CN113730832B - 相控聚焦的多通道超声驱动电路及多通道超声治疗仪 - Google Patents

相控聚焦的多通道超声驱动电路及多通道超声治疗仪 Download PDF

Info

Publication number
CN113730832B
CN113730832B CN202111049818.9A CN202111049818A CN113730832B CN 113730832 B CN113730832 B CN 113730832B CN 202111049818 A CN202111049818 A CN 202111049818A CN 113730832 B CN113730832 B CN 113730832B
Authority
CN
China
Prior art keywords
driving
driving unit
circuit
output
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111049818.9A
Other languages
English (en)
Other versions
CN113730832A (zh
Inventor
李可
黄尹
董军挥
杜谚明
冯海友
朱威桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhonghui Medical Technology Shanghai Co ltd
Original Assignee
Zhonghui Medical Technology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhonghui Medical Technology Shanghai Co ltd filed Critical Zhonghui Medical Technology Shanghai Co ltd
Priority to CN202111049818.9A priority Critical patent/CN113730832B/zh
Publication of CN113730832A publication Critical patent/CN113730832A/zh
Priority to PCT/CN2021/142792 priority patent/WO2023035503A1/zh
Application granted granted Critical
Publication of CN113730832B publication Critical patent/CN113730832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本发明提供了一种相控聚焦的多通道超声驱动电路及多通道超声治疗仪。该超声驱动电路包括驱动单元电路板以及母板。该驱动单元电路板包括多通道驱动电路。该母板包括:多个驱动单元插槽;信号发生模块,经由印制的输入信号总线连接各该驱动单元插槽;驱动输出插槽,经由印制的输出信号总线连接各该驱动单元插槽,并用于插接多路该超声换能片的插头;以及主控制器,连接各该驱动单元插槽以及该信号发生模块,并通信连接上位机,根据该上位机提供的上位机指令控制该信号发生模块生成多通道相位信号,并控制对应的驱动单元电路板生成多个对应相位的输出信号,再经由该驱动输出插槽向各路该超声换能片并行输出对应相位的驱动信号。

Description

相控聚焦的多通道超声驱动电路及多通道超声治疗仪
技术领域
本发明属于医疗器械领域,具体涉及一种相控聚焦的多通道超声驱动电路,以及一种相控聚焦的多通道超声治疗仪。
背景技术
聚焦超声技术是一种对多通道的超声波进行聚焦,以在其焦点处产生高强度超声波的技术。现有技术一般采用大功率的超声换能片来发出更高强度的单通道超声波,以简化聚焦超声装置的器件结构。为了满足大功率的驱动需求,这种超声换能片普遍需要由电压调节、信号发生、功率放大及谐振等模块构成的独立驱动电路来驱动。
对于相控阵列聚焦超声换能器,其通常采用分布在球冠面上的上百个超声换能片阵元来进行电子聚焦,且每路驱动信号都需要独立的相位。对于高强度聚焦超声,由于每一路驱动信号都需要配置单独的驱动电路来为上述超声换能片提供充足的驱动功率,现有技术需要为每路超声换能片配置一块独立的驱动板,并采用外接的连接线来连接各驱动板,以使其相互配合地达到相控聚焦的效果。这种由大量分立元件实现的驱动电路一方面体积较大,不利于相控阵列聚焦超声换能器的小型化,另一方面会在各路驱动板之间产生相互干扰的情况,对驱动电路的稳定性及一致性存在不利的影响。
为了克服现有技术存在的上述缺陷,本领域亟需一种相控聚焦的多通道超声驱动技术,用于实现相控聚焦超声驱动电路的小型化,并提升相控聚焦超声驱动电路的稳定性与一致性。
发明内容
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之前序。
为了克服现有技术存在的上述缺陷,本发明提供了一种相控聚焦超声驱动电路,以及一种相控聚焦的多通道超声治疗仪,能够实现相控聚焦超声驱动电路的小型化,并提升相控聚焦超声驱动电路的稳定性与一致性。
具体来说,本发明的第一方面提供的上述相控聚焦的多通道超声驱动电路包括至少一块驱动单元电路板以及母板。每一所述驱动单元电路板包括多通道并联的驱动电路。每通道所述驱动电路用于驱动至少一路超声换能片。所述母板包括:多个驱动单元插槽,用于插接所述至少一块驱动单元电路板;信号发生模块,经由印制于所述母板的输入信号总线连接各所述驱动单元插槽的第一输入接口;驱动输出插槽,经由印制于所述母板的输出信号总线连接各所述驱动单元插槽的第一输出接口,并用于插接多路所述超声换能片的插头;以及主控制器,连接各所述驱动单元插槽的第二输入接口以及所述信号发生模块,并通信连接上位机,被配置为:根据所述上位机提供的上位机指令,控制所述信号发生模块生成多通道相位信号,并经由至少一个所述驱动单元插槽控制对应的至少一块所述驱动单元电路板生成多个对应相位的输出信号,再经由所述驱动输出插槽向各路所述超声换能片并行输出对应相位的驱动信号。
进一步地,在本发明的一些实施例中,每通道所述驱动电路包括调压电路及功率放大电路。所述调压电路的输入端经由所述驱动单元电路板的插头连接对应驱动单元插槽的所述第二输入接口,根据所述主控制器提供的控制信号输出对应幅值的直流电压。所述功率放大电路的控制端经由所述驱动单元电路板的所述插头连接所述对应驱动单元插槽的所述第一输入接口,根据所述信号发生模块生成的对应通道的相位信号生成对应相位的输出信号。
进一步地,在本发明的一些实施例中,每一所述驱动单元电路板还包括子控制器。所述子控制器分别连接各通道所述驱动电路的所述调压电路的输入端,并经由所述驱动单元电路板的插头连接对应驱动单元插槽的第二输入接口。所述主控制器经由各所述驱动单元插槽的所述第二输入接口分别向对应的子控制器发送控制信号,由各所述子控制器根据所述控制信号分别控制对应的多通道所述驱动电路的所述调压电路输出对应幅值的直流电压。
进一步地,在本发明的一些实施例中,每通道所述驱动电路还包括功率检测电路。所述功率检测电路的输入端连接对应通道的功率放大电路的输出端。所述功率检测电路的输出端经由所述驱动单元电路板的插头连接对应驱动单元插槽的所述第一输出接口。所述子控制器分别连接各通道所述驱动电路的所述功率检测电路的所述输出端,并经由所述驱动单元电路板的插头连接对应驱动单元插槽的第二输出接口。所述主控制器经由各所述驱动单元插槽的第二输出接口,获取各通道所述驱动电路生成的多个所述输出信号,并将各所述输出信号上传到所述上位机。
进一步地,在本发明的一些实施例中,所述功率放大电路中包括集成的半桥电路及半桥驱动电路。
进一步地,在本发明的一些实施例中,所述功率放大电路中包括至少一个功率管。所述至少一个功率管在所述驱动单元电路板的焊接点为双面铺铜的通孔。所述至少一个功率管焊接于所述通孔的正面,并经由所述通孔背面的铺铜散热。
进一步地,在本发明的一些实施例中,所述多个驱动单元插槽中的至少一者为金手指插槽。所述金手指插槽中集成多个输入接口及多个输出接口。所述至少一块驱动单元电路板的插头为金手指插头。所述金手指插头上集成多个对应的输入接口及多个对应的输出接口。在该实施例或另一些实施例中,所述驱动输出插槽为金手指插槽。所述金手指插槽包括多个输出接口。多路所述超声换能片的插头集成为至少一个金手指插头。所述至少一个金手指插头上集成多个对应的输出接口。
进一步地,在本发明的一些实施例中,所述至少一个金手指插头上集成的多个所述输出接口经由多根射频线分别连接各路对应的超声换能片。
进一步地,在本发明的一些实施例中,所述相控聚焦超声驱动电路还包括至少一个散热风扇。所述多个驱动单元插槽相互平行。所述至少一块驱动单元电路板经由所述多个驱动单元插槽垂直插接于所述母板。所述至少一个散热风扇驱动冷风从所述至少一块驱动单元电路板的一侧吹向其另一侧。
本发明的第二方面提供的上述相控聚焦的多通道超声治疗仪,包括:本发明的第一方面提供的上述相控聚焦超声驱动电路,以及多路超声换能片。所述多路超声换能片的插头插接所述相控聚焦超声驱动电路的驱动输出插槽。所述多路超声换能片根据所述驱动输出插槽并行输出的多个相位的驱动信号运行,以在所述多通道超声治疗仪的焦点处产生聚焦的高强度超声波。
附图说明
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1示出了根据本发明的一些实施例提供的相控聚焦的多通道超声治疗仪的示意图。
图2示出了根据本发明的一些实施例提供的相控聚焦超声驱动电路的组装示意图。
图3示出了根据本发明的一些实施例提供的驱动单元电路板的示意图。
图4示出了根据本发明的一些实施例提供的相控聚焦超声驱动电路的示意图。
图5示出了根据本发明的一些实施例提供的放大电路的示意图。
图6示出了根据本发明的一些实施例提供的母板的示意图。
图7示出了根据本发明的一些实施例提供的散热风扇的示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合优选实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
另外,在以下的说明中所使用的“上”、“下”、“左”、“右”、“顶”、“底”、“水平”、“垂直”应被理解为该段以及相关附图中所绘示的方位。此相对性的用语仅是为了方便说明之用,其并不代表其所叙述的装置需以特定方位来制造或运作,因此不应理解为对本发明的限制。
能理解的是,虽然在此可使用用语“第一”、“第二”、“第三”等来叙述各种组件、区域、层和/或部分,这些组件、区域、层和/或部分不应被这些用语限定,且这些用语仅是用来区别不同的组件、区域、层和/或部分。因此,以下讨论的第一组件、区域、层和/或部分可在不偏离本发明一些实施例的情况下被称为第二组件、区域、层和/或部分。
如上所述,现有的相控阵列聚焦超声换能器的驱动电路由大量分立元件来实现,一方面存在体积过大,不利于相控阵列聚焦超声换能器小型化的问题,另一方面会在各路驱动板之间产生相互干扰的情况,对驱动电路的稳定性及一致性存在不利的影响。
为了克服现有技术存在的上述缺陷,本发明提供了一种相控聚焦超声驱动电路,以及一种相控聚焦的多通道超声治疗仪,能够实现相控聚焦超声驱动电路的小型化,并提升相控聚焦超声驱动电路的稳定性与一致性。
请参考图1,图1示出了根据本发明的一些实施例提供的相控聚焦的多通道超声治疗仪的示意图。
如图1所示,在本发明的一些实施例中,本发明的第二方面提供的上述相控聚焦的多通道超声治疗仪,包括本发明的第一方面提供的上述多通道超声驱动电路10,以及多路超声换能片20。该多通道超声驱动电路10可以经由螺栓、卡口等结构固定安装于多通道超声治疗仪的驱动机箱内,经由多根射频线连接多路超声换能片20,并通过有线和/或无线的方式连接台式电脑、笔记本电脑、平板电脑、工作站、服务器等外接的上位机30。该多路超声换能片20可以包括一百路以上的超声换能片20,其被设置于上述相控聚焦的多通道超声治疗仪的治疗头中的同一球冠面上,能够根据多通道超声驱动电路10并行输出的多个相位的驱动信号运行,从而在该治疗头的焦点处产生聚焦的高强度超声波。
请进一步参考图2至图6。图2示出了根据本发明的一些实施例提供的相控聚焦超声驱动电路的组装示意图。图3示出了根据本发明的一些实施例提供的驱动单元电路板的示意图。图4示出了根据本发明的一些实施例提供的相控聚焦超声驱动电路的示意图。图5示出了根据本发明的一些实施例提供的放大电路的示意图。图6示出了根据本发明的一些实施例提供的母板的示意图。
如图2所示,在本发明的一些实施例中,本发明的第一方面提供的上述相控聚焦超声驱动电路包括一块母板11,以及至少一块驱动单元电路板12。该母板11可以经由螺栓、卡扣等结构固定安装于本发明的第二方面提供的上述相控聚焦的多通道超声治疗仪的驱动机箱内,其上配置有多个驱动单元插槽111,用于配合至少一块驱动单元电路板12的插头来完成母板11与驱动单元电路板12之间的硬连接。
如图3及图4所示,每块驱动单元电路板12上可以板载多通道并联的驱动电路121,其中,每通道驱动电路121用于驱动至少一路超声换能片20。板载于同一驱动单元电路板12上的各驱动电路121,经由印制于该驱动单元电路板12的印制电路板(Printed CircuitBoard,PCB)布线,分别连接该驱动单元电路板12的插头122,以实现各驱动电路121的并联连接。在一些实施例中,一块板载8通道并联驱动电路121的驱动单元电路板12可以驱动8路超声换能片20。在另一些实施例中,一块板载16通道并联驱动电路121的驱动单元电路板12可以驱动16路超声换能片20。用户、医护人员或技术人员可以根据治疗需要的超声波强度,向母板11插入至少一块驱动单元电路板12,或使能至少一块插入的驱动单元电路板12,以驱动对应数量的超声换能片20来进行超声相控聚焦。
在图4所示的实施例中,每通道驱动电路121中可以包括一个调压电路以及一个功率放大电路。该调压电路的输入端经由印制于驱动单元电路板12的PCB布线连接插头122的第二输入接口,而其输出端经由印制于驱动单元电路板12的PCB布线连接功率放大电路的功率端,能够根据从第二输入接口获取的控制信号输出对应幅值的稳定直流电压Vc。该功率放大电路的控制端经由印制于驱动单元电路板12的PCB布线连接插头122的第一输入接口,能够根据从第一输入接口获取的相位信号Sn,将调压电路输出的直流电压转换成对应频率及相位的输出信号,驱动对应的超声换能片20运行以发出指定强度、频率、占空比及相位的超声波。
进一步地,在图5所示的实施例中,功率放大电路中可以包括集成的半桥电路及半桥驱动电路。具体来说,在一些实施例中,该集成的半桥电路及半桥驱动电路可以采用完全独立的包含电源及半桥电路的集成芯片(CSD97370Q5M)。在另一些实施例中,该集成的半桥电路及半桥驱动电路也可以采用集成的半桥驱动芯片(如TPS28225),并结合上下两个功率MOSFET Q1及Q2来组成。通过采用集成的半桥电路及半桥驱动电路,该方案能够配合驱动单元电路板12上的PCB布线,进一步实现各通道驱动电路121的小型化与紧凑化,从而进一步实现多通道超声驱动电路10的小型化,并提升多通道超声驱动电路10的稳定性与一致性。
更进一步地,在图5所示的实施例中,半桥电路的后端还可以进一步配置有LC谐振电路。具体而言,当超声换能片20的阻抗较低时(如低于1欧姆),功率放大电路可以通过半桥电路直接驱动超声换能片20发射高强度超声。反之,当超声换能片20的阻抗较高(如1~50欧姆)时,功率放大电路可以先将半桥电路的输出信号输入该LC谐振电路进行谐振,再利用该LC谐振电路的输出信号来驱动对应的超声换能片20。如此,该方案能够适应不同型号、不同参数的超声换能片20,以达到相控聚焦超声驱动的控制目标。
在图3及图4所示的实施例中,每通道驱动电路121中还可以包括功率检测电路。该功率检测电路可以选用功率检测集成芯片,其输入端经由印制于驱动单元电路板12的PCB布线连接功率放大电路的输出端,而其输出端经由印制于驱动单元电路板12的PCB布线分别连接插头122的第一输出接口及第二输出接口。该功率检测电路一方面经由该第一输出接口驱动对应的超声换能片20运行,另一方面根据其输出的正向传输电功率和反射电功率监测该通道工作状态,并经由该第二输出接口向相控聚焦超声驱动电路的主控制器及上位机30进行反馈。
优选地,在本发明的一些实施例中,每块驱动单元电路板12上还可以进一步配置有子控制器(未绘示)。该子控制器可以选用微控制器单元(Microcontroller Unit,MCU)。该子控制器经由印制于驱动单元电路板12的控制总线分别连接各通道驱动电路121的调压电路的输入端,并经由印制于驱动单元电路板12的控制总线连接插头122的第二输入接口,能够从插头122的第二输入接口获取主控制器提供的控制信号,并根据该控制信号来控制各通道驱动电路121的调压电路,以使其输出对应幅值的稳定直流电压Vc
在一些实施例中,该子控制器还经由印制于驱动单元电路板12的控制总线分别连接各通道驱动电路121的功率检测电路的输出端,并经由印制于驱动单元电路板12的控制总线连接插头122的第二输出接口,能够从各功率检测电路的输出端获取各通道驱动电路121生成的输出信号,并经由插头122的第二输出接口将其传输到主控制器,进而经由该主控制器向上位机30上传各输出信号。
对于涉及上百个超声换能片阵元的独立驱动需求的相控聚焦的多通道超声治疗仪,通过在每块驱动单元电路板12上配置子控制器,并由该子控制器来分管该驱动单元电路板12上的各驱动电路121的驱动功能及监测功能,该方案能够显著降低对主控制器的数据处理要求,一方面降低多通道超声驱动电路10整体的器件成本,另一方面能够显著提升控制器对各驱动电路121的控制频率,从而满足多通道超声驱动电路10在射频频段的控制频率要求。
如图2及图6所示,在本发明的一些实施例中,母板11上可以设置有多个驱动单元插槽111、一个信号发生模块112、一个驱动输出插槽113,以及一个主控制器(未绘示),其中,每个驱动单元插槽111插接一块驱动单元电路板12。
该驱动单元插槽111可以选用金手指插槽,其中集成了第一输入接口、第二输入接口、第一输出接口以及第二输出接口,能够配合驱动单元电路板12的金手指插头122的上述第一输入接口、上述第二输入接口、上述第一输出接口以及上述第二输出接口,达到插接驱动单元电路板12的效果。在一些实施例中,插槽111的边缘可以进一步设有限位卡扣。该限位卡扣响应于用户将金手指插头122插入插槽111的行为而自动锁止。在需要取出驱动单元电路板12时,用户可以按压该限位卡扣,以将该驱动单元电路板12的金手指插头122弹出插槽111。
该信号发生模块112经由印制于母板11的PCB输入信号总线连接各驱动单元插槽111的第一输入接口。在一些实施例中,信号发生模块112可以包括直接数字频率合成(DDS)芯片,由该DDS芯片产生一路或多路频率、相位可调的方波信号。在另一些实施例中,信号发生模块112可以包括频率合成/时钟发生芯片,由该频率合成/时钟发生芯片产生一路或多路频率、相位可调的方波信号。
该驱动输出插槽113中包括多个输出接口,经由印制于母板11的PCB输出信号总线连接各驱动单元插槽111的第一输出接口。在一些实施例中,该驱动输出插槽113也可以选用金手指插槽。在需要进行多路超声换能片20的相控聚焦超声驱动时,用户、医护人员或技术人员可以将多路超声换能片20的金手指集成插头插入驱动输出插槽113,从该驱动输出插槽113获取相控聚焦超声驱动电路10并行输出多个相位的驱动信号,以驱动多路超声换能片20在治疗头的焦点处产生聚焦的超声波。
在一些实施例中,该主控制器经由印制于母板11的PCB控制信号总线连接该信号发生模块112,并分别连接各驱动单元插槽111的第二输入接口。此外,该主控制器还经由USB/RS485等通信接口通信连接上位机30。
在进行多路超声换能片20的相控聚焦超声驱动时,上位机30可以首先根据多通道超声治疗仪的治疗需求,确定需要的超声换能片20的数量,并制定指示各路超声换能片20需要发出超声波的强度、频率及相位的上位机指令,以控制各路超声换能片20的开始工作、停止工作的时机,以及工作频率。之后,上位机30可以经由USB/RS485接口将该上位机指令传输到相控聚焦超声驱动电路10的主控制器,由该主控制器对获取的上位机指令进行D/A转换,并根据获取的上位机指令确定各调压电路的输入电压,以及信号发生模块112的控制信号。
之后,主控制器将经由印制于母板11的PCB控制信号总线,向信号发生模块112传输生成的控制信号,以控制该信号发生模块112针对每路超声换能片20生成对应频率、占空比和脉冲长度的多通道相位信号。由于在相控聚焦的多通道超声治疗仪中,每路超声换能片20都需要独立的相位信号来实现电子聚焦,该信号发生模块112可以采用现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA),并行输出各路超声换能片20所需的不同相位的相位信号,从而对各路超声换能片20进行相位的独立控制。该相位信号一般采用幅值3.3V或5V的方波信号。
再之后,主控制器将经由印制于母板11的PCB控制信号总线,将获取的上位机指令分别传输到对应的至少一个驱动单元插槽111的第二输入接口。信号发生模块112将经由印制于母板11的PCB输入信号总线,将生成的多通道相位信号分别传输到对应的至少一个驱动单元插槽111的第一输入接口。
插接于驱动单元插槽111的驱动单元电路板12的子控制器将经由印制于驱动单元电路板12的控制总线,从对应驱动单元插槽111的第二输入接口获取主控制器提供的上述上位机指令,并根据该上位机指令控制各通道驱动电路121的调压电路输出对应幅值的稳定直流电压Vc
插接于驱动单元插槽111的驱动单元电路板12的各放大电路将经由印制于驱动单元电路板12的PCB布线,分别从对应驱动单元插槽111的第一输入接口获取信号发生模块112生成相位信号,并根据该相位信号生成对应相位的输出信号。
各放大电路后端的功率检测电路将经由印制于驱动单元电路板12的PCB布线,分别从对应放大电路的输出端获取其生成的输出信号,一方面经由印制于驱动单元电路板12的PCB布线向插头122的第一输出接口提供该对应相位的输出信号,另一方面经由印制于驱动单元电路板12的PCB布线向子控制器反馈该输出信号,再由该子控制器向插头122的第二输出接口提供对应的检测信号。
驱动输出插槽113的各输出接口将经由印制于母板11的PCB输出信号总线,从各驱动单元插槽111的第一输出接口获取各通道驱动电路121生成的多个输出信号。之后,响应于主控制器提供的使能信号,驱动输出插槽113将经由插接的金手指插头,分别向连接各路对应的超声换能片20的多根射频线并行输出对应相位的驱动信号,从而控制各路对应的超声换能片20基于电子聚焦的原理,在多通道超声治疗仪的治疗头的焦点处产生聚焦的超声波。通过在母板11上经由驱动输出插槽113向连接至治疗头中的各超换能片20的多根射频线并行输出对应相位的驱动信号,该方案能够进一步缩短驱动信号输出线路的长度,有利于增大驱动电路10工作时的电声转换效率。
进一步地,在一些优选的实施例中,主控制器还经由各驱动单元插槽111的第二输出接口,从插接的各驱动单元电路板12的第二输出接口获取各子控制器提供的检测信号,并经由USB/RS485接口将这些检测信号上传到上位机30,以供技术人员利用该上位机30观察并调整驱动电路10的发射参数及工作状态,或由该上位机30自动对各通道驱动电路121进行精确、稳定的负反馈控制。
基于以上描述,本发明通过在一块驱动单元电路板12上集成多路超声换能片20的驱动电路121,并采用集成的MOS驱动或半桥电路芯片,大大缩小了单通道超声驱动电路121的体积、降低了相控聚焦超声驱动电路10的器件成本,并简化了相控聚焦超声驱动电路的结构。进一步地,通过设计多个插槽111来硬连接多个驱动单元电路板12,并利用印制于母板11的PCB布线来连接主控制器、信号发生器及各驱动单元电路板12,本发明采用高速稳定的板载连接来取代现有技术采用的外部连接线,能够大大提升系统电路工作的稳定性和不同通道的一致性。此外,通过设计较多的插槽111,并根据实际的使用需求来插入或使能相对较少数量的驱动单元电路板12,本发明具有易于扩展的优点,能够根据实际的使用需求进一步插入或使能更多驱动单元电路板12来聚焦产生更高强度的超声波。
进一步地,在实现上述小型化及紧凑化设计的基础上,本发明提供的上述相控聚焦超声驱动电路10及相控聚焦的多通道超声治疗仪还可以进一步配置一种或多种额外的散热设计,以避免该小型化及紧凑化的结构导致功率芯片在工作过程中因持续发热而损坏。
具体来说,如图4及图5所示,每通道驱动电路121的功率放大电路中都包括至少一个功率MOS芯片。这些功率MOS芯片,以及LC谐振电路中的电感线圈和电容元件,都会在工作过程中发热。在一些实施例中,各通道驱动电路121的功率MOS芯片、电感线圈和电容元件可以均匀的分布于驱动单元电路板12的各个位置,以使得整个电路板12在工作过程中不同位置均匀发热。进一步地,这些功率MOS芯片在驱动单元电路板12的焊接点可以优选为双面铺铜的通孔。功率MOS芯片贴片通过焊锡固定连接对应通孔的正面,从而经由该通孔正面及背面的铺铜进行正反两面的同时散热。
请进一步参考图7,图7示出了根据本发明的一些实施例提供的散热风扇的示意图。
如图2及图7所示,相控聚焦超声驱动电路10的机箱侧壁还设置有至少一个散热风扇,而母板11上的多个驱动单元插槽111相互平行。在进行多路超声换能片20的相控聚焦超声驱动时,各驱动单元电路板12经由该多个相互平行的驱动单元插槽111垂直插接于母板12,以形成通畅的风道。设于机箱一个侧壁的第一散热风扇将冷风鼓入机箱内部,而设于机箱另一个相对侧壁的第二散热风扇将机箱内部的热风抽出机箱,从而驱动冷风从该至少一块驱动单元电路板12的一侧吹向其另一侧,以高效地带走各驱动单元电路板12正面及背面的热量。
更进一步地,各驱动单元电路板12的各功率MOS芯片、各电感线圈和各电容元件的位置,可以进一步设有温度传感器。这些温度传感器经由印制于驱动单元电路板12的PCB控制总线连接子控制器,再经由各驱动单元电路板12的插头122的第二输出接口连接总控制器,再经由总控制器中模数转换器(ADC)进行采集转换后上传至上位机30,以供上位机30根据采集的温度信息调整驱动电路10的发射参数及工作状态,并随发射功率的大小来调节风扇的转速,以保障驱动电路10的散热效率。
尽管为使解释简单化将上述方法图示并描述为一系列动作,但是应理解并领会,这些方法不受动作的次序所限,因为根据一个或多个实施例,一些动作可按不同次序发生和/或与来自本文中图示和描述或本文中未图示和描述但本领域技术人员可以理解的其他动作并发地发生。
本领域技术人员将可理解,信息、信号和数据可使用各种不同技术和技艺中的任何技术和技艺来表示。例如,以上描述通篇引述的数据、指令、命令、信息、信号、位(比特)、码元、和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光学粒子、或其任何组合来表示。
本领域技术人员将进一步领会,结合本文中所公开的实施例来描述的各种解说性逻辑板块、模块、电路、和算法步骤可实现为电子硬件、计算机软件、或这两者的组合。为清楚地解说硬件与软件的这一可互换性,各种解说性组件、框、模块、电路、和步骤在上面是以其功能性的形式作一般化描述的。此类功能性是被实现为硬件还是软件取决于具体应用和施加于整体系统的设计约束。技术人员对于每种特定应用可用不同的方式来实现所描述的功能性,但这样的实现决策不应被解读成导致脱离了本发明的范围。
尽管上述的实施例所述的主控制器及子控制器可以通过软件与硬件的组合来实现。但是可以理解,该主控制器及该子控制器也可以单独在软件或硬件中加以实施。对于硬件实施而言,该主控制器及该子控制器可以在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、用于执行上述功能的其它电子装置或上述装置的选择组合来加以实施。对软件实施而言,该主控制器及该子控制器可以通过在通用芯片上运行的诸如程序模块(procedures)和函数模块(functions)等独立的软件模块来加以实施,其中每一个模块执行一个或多个本文中描述的功能和操作。
结合本文所公开的实施例描述的各种解说性逻辑模块、和电路可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其设计成执行本文所描述功能的任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,该处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如DSP与微处理器的组合、多个微处理器、与DSP核心协作的一个或多个微处理器、或任何其他此类配置。
提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。

Claims (9)

1. 一种相控聚焦的多通道超声驱动电路,其特征在于,包括:
至少一块驱动单元电路板,其中,每一所述驱动单元电路板包括多通道并联的驱动电路和子控制器,每通道所述驱动电路包括调压电路及功率放大电路,用于驱动至少一路超声换能片,所述子控制器分别连接各通道所述驱动电路的所述调压电路的输入端,并经由所述驱动单元电路板的插头连接对应驱动单元插槽的第二输入接口;以及
母板,包括:
多个所述驱动单元插槽,用于插接所述至少一块驱动单元电路板;
信号发生模块,经由印制于所述母板的输入信号总线连接各所述驱动单元插槽的第一输入接口;
驱动输出插槽,经由印制于所述母板的输出信号总线连接各所述驱动单元插槽的第一输出接口,并用于插接多路所述超声换能片的插头;以及
主控制器,连接各所述驱动单元插槽的第二输入接口以及所述信号发生模块,并通信连接上位机,被配置为:根据所述上位机提供的上位机指令,控制所述信号发生模块生成多通道相位信号,并经由至少一个所述驱动单元插槽的所述第二输入接口分别向对应的子控制器发送控制信号,由各所述子控制器根据所述控制信号分别控制对应的多通道所述驱动电路的所述调压电路输出对应幅值的直流电压,以控制对应的至少一块所述驱动单元电路板生成多个对应相位的输出信号,再经由所述驱动输出插槽向各路所述超声换能片并行输出对应相位的驱动信号。
2.如权利要求1所述的多通道超声驱动电路,其特征在于,所述调压电路的输入端经由所述驱动单元电路板的插头连接对应驱动单元插槽的所述第二输入接口,根据所述主控制器提供的控制信号输出对应幅值的直流电压,
所述功率放大电路的控制端经由所述驱动单元电路板的所述插头连接所述对应驱动单元插槽的所述第一输入接口,根据所述信号发生模块生成的对应通道的相位信号生成对应相位的输出信号。
3.如权利要求2所述的多通道超声驱动电路,其特征在于,每通道所述驱动电路还包括功率检测电路,所述功率检测电路的输入端连接对应通道的功率放大电路的输出端,所述功率检测电路的输出端经由所述驱动单元电路板的插头连接对应驱动单元插槽的所述第一输出接口,
所述子控制器分别连接各通道所述驱动电路的所述功率检测电路的所述输出端,并经由所述驱动单元电路板的插头连接对应驱动单元插槽的第二输出接口,
所述主控制器经由各所述驱动单元插槽的第二输出接口,获取各通道所述驱动电路生成的多个所述输出信号,并将各所述输出信号上传到所述上位机。
4.如权利要求2所述的多通道超声驱动电路,其特征在于,所述功率放大电路中包括集成的半桥电路及半桥驱动电路。
5. 如权利要求2所述的多通道超声驱动电路,其特征在于,所述功率放大电路中包括至少一个功率管,所述至少一个功率管在所述驱动单元电路板的焊接点为双面铺铜的通孔,所述至少一个功率管焊接于所述通孔的正面,并经由所述通孔背面的铺铜散热。
6.如权利要求1所述的多通道超声驱动电路,其特征在于,所述多个驱动单元插槽中的至少一者为金手指插槽,所述金手指插槽中集成多个输入接口及多个输出接口,所述至少一块驱动单元电路板的插头为金手指插头,所述金手指插头上集成多个对应的输入接口及多个对应的输出接口,和/或
所述驱动输出插槽为金手指插槽,所述金手指插槽包括多个输出接口,多路所述超声换能片的插头集成为至少一个金手指插头,所述至少一个金手指插头上集成多个对应的输出接口。
7.如权利要求6所述的多通道超声驱动电路,其特征在于,所述至少一个金手指插头上集成的多个所述输出接口经由多根射频线分别连接各路对应的超声换能片。
8.如权利要求1所述的多通道超声驱动电路,其特征在于,还包括:
至少一个散热风扇,其中,所述多个驱动单元插槽相互平行,所述至少一块驱动单元电路板经由所述多个驱动单元插槽垂直插接于所述母板,所述至少一个散热风扇驱动冷风从所述至少一块驱动单元电路板的一侧吹向其另一侧。
9.一种相控聚焦的多通道超声治疗仪,其特征在于,包括:
如权利要求1~8中任一项所述的多通道超声驱动电路;
多路超声换能片,其中,所述多路超声换能片的插头插接所述相控聚焦超声驱动电路的驱动输出插槽,所述多路超声换能片根据所述驱动输出插槽并行输出的多个相位的驱动信号运行,以在所述多通道超声治疗仪的焦点处产生聚焦的超声波。
CN202111049818.9A 2021-09-08 2021-09-08 相控聚焦的多通道超声驱动电路及多通道超声治疗仪 Active CN113730832B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111049818.9A CN113730832B (zh) 2021-09-08 2021-09-08 相控聚焦的多通道超声驱动电路及多通道超声治疗仪
PCT/CN2021/142792 WO2023035503A1 (zh) 2021-09-08 2021-12-30 相控聚焦的多通道超声驱动电路及多通道超声治疗仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111049818.9A CN113730832B (zh) 2021-09-08 2021-09-08 相控聚焦的多通道超声驱动电路及多通道超声治疗仪

Publications (2)

Publication Number Publication Date
CN113730832A CN113730832A (zh) 2021-12-03
CN113730832B true CN113730832B (zh) 2024-03-08

Family

ID=78737008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111049818.9A Active CN113730832B (zh) 2021-09-08 2021-09-08 相控聚焦的多通道超声驱动电路及多通道超声治疗仪

Country Status (2)

Country Link
CN (1) CN113730832B (zh)
WO (1) WO2023035503A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113730832B (zh) * 2021-09-08 2024-03-08 中惠医疗科技(上海)有限公司 相控聚焦的多通道超声驱动电路及多通道超声治疗仪
CN115014587B (zh) * 2022-05-30 2023-02-10 西安工程大学 一种磁力效应相控阵信号采集结构、系统及方法
CN116271582B (zh) * 2023-03-03 2024-03-01 河南翔宇医疗设备股份有限公司 一种聚焦超声治疗仪、控制方法、装置及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852819U (zh) * 2010-11-24 2011-06-01 北京美泰科仪检测仪器有限公司 智能多通道超声波探伤仪
CN105137852A (zh) * 2015-06-26 2015-12-09 上海沈德医疗器械科技有限公司 相控高强度聚焦超声系统多通道超声驱动器并行控制装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128958A (en) * 1997-09-11 2000-10-10 The Regents Of The University Of Michigan Phased array system architecture
KR100739002B1 (ko) * 2006-04-28 2007-07-12 (주) 태웅메디칼 고주파 열치료용 멀티 알에프 제너레이터
CN103191528B (zh) * 2013-03-21 2015-10-14 上海交通大学 超声相控阵列聚焦模式高速切换系统及聚焦模式合成方法
CN106730426B (zh) * 2015-11-23 2019-05-07 南京广慈医疗科技有限公司 一种相控阵高强度聚焦超声驱动电路
CN109078271B (zh) * 2017-06-13 2020-08-07 上海沈德医疗器械科技有限公司 一种磁共振兼容的相控聚焦超声驱动电路
CN207541174U (zh) * 2017-11-17 2018-06-26 河南普航电子设备有限公司 一种用于元器件测试的总线型矩阵切换装置
CN113730832B (zh) * 2021-09-08 2024-03-08 中惠医疗科技(上海)有限公司 相控聚焦的多通道超声驱动电路及多通道超声治疗仪

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852819U (zh) * 2010-11-24 2011-06-01 北京美泰科仪检测仪器有限公司 智能多通道超声波探伤仪
CN105137852A (zh) * 2015-06-26 2015-12-09 上海沈德医疗器械科技有限公司 相控高强度聚焦超声系统多通道超声驱动器并行控制装置

Also Published As

Publication number Publication date
WO2023035503A1 (zh) 2023-03-16
CN113730832A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN113730832B (zh) 相控聚焦的多通道超声驱动电路及多通道超声治疗仪
US5590657A (en) Phased array ultrasound system and method for cardiac ablation
US6128958A (en) Phased array system architecture
EP3132748B1 (en) Portable ultrasonic diagnostic device comprising heat dissipation structure
CN100506323C (zh) 一体化超声治疗换能器装置
CN104013444A (zh) 一种相控阵高强度聚焦超声消融系统
CN105496549A (zh) 一种射频发生器及利用该射频器产生射频能量的方法
US10292680B2 (en) Ultrasonic probe and manufacturing method thereof
CN106730426B (zh) 一种相控阵高强度聚焦超声驱动电路
CN203988158U (zh) 一种相控阵高强度聚焦超声消融系统
CN104548392A (zh) 经颅超声刺激装置以及刺激方法
US20210169456A1 (en) Ultrasonic therapy and diagnosis apparatus implementing multiple functions using detachable circuit boards
CN109078271B (zh) 一种磁共振兼容的相控聚焦超声驱动电路
US20150236236A1 (en) Ultrasound wave generating apparatus
CN210627915U (zh) 一种老化测试装置
CN101449981B (zh) 一种超声诊断仪
CN207545197U (zh) 用于心脏射频消融治疗的射频发生治疗装置
CN113114200A (zh) 一种具有功率监测的半桥谐振超声驱动电路
CN209787069U (zh) 一种高功率电磁脉冲发生器
CN210693570U (zh) 一种基于磁耦谐振的阵列式换能器的无线驱动系统
KR102163992B1 (ko) 개별 주파수 필터가 구비된 초음파 생성 장치
CN101470450B (zh) 散热风扇控制电路
CN216053649U (zh) 一种交互智能平板
CN101837169B (zh) 浅表组织超声热疗系统
CN212183415U (zh) 变压器切换装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant