署类型的前传解决方案。例如,该架构可以是至少部分地基于发送网络能力(例如,带宽、时延和/或抖动)的。
该架构可以与LTE共享特征和/或组件。根据各方面,下一代AN(NG-AN)510可以支持与NR的双连接。NG-AN可以共享针对LTE和NR的公共前传。
该架构可以实现TRP 508之间和当中的协作。例如,可以经由ANC 502在TRP内和/或跨越TRP预先设置协作。根据各方面,可以不需要/不存在TRP间接口。
根据各方面,拆分逻辑功能的动态配置可以存在于RAN 500的架构中。可以将分组数据汇聚协议(PDCP)、无线链路控制(RLC)、介质访问控制(MAC)协议自适应地放置在ANC或TRP处。
根据各个方面,BS可以包括中央单元(CU)(例如,ANC 502)和/或一个或多个分布式单元(例如,一个或多个TRP 508)。
如上所指出的,图5是作为示例来提供的。其它示例可以不同于关于图5所描述的示例。
图6示出了根据本公开内容的各方面的分布式RAN 600的示例物理架构。集中式核心网络单元(C-CU)602可以主管核心网络功能。C-CU可以是中央地部署的。C-CU功能可以被卸载(例如,至高级无线服务(AWS))以致力于处理峰值容量。
集中式RAN单元(C-RU)604可以主管一个或多个ANC功能。可选地,C-RU可以本地地主管核心网络功能。C-RU可以具有分布式部署。C-RU可以更接近网络边缘。
分布式单元(DU)606可以主管一个或多个TRP。DU可以位于具有射频(RF)功能的网络的边缘处。
如上所指出的,图6是作为示例来提供的。其它示例可以不同于关于图6所描述的示例。
在一些通信系统(诸如NR)中,时隙可以被划分为多个子时隙。例如,上行链路时隙可以包括多个子时隙,UE可以在子时隙中发送上行链路传输,诸如物理上行链路控制信道(PUCCH)传输、物理上行链路共享信道(PUSCH)传输等。可以在子时隙的边界内调度PUCCH资源。然而,在子时隙的边界内调度PUCCH资源可能限制一些PUCCH资源长度或PUCCH资源格式的使用。相反,可以跨越子时隙边界来调度PUCCH资源。然而,跨越子时隙边界来调度PUCCH资源可能导致PUCCH资源跨越时隙边界,这可能对网络性能产生负面影响。
本文描述的一些方面实现了改进的PUCCH资源配置。例如,BS和UE可以被配置为使得UE发送不跨越时隙边界的PUCCH传输。相反,当UE确定用于PUCCH传输的PUCCH资源跨越时隙边界时,UE可以调整PUCCH传输以确保PUCCH传输不跨越时隙边界。此外,当UE确定用于PUCCH重复的PUCCH资源与另一上行链路传输冲突时,UE可以选择性地修改PUCCH资源。以这种方式,UE在子时隙资源配置部署中避免上行链路传输的跨时隙传输、与其它传输的过度干扰等。
图7是示出根据本公开内容的各个方面的PUCCH资源配置的示例700的图。如图7所示,示例700包括BS 110和UE 120。
如在图7中并且通过附图标记710进一步所示,UE 120可以从BS 110接收资源指示。例如,UE 120可以接收标识PUCCH资源配置的资源指示,该PUCCH资源配置包括用于在特定时隙和/或子时隙中传输PUCCH的多个子时隙PUCCH资源。在一些方面中,BS 110可以将PUCCH资源配置为使得PUCCH的传输不跨越时隙边界。例如,关于PUCCH资源0,在子时隙0中的第一PUCCH资源0或子时隙0中的第二PUCCH资源0不跨越时隙n的时隙边界的情况下,UE120可以被指示使用第一PUCCH资源0和第二PUCCH资源0进行发送。
在一些方面中,BS 110可以将PUCCH资源配置为使得PUCCH的传输确实跨越时隙边界。例如,关于PUCCH资源1,UE 120可以被指示在时隙n的子时隙0和子时隙1两者中使用第一PUCCH资源进行发送,并且在时隙n的子时隙1和下一时隙的下一子时隙两者中使用第二PUCCH资源进行发送。在这种情况下,UE 120可以调整子时隙PUCCH资源。例如,UE 120可以缩短子时隙PUCCH资源。在这种情况下,当UE 120被指示使用被配置有特定格式(例如,PUCCH格式3)和6个符号的PUCCH资源1时,UE 120可以确定符号中的2个符号跨越时隙边界。因此,UE 120可以丢弃跨越时隙边界的2个符号。在这种情况下,UE 120可以发送具有相同PUCCH格式(例如,PUCCH格式3)但具有减少的符号数量的PUCCH重复,以避免跨越时隙边界发送PUCCH。在一些方面中,UE 120可以至少部分地基于确定可使用在调整PUCCH资源之后剩余的符号数量来发送PUCCH传输,来丢弃PUCCH传输的一部分。
在一些方面中,UE 120可以丢弃整个PUCCH传输。例如,UE 120可以确定用于发送PUCCH的最小符号数量小于用于不跨越时隙边界的特定PUCCH资源格式的PUCCH资源的符号数量,并且可以确定丢弃整个PUCCH传输。在一些方面中,UE 120可以与调整PUCCH资源相结合地确定用于发送PUCCH传输的资源块。例如,UE 120可以至少部分地基于PUCCH传输的有效载荷的大小、PUCCH传输的PUCCH格式、最大编码速率、在调整PUCCH资源之后的符号数量等来确定用于PUCCH传输的资源块数量。
在一些方面中,UE 120可以确定包括要在其中发送PUCCH的子时隙的时隙的时隙格式。例如,UE 120可以接收由DCI格式类型2指示的动态时隙格式指示符(SFI),该DCI格式类型2指示UE 120要在其中发送PUCCH的符号被指派为上行链路符号或灵活符号。在一些方面中,UE 120可以确定UE 120要在其中发送PUCCH的一个或多个符号被指派为下行链路符号(例如,至少部分地基于由小区特定信令或RRC信令指示的半静态SFI)。在这种情况下,UE120可以丢弃一个或多个符号,并且可以确定在包括一个或多个符号的子时隙期间不发送PUCCH。替代地,UE 120可以丢弃一个或多个符号,并且可以确定缩短PUCCH以避免一个或多个符号(例如,缩短到未被指派为下行链路符号的连续符号数量)。在这种情况下,UE 120可以发送经缩短的PUCCH。
如在图7中并且通过附图标记720进一步所示,UE 120可以使用资源指示中指示的一个或多个PUCCH资源来发送一个或多个PUCCH传输。例如,UE 120可以至少部分地基于PUCCH传输未被调度为跨越子时隙边界、至少部分地基于缩短PUCCH传输以避免跨越子时隙边界等等来发送不跨越子时隙边界的PUCCH传输。
如上所指出的,图7是作为示例来提供的。其它示例可以不同于关于图7所描述的示例。
图8是示出根据本公开内容的各个方面的PUCCH资源配置的示例800的图。如图8所示,示例800包括BS 110和UE 120。
如在图8中并且通过附图标记810进一步所示,UE 120可以从BS 110接收PUCCH配置消息,该PUCCH配置消息标识PUCCH资源配置、要发送的PUCCH重复数量、要开始PUCCH传输的重复的传输的PUCCH资源等。例如,UE 120可以接收下行链路控制信息(DCI)消息,该DCI消息包括显式地标识要发送的PUCCH重复数量的字段。另外或替代地,UE 120可以至少部分地基于PUCCH配置消息指示对例如特定PUCCH资源集中的特定PUCCH资源的选择来隐式地推导要发送的PUCCH重复数量K。在一些方面中,重复数量是基于每PUCCH资源、基于每PUCCH资源集等半静态地配置的。
在一些方面中,UE 120可以确定PUCCH资源的调度。例如,UE 120可以确定针对使用由BS 110配置的特定PUCCH资源发送的PUCCH传输将发生冲突。在这种情况下,PUCCH传输可能被调度为与(例如,与不同于PUCCH传输的码本相关联的)另一PUCCH、PUSCH传输等冲突。
如在图8中并且通过附图标记820进一步所示,UE 120可以至少部分地基于PUCCH配置消息来发送PUCCH的多个重复。例如,UE 120可以在第一子时隙中的第一PUCCH资源中发送第一PUCCH重复,在第二子时隙中的第二PUCCH资源中发送第二PUCCH重复,等等。在一些方面中,UE 120可以在与特定数量的PUCCH重复相对应的连续时隙集合中重用相同的PUCCH资源来发送特定数量的PUCCH重复。例如,如图所示,UE 120可以在第一子时隙、第二子时隙和第三子时隙的PUCCH资源0中发送PUCCH。
在一些方面中,UE 120可以确定PUCCH与另一传输冲突,并且可以执行冲突动作以修改子时隙PUCCH资源。例如,UE 120可以确定PUCCH资源0与PUSCH冲突。在这种情况下,UE120可以将要使用PUCCH资源0发送的PUCCH的HARQ-ACK复用到PUSCH上。在一些方面中,UE120可以在将HARQ-ACK复用到PUSCH上之后,继续在后续子时隙中将PUCCH资源0用于PUCCH传输的后续重复。
另外或替代地,UE 120可以确定PUCCH资源0与另一PUCCH冲突。例如,如图所示,UE120可以确定PUCCH资源0与正在传送上行链路控制信息(例如,针对另一码本的HARQ-ACK、寻呼信道状态信息(P-CSI)消息等)的PUCCH冲突。在这种情况下,UE 120可以在第一子时隙中复用HARQ-ACK比特以生成PUCCH重复和另一码本的另一PUCCH的聚合有效载荷,并且可以在第一子时隙中发送聚合有效载荷。在后续时隙中,UE 120可以继续将PUCCH资源0用于PUCCH的重复。
如上所指出的,图8是作为示例来提供的。其它示例可以不同于关于图8所描述的示例。
图9是示出根据本公开内容的各个方面的PUCCH资源配置的示例900的图。如图9所示,示例900包括BS 110和UE 120。
如在图9中并且通过附图标记910进一步所示,UE 120可以接收用于PUCCH传输的资源指示。例如,UE 120可以接收为X个符号(例如,2个符号)的第一子时隙长度配置第一类型的PUCCH资源和/或为Y个符号(例如,7个符号)的第二子时隙长度配置第二类型的PUCCH资源的信息。在一些方面中,UE 120可以从第一类型的PUCCH资源或第二类型的PUCCH资源中选择特定PUCCH资源配置。例如,UE 120可以至少部分地基于用于传输的有效载荷、资源指示符(例如,PUCCH资源指示符)、控制信道元素(CCE)索引、子时隙长度或子时隙粒度等来选择特定PUCCH资源配置。
如在图9中并且通过附图标记920进一步所示,UE 120可以根据资源指示来发送PUCCH传输。例如,UE 120可以发送特定长度的PUCCH,从而使能够适应变化的信道条件。在一些方面中,UE 120可以确定要在其中发送PUCCH的子时隙。例如,至少部分地基于PUCCH的子时隙长度(例如,至少部分地基于PUCCH资源的类型)和/或子时隙粒度,UE 120可以确定子时隙K1(未示出)参数。例如,每个PUCCH资源可以与特定子时隙持续时间相关联。因此,当选择特定PUCCH资源时(例如,至少部分地基于有效载荷、PUCCH资源指示符(PRI)、控制信道元素(CCE)索引等),UE 120可以确定特定PUCCH资源的RRC配置,并且从而确定特定PUCCH资源的K1值。
在一些方面中,UE 120可以至少部分地基于子时隙K1参数和在其处发送PDSCH的子时隙位置来确定要在其处发送PUCCH的子时隙。另外或替代地,UE 120可以至少部分地基于下行链路控制信息(DCI)指示来确定码本和/或子时隙长度。例如,对于2个以上的码本,一些码本的PUCCH传输可能具有共同优先级。例如,具有不同子时隙长度的3个码本可以针对eMBB类型的应用被配置为具有时隙级别K1的码本-1,针对URLLC类型的应用被配置为具有2符号子时隙持续时间的码本-2,以及针对URLLC类型的应用被配置为具有7符号子时隙持续时间的码本-3。在这种情况下,可以使用2比特指示,例如,针对码本-1使用00,针对码本-2使用01,以及针对码本-3使用10。此外,UE 120可以基于接收到的RRC信号来确定码本-2和码本-3具有相同的优先级。因此,当与码本-2和码本-3相关联的PUCCH资源冲突时,UE120可以至少部分地基于码本具有共同优先级来执行动作。例如,在冲突的情况下,UE 120可以对码本的HARQ-ACK反馈进行复用,而不是丢弃码本之一的HARQ-ACK反馈。
如上所指出的,图9是作为示例来提供的。其它示例可以不同于关于图9所描述的示例。
图10是示出根据本公开内容的各个方面的例如由UE执行的示例过程1000的图。示例过程1000是其中UE(例如,UE 120等)执行与PUCCH资源配置相关联的操作的示例。
如图10所示,在一些方面中,过程1000可以包括:接收包括用于UE的多个子时隙PUCCH资源的PUCCH资源配置(框1010)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以接收包括用于UE的多个子时隙PUCCH资源的PUCCH资源配置,如上所述。
如图10进一步所示,在一些方面中,过程1000可以包括:确定多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界(框1020)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以确定多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界,如上所述。
如图10进一步所示,在一些方面中,过程1000可以包括:至少部分地基于确定子时隙PUCCH资源跨越时隙边界来调整上行链路传输(框1030)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以至少部分地基于确定子时隙PUCCH资源跨越时隙边界来调整上行链路传输,如上所述。
过程1000可以包括额外的方面,诸如在下文和/或结合本文在别处描述的一个或多个其它过程描述的任何单个方面或各方面的任何组合。
在第一方面中,调整上行链路传输包括:丢弃上行链路传输的至少一部分,使得上行链路传输不跨越时隙边界。
在第二方面中,单独地或与第一方面相结合,调整上行链路传输包括:修改与多个子时隙PUCCH资源相关联的特定上行链路控制格式的上行链路符号数量,使得上行链路传输不跨越时隙边界;以及至少部分地基于修改上行链路符号数量,以特定上行链路控制格式在子时隙PUCCH资源上发送上行链路传输。
在第三方面中,单独地或与第一方面和第二方面中的一个或多个方面相结合,修改上行链路符号数量包括:确定上行链路传输可在大于或等于与特定上行链路控制格式相关联的最小符号数量的特定上行链路符号数量上发送;以及至少部分地基于特定上行链路符号数量来减少上行链路符号数量。
在第四方面中,单独地或与第一方面至第三方面中的一个或多个方面相结合,修改上行链路符号数量包括至少部分地基于以下各项中的至少一项来选择用于上行链路传输的资源块(RB)数量:上行链路传输的有效载荷大小、最大编码速率、或修改上行链路符号数量之后的上行链路符号数量。
在第五方面中,单独地或与第一方面至第四方面中的一个或多个方面相结合,发送上行链路传输包括:在连续子时隙中发送PUCCH的多个重复,使得多个重复中的每个重复不跨越时隙边界。
虽然图10示出了过程1000的示例框,但是在一些方面中,过程1000可以包括与图10中描绘的那些框相比另外的框、更少的框、不同的框或者以不同方式布置的框。另外或替代地,过程1000的框中的两个或更多个框可以并行地执行。
图11是示出根据本公开内容的各个方面的例如由UE执行的示例过程1100的图。示例过程1100是其中UE(例如,UE 120等)执行与PUCCH资源配置相关联的操作的示例。
如图11所示,在一些方面中,过程1100可以包括:接收一个或多个配置消息,该一个或多个配置消息标识多个子时隙PUCCH资源以及对多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示(框1110)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以接收一个或多个配置消息,该一个或多个配置消息标识多个子时隙PUCCH资源以及对多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示,如上所述。
如图11进一步所示,在一些方面中,过程1100可以包括:至少部分地基于一个或多个配置消息来确定用于在多个子时隙PUCCH资源中传输的PUCCH重复数量(框1120)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以至少部分地基于一个或多个配置消息来确定用于在多个子时隙PUCCH资源中传输的PUCCH重复数量,如上所述。
如图11进一步所示,在一些方面中,过程1100可以包括:至少部分地基于PUCCH重复数量和一个或多个其它传输的调度来确定是否修改特定子时隙PUCCH资源(框1130)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以至少部分地基于PUCCH重复数量和一个或多个其它传输的调度来确定是否修改特定子时隙PUCCH资源,如上所述。
如图11进一步所示,在一些方面中,过程1100可以包括:至少部分地基于确定是否修改特定子时隙PUCCH资源的结果来选择性地发送上行链路控制信息(UCI)(框1140)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以至少部分地基于确定是否修改特定子时隙PUCCH资源的结果来选择性地发送UCI,如上所述。
过程1100可以包括额外的方面,诸如在下文和/或结合本文在别处描述的一个或多个其它过程描述的任何单个方面或各方面的任何组合。
在第一方面中,特定子时隙PUCCH资源是多个子时隙PUCCH资源中的在顺序上第一的子时隙PUCCH资源。
在第二方面中,单独地或与第一方面相结合,UCI包括混合自动重传请求(HARQ)确认(ACK)反馈。
在第三方面中,单独地或与第一方面和第二方面中的一个或多个方面相结合,确定是否修改特定子时隙PUCCH资源包括:确定在特定子时隙PUCCH资源上与物理上行链路共享信道(PUSCH)的冲突;至少部分地基于确定冲突来在PUSCH上复用HARQ-ACK反馈。
在第四方面中,单独地或与第一方面至第三方面中的一个或多个方面相结合,PUCCH重复与特定码本相关联。在一些方面中,确定是否修改特定子时隙PUCCH资源包括:确定在特定子时隙PUCCH资源上和与第二码本相关联的另一PUCCH的冲突;以及至少部分地基于确定冲突来将HARQ-ACK反馈与另一PUCCH复用。在一些方面中,选择性地发送UCI包括:至少部分地基于将HARQ-ACK反馈与另一PUCCH复用来发送PUCCH重复和另一PUCCH的聚合有效载荷。
在第五方面中,单独地或与第一方面至第四方面中的一个或多个方面相结合,确定是否修改特定子时隙PUCCH资源包括:确定特定子时隙PUCCH资源的至少一个符号被配置为时隙中的下行链路符号。在一些方面中,选择性地发送UCI包括:至少部分地基于在PUSCH上复用HARQ-ACK反馈来在特定子时隙PUCCH资源上丢弃UCI的传输。
在第六方面中,单独地或与第一方面至第五方面中的一个或多个方面相结合,一个或多个配置消息中的至少一个配置消息是下行链路控制信息(DCI)消息或无线电资源控制(RRC)消息。
在第七方面中,单独地或与第一方面至第六方面中的一个或多个方面相结合,过程1100包括:确定子时隙PUCCH资源跨越时隙边界;以及至少部分地基于确定特定子时隙PUCCH资源跨越时隙边界来调整UCI。在一些方面中,选择性地发送UCI包括:至少部分地基于调整UCI来选择性地发送UCI。
虽然图11示出了过程1100的示例框,但是在一些方面中,过程1100可以包括与图11中描绘的那些框相比另外的框、更少的框、不同的框或者以不同方式布置的框。另外或替代地,过程1100的框中的两个或更多个框可以并行地执行。
图12是示出根据本公开内容的各个方面的例如由UE执行的示例过程1200的图。示例过程1200是其中UE(例如,UE 120等)执行与PUCCH资源配置相关联的操作的示例。
如图12所示,在一些方面中,过程1200可以包括:接收多个PUCCH资源配置,其中,多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置(框1210)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以接收多个PUCCH资源配置,如上所述。在一些方面中,多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置。
如图12进一步所示,在一些方面中,过程1200可以包括:在使用第一PUCCH资源配置操作时,识别门限信道条件的发生(框1220)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以在使用第一PUCCH资源配置操作时,识别门限信道条件的发生,如上所述。
如图12进一步所示,在一些方面中,过程1200可以包括:至少部分地基于识别门限信道条件的发生来从第一PUCCH资源配置切换到第二PUCCH资源配置(框1230)。例如,UE(例如,使用接收处理器258、发送处理器264、控制器/处理器280、存储器282等)可以至少部分地基于识别门限信道条件的发生来从第一PUCCH资源配置切换到第二PUCCH资源配置,如上所述。
过程1200可以包括额外的方面,诸如在下文和/或结合本文在别处描述的一个或多个其它过程描述的任何单个方面或各方面的任何组合。
在第一方面中,多个PUCCH资源配置中的至少一个PUCCH资源是基于每时隙来配置的。
在第二方面中,单独地或与第一方面相结合,第一长度PUCCH是第一子时隙长度,并且第二长度PUCCH是第二子时隙长度。
在第三方面中,单独地或与第一方面和第二方面中的一个或多个方面相结合,过程1200包括:至少部分地基于有效载荷、PUCCH资源指示符或控制信道元素索引中的至少一项来选择第一PUCCH资源配置。
在第四方面中,单独地或与第一方面至第三方面中的一个或多个方面相结合,子时隙参数是至少部分地基于多个PUCCH资源配置中的所选PUCCH资源的。
在第五方面中,单独地或与第一方面至第四方面中的一个或多个方面相结合,过程1200包括:至少部分地基于切换到第二PUCCH资源配置来发送PUCCH通信。
虽然图12示出了过程1200的示例框,但是在一些方面中,过程1200可以包括与图12中描绘的那些框相比另外的框、更少的框、不同的框或者以不同方式布置的框。另外或替代地,过程1200的框中的两个或更多个框可以并行地执行。
前述公开内容提供了说明和描述,但是并不旨在是详尽的或者将各方面限制为所公开的精确形式。按照上文公开内容,可以进行修改和变型,或者可以从对各方面的实践中获取修改和变型。
如本文所使用,术语“组件”旨在广义地解释为硬件、固件、和/或硬件和软件的组合。如本文所使用的,处理器是用硬件、固件、和/或硬件和软件的组合来实现的。
如本文所使用的,取决于上下文,满足门限可以指代值大于门限、大于或等于门限、小于门限、小于或等于门限、等于门限、不等于门限等。
将显而易见的是,本文描述的系统和/或方法可以用不同形式的硬件、固件、和/或硬件和软件的组合来实现。用于实现这些系统和/或方法的实际的专门的控制硬件或软件代码不是对各方面进行限制。因此,本文在不引用特定的软件代码的情况下描述了系统和/或方法的操作和行为,要理解的是,软件和硬件可以被设计为至少部分地基于本文的描述来实现系统和/或方法。
即使在权利要求书中记载了和/或在说明书中公开了特征的特定组合,这些组合也不旨在限制各个方面的公开内容。事实上,可以以没有在权利要求书中具体记载和/或在说明书中具体公开的方式来组合这些特征中的许多特征。虽然下文列出的每个从属权利要求可以仅直接依赖于一个权利要求,但是各个方面的公开内容包括每个从属权利要求与权利要求集合中的每个其它权利要求的组合。提及项目列表“中的至少一个”的短语指代那些项目的任意组合,包括单个成员。举例而言,“a、b或c中的至少一个”旨在涵盖a、b、c、a-b、a-c、b-c和a-b-c、以及与相同元素的倍数的任意组合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其它排序)。
本文使用的元素、动作或指令中没有一个应当被解释为关键或必要的,除非明确描述为如此。此外,如本文所使用的,冠词“一(a)”和“一个(an)”旨在包括一个或多个项目,并且可以与“一个或多个”互换使用。此外,如本文所使用的,术语“集合”和“群组”旨在包括一个或多个项目(例如,相关项目、无关项目、相关项目和无关项目的组合等),并且可以与“一个或多个”互换使用。在仅预期一个项目的情况下,使用术语“仅一个”或类似语言。此外,如本文所使用的,短语“具有(has)”、“具有(have)”、“具有(having)”和/或类似术语旨在是开放式术语。此外,除非另有明确声明,否则短语“基于”旨在意指“至少部分地基于”。

Claims (26)

1.一种由用户设备(UE)执行的无线通信的方法,包括:
接收包括用于所述UE的多个子时隙物理上行链路控制信道(PUCCH)资源的PUCCH资源配置;
确定所述多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界;以及
至少部分地基于确定所述子时隙PUCCH资源跨越所述时隙边界来调整所述上行链路传输。
2.根据权利要求1所述的方法,其中,调整所述上行链路传输包括:
丢弃所述上行链路传输的至少一部分,使得所述上行链路传输不跨越所述时隙边界。
3.根据权利要求1所述的方法,其中,调整所述上行链路传输包括:
修改与所述多个子时隙PUCCH资源相关联的特定上行链路控制格式的上行链路符号数量,使得所述上行链路传输不跨越所述时隙边界;以及
至少部分地基于修改所述上行链路符号数量,以所述特定上行链路控制格式在所述子时隙PUCCH资源上发送所述上行链路传输。
4.根据权利要求3所述的方法,其中,修改所述上行链路符号数量包括:
确定所述上行链路传输可在大于或等于与所述特定上行链路控制格式相关联的最小符号数量的特定上行链路符号数量上发送;以及
至少部分地基于所述特定上行链路符号数量来减少所述上行链路符号数量。
5.根据权利要求3所述的方法,其中,修改所述上行链路符号数量包括:
至少部分地基于以下各项中的至少一项来选择用于所述上行链路传输的资源块(RB)数量:所述上行链路传输的有效载荷大小、最大编码速率、或在修改所述上行链路符号数量之后的所述上行链路符号数量。
6.根据权利要求1所述的方法,其中,发送所述上行链路传输包括:
在连续子时隙中发送所述PUCCH的多个重复,使得所述多个重复中的每个重复不跨越时隙边界。
7.一种由用户设备(UE)执行的无线通信的方法,包括:
接收一个或多个配置消息,所述一个或多个配置消息标识多个子时隙物理上行链路控制信道(PUCCH)资源以及对所述多个子时隙PUCCH资源中的要用于PUCCH重复的特定子时隙PUCCH资源的指示;
至少部分地基于所述一个或多个配置消息来确定用于在所述多个子时隙PUCCH资源中传输的PUCCH重复数量;
至少部分地基于所述PUCCH重复数量和一个或多个其它传输的调度来确定是否修改所述特定子时隙PUCCH资源;以及
至少部分地基于确定是否修改所述特定子时隙PUCCH资源的结果来选择性地发送上行链路控制信息(UCI)。
8.根据权利要求7所述的方法,其中,所述特定子时隙PUCCH资源是所述多个子时隙PUCCH资源中的在顺序上第一的子时隙PUCCH资源。
9.根据权利要求7所述的方法,其中,所述UCI包括混合自动重传请求(HARQ)确认(ACK)反馈。
10.根据权利要求9所述的方法,其中,确定是否修改所述特定子时隙PUCCH资源包括:
确定在所述特定子时隙PUCCH资源上与物理上行链路共享信道(PUSCH)的冲突;
至少部分地基于确定所述冲突来在所述PUSCH上复用所述HARQ-ACK反馈;并且
其中,选择性地发送所述UCI包括:
至少部分地基于在所述PUSCH上复用所述HARQ-ACK反馈来在所述特定子时隙PUCCH资源上丢弃所述UCI的传输。
11.根据权利要求9所述的方法,其中,所述PUCCH重复与特定码本相关联;并且
其中,确定是否修改所述特定子时隙PUCCH资源包括:
确定在所述特定子时隙PUCCH资源上与同第二码本相关联的另一PUCCH的冲突;
至少部分地基于确定所述冲突来将所述HARQ-ACK反馈与所述另一PUCCH复用;并且
其中,选择性地发送所述UCI包括:
至少部分地基于将所述HARQ-ACK反馈与所述另一PUCCH复用来发送所述PUCCH重复和所述另一PUCCH的聚合有效载荷。
12.根据权利要求7所述的方法,其中,确定是否修改所述特定子时隙PUCCH资源包括:
确定所述特定子时隙PUCCH资源的至少一个符号被配置为时隙中的下行链路符号;并且
其中,选择性地发送所述UCI包括:
至少部分地基于确定所述特定子时隙PUCCH资源的所述至少一个符号被配置为时隙中的下行链路符号来在所述特定子时隙PUCCH资源上丢弃所述UCI的传输。
13.根据权利要求7所述的方法,其中,所述一个或多个配置消息中的至少一个配置消息是下行链路控制信息(DCI)消息或无线电资源控制(RRC)消息。
14.根据权利要求7所述的方法,还包括:
确定子时隙PUCCH资源跨越时隙边界;
至少部分地基于确定所述特定子时隙PUCCH资源跨越所述时隙边界来调整所述UCI;并且
其中,选择性地发送所述UCI包括:
至少部分地基于调整所述UCI来选择性地发送所述UCI。
15.一种由用户设备(UE)执行的无线通信的方法,包括:
接收多个物理上行链路控制信道(PUCCH)资源配置,
其中,所述多个PUCCH资源配置包括用于第一长度PUCCH的第一PUCCH资源配置和用于第二长度PUCCH的第二PUCCH资源配置;在使用所述第一PUCCH资源配置操作时,识别门限信道条件的发生;以及
至少部分地基于识别所述门限信道条件的所述发生来从所述第一PUCCH资源配置切换到所述第二PUCCH资源配置。
16.根据权利要求15所述的方法,其中,所述多个PUCCH资源配置中的至少一个PUCCH资源是基于每时隙来配置的。
17.根据权利要求15所述的方法,其中,所述第一长度PUCCH是第一子时隙长度,并且所述第二长度PUCCH是第二子时隙长度。
18.根据权利要求15所述的方法,还包括:
至少部分地基于有效载荷、PUCCH资源指示符或控制信道元素索引中的至少一项来选择所述第一PUCCH资源配置。
19.根据权利要求15所述的方法,其中,子时隙参数是至少部分地基于所述多个PUCCH资源配置中的所选PUCCH资源的。
20.根据权利要求15所述的方法,还包括:
至少部分地基于切换到所述第二PUCCH资源配置来发送PUCCH通信。
21.一种用于无线通信的用户设备,包括:
存储器;以及
耦合到所述存储器的一个或多个处理器,所述存储器和所述一个或多个处理器被配置为:
接收包括用于所述UE的多个子时隙物理上行链路控制信道(PUCCH)资源的PUCCH资源配置;
确定所述多个子时隙PUCCH资源中的用于与上行链路传输一起使用的子时隙PUCCH资源跨越时隙边界;以及
至少部分地基于确定所述子时隙PUCCH资源跨越所述时隙边界来调整所述上行链路传输。
22.根据权利要求21所述的用户设备,其中,当调整所述上行链路传输时,所述存储器和所述一个或多个处理器被配置为:
丢弃所述上行链路传输的至少一部分,使得所述上行链路传输不跨越所述时隙边界。
23.根据权利要求21所述的用户设备,其中,当调整所述上行链路传输时,所述存储器和所述一个或多个处理器被配置为:
修改与所述多个子时隙PUCCH资源相关联的特定上行链路控制格式的上行链路符号数量,使得所述上行链路传输不跨越所述时隙边界;以及
至少部分地基于修改所述上行链路符号数量,以所述特定上行链路控制格式在所述子时隙PUCCH资源上发送所述上行链路传输。
24.根据权利要求23所述的用户设备,其中,当修改所述上行链路符号数量时,所述存储器和所述一个或多个处理器被配置为:
确定所述上行链路传输可在大于或等于与所述特定上行链路控制格式相关联的最小符号数量的特定上行链路符号数量上发送;以及
至少部分地基于所述特定上行链路符号数量来减少所述上行链路符号数量。
25.根据权利要求23所述的用户设备,其中,当修改所述上行链路符号数量时,所述存储器和所述一个或多个处理器被配置为:
至少部分地基于以下各项中的至少一项来选择用于所述上行链路传输的资源块(RB)数量:所述上行链路传输的有效载荷大小、最大编码速率、或在修改所述上行链路符号数量之后的所述上行链路符号数量。
26.根据权利要求21所述的用户设备,其中,当发送所述上行链路传输时,所述存储器和所述一个或多个处理器被配置为:
在连续子时隙中发送所述PUCCH的多个重复,使得所述多个重复中的每个重复不跨越时隙边界。
CN202080031740.5A 2019-05-03 2020-05-01 用于物理上行链路控制信道资源配置的方法和装置 Active CN113748734B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962842976P 2019-05-03 2019-05-03
US62/842,976 2019-05-03
US16/863,674 US20200351891A1 (en) 2019-05-03 2020-04-30 Physical uplink control channel resource configuration
US16/863,674 2020-04-30
PCT/US2020/030965 WO2020227070A2 (en) 2019-05-03 2020-05-01 Physical uplink control channel resource configuration

Publications (2)

Publication Number Publication Date
CN113748734A true CN113748734A (zh) 2021-12-03
CN113748734B CN113748734B (zh) 2024-04-26

Family

ID=73016911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080031740.5A Active CN113748734B (zh) 2019-05-03 2020-05-01 用于物理上行链路控制信道资源配置的方法和装置

Country Status (4)

Country Link
US (1) US20200351891A1 (zh)
EP (1) EP3963810A2 (zh)
CN (1) CN113748734B (zh)
WO (1) WO2020227070A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134927A (ko) * 2019-05-24 2020-12-02 삼성전자주식회사 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
US11758564B2 (en) * 2019-09-09 2023-09-12 Samsung Electronics Co., Ltd. Latency reduction for flexible duplex communication systems
US11716761B2 (en) * 2020-03-26 2023-08-01 Electronics And Telecommunications Research Institute Uplink transmission method for ultra-reliability and low-latency communication, and apparatus therefor
CN116097864A (zh) * 2020-08-06 2023-05-09 苹果公司 用于利用多trp的pucch操作的技术
KR20230058489A (ko) * 2020-10-02 2023-05-03 애플 인크. Pucch 송신의 신뢰성을 증가시키기 위한 pucch 반복
CN112637958B (zh) * 2020-12-30 2024-02-02 京信网络系统股份有限公司 资源调度方法、装置、基站、用户设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018022560A1 (en) * 2016-07-26 2018-02-01 Intel IP Corporation Data communication over shortened tti (transmission time interval)
CN108713304A (zh) * 2016-02-12 2018-10-26 高通股份有限公司 针对基于时隙的传输时间间隔(tti)的上行链路信道设计

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880895B2 (en) * 2018-05-27 2020-12-29 Brian Gordaychik Variable length downlink control information formats for next generation radio technologies
US11382076B2 (en) * 2018-12-24 2022-07-05 FG Innovation Company Limited Physical uplink control channel repetition in next generation wireless networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108713304A (zh) * 2016-02-12 2018-10-26 高通股份有限公司 针对基于时隙的传输时间间隔(tti)的上行链路信道设计
WO2018022560A1 (en) * 2016-07-26 2018-02-01 Intel IP Corporation Data communication over shortened tti (transmission time interval)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"\"R1-1719932 Remaining issues on UL data transmission procedure\"", 3GPP TSG_RAN\\WG1_RL1 *

Also Published As

Publication number Publication date
WO2020227070A2 (en) 2020-11-12
EP3963810A2 (en) 2022-03-09
WO2020227070A3 (en) 2020-12-17
US20200351891A1 (en) 2020-11-05
CN113748734B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US11350416B2 (en) Physical uplink control channel repetition configuration
US11737084B2 (en) Demodulation reference signal port hopping for grant-free physical uplink shared channel communication
US11950212B2 (en) Timing advance signaling for multi-transmit receive point operation
US10917226B2 (en) Techniques and apparatuses for time division multiplexing for dual-rat communication
US11234253B2 (en) Transmit parameter control
CN113748734B (zh) 用于物理上行链路控制信道资源配置的方法和装置
CN111066268B (zh) 系统信息速率匹配
CN113508617A (zh) 用于有条件切换过程的小区和波束选择
EP3785387A1 (en) Uplink control information payload size
CN111742602A (zh) 免授权上行链路重复期间的授权处理
CN114830573A (zh) 用于跨载波调度的harq反馈报告
CN113412668A (zh) 动态物理上行链路共享信道配置
EP3837784A1 (en) Fractally enhanced kernel polar coding
US11026223B2 (en) Bandwidth part (BWP) selection
CN113678505A (zh) 在基站之间的基于用户设备能力的转换
CN113412666A (zh) 动态物理上行链路共享信道配置
CN111279649B (zh) 用于物理下行链路控制信道下行链路控制信息到搜索空间映射的技术和装置
CN112956262A (zh) 在用户设备处配置聚合等级和物理下行链路控制信道候选
US20220077909A1 (en) Differential reporting mode for amplitude and/or co-phase
US11497053B2 (en) Collision management
CN114303337A (zh) 对半持久性调度时机的解码
CN112956137A (zh) 波束管理信令
US20210028900A1 (en) Tracking reference signal configuration
US20200267719A1 (en) Scheduling request (sr) overlap with a physical uplink shared channel (pusch) transmission
US11259334B2 (en) Code-block-based communication for random access channel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant