CN113740275B - 基于快照式多光谱成像的雨生红球藻虾青素含量检测方法 - Google Patents
基于快照式多光谱成像的雨生红球藻虾青素含量检测方法 Download PDFInfo
- Publication number
- CN113740275B CN113740275B CN202111017735.1A CN202111017735A CN113740275B CN 113740275 B CN113740275 B CN 113740275B CN 202111017735 A CN202111017735 A CN 202111017735A CN 113740275 B CN113740275 B CN 113740275B
- Authority
- CN
- China
- Prior art keywords
- astaxanthin content
- haematococcus pluvialis
- snapshot
- sample
- multispectral imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 title claims abstract description 55
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 title claims abstract description 55
- 229940022405 astaxanthin Drugs 0.000 title claims abstract description 55
- 235000013793 astaxanthin Nutrition 0.000 title claims abstract description 55
- 239000001168 astaxanthin Substances 0.000 title claims abstract description 55
- 241000168517 Haematococcus lacustris Species 0.000 title claims abstract description 34
- 238000000701 chemical imaging Methods 0.000 title claims abstract description 29
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000001228 spectrum Methods 0.000 claims abstract description 20
- 230000003595 spectral effect Effects 0.000 claims description 30
- 241000195493 Cryptophyta Species 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 20
- 238000007781 pre-processing Methods 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 claims description 9
- 230000000007 visual effect Effects 0.000 claims description 9
- 230000003698 anagen phase Effects 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 238000012417 linear regression Methods 0.000 claims description 4
- 238000010238 partial least squares regression Methods 0.000 claims description 4
- 239000005338 frosted glass Substances 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 3
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000008030 elimination Effects 0.000 claims 2
- 238000003379 elimination reaction Methods 0.000 claims 2
- 239000012530 fluid Substances 0.000 claims 1
- 238000003384 imaging method Methods 0.000 abstract description 6
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 238000009776 industrial production Methods 0.000 abstract description 2
- 238000012800 visualization Methods 0.000 abstract description 2
- 239000002028 Biomass Substances 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000000985 reflectance spectrum Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 238000000658 coextraction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000874 microwave-assisted extraction Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 238000002137 ultrasound extraction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种基于快照式多光谱成像的雨生红球藻虾青素含量检测方法。包括以下步骤:1)构建快照式多光谱反射成像系统,由快照式多光谱相机、宽光谱光源、载物台、样品池、支架、遮光罩等组成;2)制作不同生长阶段和浓度的雨生红球藻样本集,通过传统检测法定标样本集生物量和虾青素含量;3)采集雨生红球藻样本光谱图像,进行光谱预处理、样本集划分;4)建立预测模型;5)建立样本可视化模型。本发明可在可见光波段470‑640nm对0.3‑3.0g/L浓度范围内雨生红球藻虾青素进行快速无损检测,在工业生产中实现雨生红球藻虾青素的动态监测。
Description
技术领域
本发明涉及微藻色素含量检测技术领域,尤其涉及一种基于快照式多光谱成像的雨生红球藻虾青素含量检测方法。
背景技术
虾青素是类胡萝卜生物合成中最高级别的产物,具有最强的抗氧化性,抗癌、增强机体免疫力、预防心血管疾病等生理活性。藻类中的雨生红球藻虾青素含量高达干重的5%,雨生红球藻在生产虾青素具有广阔的应用前景。雨生红球藻虾青素含量的传统检测方法一般通过超声波提取法、微波萃取法、CO2超临界萃取法等进行提取,再通过分光光度法、高效液相色谱法和液质联用色谱法等进行测量,整个检测过程费时费力,无法满足快速检测的需求。光谱分析技术具有检测速度快,分析效率高,采集距离远,无损检测等特点。可见/近红外光谱成像系统采样量大,光谱的信噪比和准确性容易受采样环境影响,同时其还缺乏图像信息。高光谱成像采集系统虽然可以一次性获取样品的光谱信息和图像信息,但高光谱成像系统体积大,不易移动,同时具有成本高,成像和数据处理速度慢等不足。
快照式多光谱成像技术的成像方式无需扫描,能够一次性获取目标包括一维光谱信息在内的全部信息。该类仪器系统内部不存在移动部件或其他动态调节组件,抗干扰能力强,成像速度和数据处理速度快,并且不会破坏样品,可以达到实时监测的目的。
发明内容
本发明的目的在于提供一种基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,通过快照式多光谱成像技术结合化学计量学方法建立虾青素含量预测模型,并结合图像信息,实现监测可视化,解决了现有检测方法操作相对繁琐、耗时等问题。
为实现上述目的,本发明的技术方案是:一种基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,包括以下步骤:
(1)取指数生长期的雨生红球藻样本,制作不同浓度梯度的藻液样本,将其分为两组,一组用于高效液相色谱法检测虾青素含量,一组用于反射光谱的采集;
(2)采集藻液样本在快照式多光谱成像系统下的光谱反射率值;测出藻液样本对应的虾青素含量;
(3)选取藻液样本的1000-2000个像素点作为感兴趣区域,并提取该感兴趣区域的平均光谱曲线;
(4)将步骤(2)中获得的光谱反射率值构建的反射光谱曲线进行预处理得到预处理光谱曲线图;
(5)对预处理后的光谱曲线图进行异常样本剔除;
(6)将待测样本分为建模集和预测集,用于后续模型建立与验证;
(7)以光谱反射率值为输入变量,测得的虾青素含量为输出变量,建立预测模型,并验证获得虾青素含量预测最佳模型;
(8)利用虾青素含量预测最佳模型和像素点的光谱反射率值,计算感兴趣区域下各像素点的虾青素含量值,并输出可视化图像。
在本发明一实施例中,步骤(2)中,所述快照式多光谱成像系统包括计算机、快照式多光谱相机、宽光谱光源、载物台、样品池、支架、遮光罩。
在本发明一实施例中,所述快照式多光谱相机,响应波段为480-640nm,共计16个波段,FWHM为10-15nm。
在本发明一实施例中,所述宽光谱光源为卤素灯,采用电源为直流稳压电源,色温为2700k,灯杯前固定磨砂毛玻璃。
在本发明一实施例中,所述藻液样本的浓度范围为0.3-3.0g/L。
在本发明一实施例中,步骤(4)中,所述预处理的方法包括卷积平滑SG、多元散射校正MSC、标准正态变量变换SNV。
在本发明一实施例中,步骤(5)中,所述异常样本剔除为采用欧氏距离和马氏距离样本剔除方法,原始藻液样本个数为198个,异常样本剔除后所剩的样本个数为193个。
在本发明一实施例中,步骤(7)中,所述预测模型建立采用的建模算法为多元线性回归方法MLR和偏最小二乘回归PLSR建模方法。
在本发明一实施例中,步骤(8)中,所述可视化图像的产生方法如下:
1)获取每个波段下感兴趣区域各像素点的光谱反射率值;
2)将步骤1)的光谱反射率值代入步骤(6)建立的预测模型,计算出各像素点的虾青素含量;
3)获取感兴趣区域中虾青素含量的最大值与最小值,将其设定为彩色图的最高值与最低值;
4)通过各像素点的色彩信息呈现出虾青素含量的变化,最终输出可视化图像。
相较于现有技术,本发明具有以下有益效果:本发明实现了基于快照式光谱成像系统的雨生红球藻虾青素快速无损检测方法,无需对样品进行破坏性处理,同时所需的采样系统体积小,采样和数据处理速度快,可达到实时监测,可为工业生产提供技术监测手段。
附图说明
图1为快照式多光谱成像系统的结构示意图。
图2a为具体实施方式中雨生红球藻原始反射光谱曲线图。
图2b为具体实施方式中雨生红球藻SG预处理后的反射光谱曲线图。
图3为具体实施方式中雨生红球藻虾青素可视化图像。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明一种基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,包括以下步骤:
(1)取指数生长期的雨生红球藻样本,制作不同浓度梯度的藻液样本,将其分为两组,一组用于高效液相色谱法检测虾青素含量,一组用于反射光谱的采集;
(2)采集藻液样本在快照式多光谱成像系统下的光谱反射率值;测出藻液样本对应的虾青素含量;
(3)选取藻液样本的1000-2000个像素点作为感兴趣区域,并提取该感兴趣区域的平均光谱曲线;
(4)将步骤(2)中获得的光谱反射率值构建的反射光谱曲线进行预处理得到预处理光谱曲线图;
(5)对预处理后的光谱曲线图进行异常样本剔除;
(6)将待测样本分为建模集和预测集,用于后续模型建立与验证;
(7)以光谱反射率值为输入变量,测得的虾青素含量为输出变量,建立预测模型,并验证获得虾青素含量预测最佳模型;
(8)利用虾青素含量预测最佳模型和像素点的光谱反射率值,计算感兴趣区域下各像素点的虾青素含量值,并输出可视化图像。
以下为本发明具体实施实例。
本发明搭建的快照式光谱成像系统如图1所示,包括计算机1,遮光罩2,铝型材框架3,快照式多光谱相机4,宽光谱光源5,样品池6,载物台7等。其中,遮光罩2内部均贴有黑色绒布,防止反光;位于铝型材框架3上方的4个宽光谱稳压光源5用于反射光谱的采集,铝型材框架3底部的宽光谱稳压光源5用于透射光谱的采集,每个宽光谱稳压光源前均安置一片磨砂毛玻璃,以扩大光域,使光线照射均匀;快照式多光谱相机4连接计算机1可为相机供电,同时进行光谱信息的采集;样品池6放置于载物台7上,将载物台7换成镂有一圆孔并放置磨砂毛玻璃的载物台7,即可进行透射光谱的采集。
取指数生长期的雨生红球藻,制作不同浓度梯度样本,包括原液,稀释比例1:1-1:8的17个浓度梯度样本。将每一样本的藻液混合均匀,每次抽取5mL至培养皿中,共计187个样本。
本实施例中使用快照式多光谱相机(MQ022HG-SM4X4-VIS)对样本进行光谱信息获取,光谱的相应波段为480-640nm,共16个波段,FWHM为10-15nm,曝光时间为3ms。
由于相机镜头存在一定的暗电流和噪声,同时,光源的强度在各波段下的分布也不均匀,会容易造成光源强度分布较弱的波段下含有较大的噪声,所以需要对光谱进行黑白校正。利用HSI Mosaic软件进行黑白校正与光谱图像的采集,首先,遮住快照式多光谱相机的镜头,采集暗电流背景,其次,采集反射率为95%的聚四氟乙烯白板完成黑白校正,最后,依次采集所制作的所有藻液样本。
选取藻液样本1000-2000个像素点作为感兴趣区域,并提取该区域的平均光谱曲线。去除波长过于接近的3个波长,保留480-640nm内的13个波段平均光谱曲线。
光谱采集环境和仪器的随机误差、仪器本身的测量稳定性及精度等难以控制的因素,常导致光谱曲线出现基线漂移、噪声震荡、光散射等问题,本实施例中选取了卷积平滑(SG)、多元散射校正(MSC)、标准正态变量变换(SNV)三种预处理方法。预处理结果中,SG预处理后的建模RMSE为1.1142,MSC预处理为1.9409,SNV预处理为1.3798,所以优选出来的预处理方法为卷积平滑预处理,后续处理中均采用SG预处理后的光谱数据进行处理。图2a为雨生红球藻原始反射光谱曲线图。图2b为雨生红球藻SG预处理后的反射光谱曲线图。
为防止误操作、仪器异常、样本本身引起的异常数据,采用欧式距离和马氏距离法剔除异常样本。样本剔除前,模型的预测准确率为91.30%,马氏距离法处理后模型的预测准确率为92.72%,欧式距离法处理后模型的预测准确率为92.33%。综合分析,后续的研究将利用马氏距离法剔除异常样本后的新样本进行建模。
为提高模型的预测能力,采用SPXY算法对样本集进行划分。
以光谱反射率值为输入变量,测得的虾青素含量为输出变量,建立多元线性回归、偏最小二乘回归预测模型。多元线性回归模型的RMSEP为1.1367,RMSECV为1.1956,R2 cal为0.9790,R2 val为 0.9751;偏最小二乘回归模型的RMSEP为1.1141,RMSECV为1.1886,R2 cal为0.9783,R2 val为 0.9757。
针对虾青素含量选出的最优模型为SG-马氏距离-PLSR模型。利用多光谱成像技术获取的图像信息结合最优预测模型,进行雨生红球藻虾青素含量的可视化。以一个未知样本的光谱图像为例,选取固定的感兴趣区域;计算该区域各像素点的反射率值,并依次代入最优模型中,计算出各像素点的虾青素含量值;获取感兴趣区域中虾青素含量的最大值与最小值,将其设定为色图的最高值与最低值;通过各像素点的色彩信息呈现出含量值的变化,最终输出可视化图像(如图3所示)。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。
Claims (9)
1.一种基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,包括以下步骤:
(1)取指数生长期的雨生红球藻样本,制作不同浓度梯度的藻液样本,将其分为两组,一组用于高效液相色谱法检测虾青素含量,一组用于反射光谱的采集;
(2)采集藻液样本在快照式多光谱成像系统下的光谱反射率值;测出藻液样本对应的虾青素含量;
(3)选取藻液样本的1000-2000个像素点作为感兴趣区域,并提取该感兴趣区域的平均光谱曲线;
(4)将步骤(2)中获得的光谱反射率值构建的反射光谱曲线进行预处理得到预处理光谱曲线图;
(5)对预处理后的光谱曲线图进行异常样本剔除;
(6)将待测样本分为建模集和预测集,用于后续模型建立与验证;
(7)以光谱反射率值为输入变量,测得的虾青素含量为输出变量,建立预测模型,并验证获得虾青素含量预测最佳模型;
(8)利用虾青素含量预测最佳模型和像素点的光谱反射率值,计算感兴趣区域下各像素点的虾青素含量值,并输出可视化图像。
2.根据权利要求1所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,步骤(2)中,所述快照式多光谱成像系统包括计算机、快照式多光谱相机、宽光谱光源、载物台、样品池、支架、遮光罩。
3.根据权利要求2所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,所述快照式多光谱相机,响应波段为480-640nm,共计16个波段,FWHM为10-15nm。
4.根据权利要求2所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,所述宽光谱光源为卤素灯,采用电源为直流稳压电源,色温为2700k,灯杯前固定磨砂毛玻璃。
5.根据权利要求1所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,所述藻液样本的浓度范围为0.3-3.0g/L。
6.根据权利要求1所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,步骤(4)中,所述预处理的方法包括卷积平滑SG、多元散射校正MSC、标准正态变量变换SNV。
7.根据权利要求1所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,步骤(5)中,所述异常样本剔除为采用欧氏距离和马氏距离样本剔除方法。
8.根据权利要求1所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,步骤(7)中,所述预测模型建立采用的建模算法为多元线性回归方法MLR和偏最小二乘回归PLSR建模方法。
9.根据权利要求1所述的基于快照式多光谱成像的雨生红球藻虾青素含量检测方法,其特征在于,步骤(8)中,所述可视化图像的产生方法如下:
1)获取每个波段下感兴趣区域各像素点的光谱反射率值;
2)将步骤1)的光谱反射率值代入步骤(6)建立的预测模型,计算出各像素点的虾青素含量;
3)获取感兴趣区域中虾青素含量的最大值与最小值,将其设定为彩色图的最高值与最低值;
4)通过各像素点的色彩信息呈现出虾青素含量的变化,最终输出可视化图像。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111017735.1A CN113740275B (zh) | 2021-09-01 | 2021-09-01 | 基于快照式多光谱成像的雨生红球藻虾青素含量检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111017735.1A CN113740275B (zh) | 2021-09-01 | 2021-09-01 | 基于快照式多光谱成像的雨生红球藻虾青素含量检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113740275A CN113740275A (zh) | 2021-12-03 |
CN113740275B true CN113740275B (zh) | 2022-06-21 |
Family
ID=78734537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111017735.1A Expired - Fee Related CN113740275B (zh) | 2021-09-01 | 2021-09-01 | 基于快照式多光谱成像的雨生红球藻虾青素含量检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113740275B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2380099A1 (en) * | 1999-07-28 | 2001-02-08 | Marine Harvest Norway As | Method and apparatus for determining quality properties of fish |
CN105891123A (zh) * | 2016-04-07 | 2016-08-24 | 浙江大学 | 基于高光谱透射成像的雨生红球藻色素含量可视化方法 |
CN111492064A (zh) * | 2017-12-21 | 2020-08-04 | 生物梅里埃公司 | 一种鉴别酵母或细菌的方法 |
-
2021
- 2021-09-01 CN CN202111017735.1A patent/CN113740275B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2380099A1 (en) * | 1999-07-28 | 2001-02-08 | Marine Harvest Norway As | Method and apparatus for determining quality properties of fish |
CN105891123A (zh) * | 2016-04-07 | 2016-08-24 | 浙江大学 | 基于高光谱透射成像的雨生红球藻色素含量可视化方法 |
CN111492064A (zh) * | 2017-12-21 | 2020-08-04 | 生物梅里埃公司 | 一种鉴别酵母或细菌的方法 |
Non-Patent Citations (2)
Title |
---|
Bjørn S. Dissing 等.Multispectral imaging for determination of astaxanthin concentration in salmonids.《PloS one》.2011,第6卷(第5期),第19032-1-8页. * |
蒋林军.基于光谱技术对雨生红球藻虾青素含量检测及其空间分布的研究.《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》.2017,(第09期),A006-75. * |
Also Published As
Publication number | Publication date |
---|---|
CN113740275A (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review | |
Zhang et al. | Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm | |
Zhang et al. | Fast prediction of sugar content in Dangshan pear (Pyrus spp.) using hyperspectral imagery data | |
Teerachaichayut et al. | Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging | |
Qin et al. | Hyperspectral and multispectral imaging for evaluating food safety and quality | |
Sheng et al. | Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy | |
Jiang et al. | Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations | |
Liu et al. | Prediction of nitrogen and phosphorus contents in citrus leaves based on hyperspectral imaging | |
Mao et al. | Nondestructive measurement of total nitrogen in lettuce by integrating spectroscopy and computer vision | |
Yu et al. | Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system | |
CN105675582B (zh) | 利用拉曼光谱检测水果中β-胡萝卜素含量的方法 | |
Shao et al. | Identification of pesticide varieties by detecting characteristics of Chlorella pyrenoidosa using Visible/Near infrared hyperspectral imaging and Raman microspectroscopy technology | |
CN102636450A (zh) | 基于近红外光谱技术无损检测枸杞中枸杞多糖含量的方法 | |
Peirs et al. | Starch index determination of apple fruit by means of a hyperspectral near infrared reflectance imaging system | |
Tan et al. | The feasibility of early detection and grading of apple bruises using hyperspectral imaging | |
Zhang et al. | Use of signal to noise ratio and area change rate of spectra to evaluate the Visible/NIR spectral system for fruit internal quality detection | |
CN102539378A (zh) | 阵列式半导体激光器近红外光谱分析仪 | |
Luo et al. | Prediction of soluble solid content in Nanfeng mandarin by combining hyperspectral imaging and effective wavelength selection | |
Yu et al. | Rapid and visual measurement of fat content in peanuts by using the hyperspectral imaging technique with chemometrics | |
Lu et al. | Fluorescence hyperspectral image technique coupled with HSI method to predict solanine content of potatoes | |
Chen et al. | Rapid detection of surface color of shatian pomelo using Vis-NIR spectrometry for the identification of maturity | |
Tugnolo et al. | A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system | |
Mishra et al. | All-in-one: a spectral imaging laboratory system for standardised automated image acquisition and real-time spectral model deployment | |
Wu et al. | Study on the optimal algorithm prediction of corn leaf component information based on hyperspectral imaging | |
Hao et al. | Study on robust model construction method of multi-batch fruit online sorting by near-infrared spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220621 |