CN1137278C - 准晶颗粒增强镁基复合材料 - Google Patents

准晶颗粒增强镁基复合材料 Download PDF

Info

Publication number
CN1137278C
CN1137278C CNB00111624XA CN00111624A CN1137278C CN 1137278 C CN1137278 C CN 1137278C CN B00111624X A CNB00111624X A CN B00111624XA CN 00111624 A CN00111624 A CN 00111624A CN 1137278 C CN1137278 C CN 1137278C
Authority
CN
China
Prior art keywords
quasicrystal
crystalloidal
particle
base compound
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB00111624XA
Other languages
English (en)
Other versions
CN1264746A (zh
Inventor
洲 徐
徐洲
李志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB00111624XA priority Critical patent/CN1137278C/zh
Publication of CN1264746A publication Critical patent/CN1264746A/zh
Application granted granted Critical
Publication of CN1137278C publication Critical patent/CN1137278C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明以粒子尺寸小于100μm的A1CuFe准晶颗粒增强镁基合金,增强颗粒的体积分数≤50%,准晶成分为:AlaCubFec,其中:a+b+c=100为原子百分比,60≤a≤66,22≤b≤27,11≤c≤15,基体材料成分为:MgaAlbXcMd,其中:a+b+c+d=100为重量百分比,80≤a≤100,0≤b≤15,0≤c≤3,0≤d≤2,X表示Mn,Zn的一种或两种,M表示Ce,Zr,Cu,Ni,Si,Fe,Be中的至少一种。

Description

准晶颗粒增强镁基复合材料
本发明涉及的是一种准晶颗粒增强复合材料,尤其是一种准晶颗粒增强镁基复合材料,属于复合材料的设计和制造类领域。
准晶属于新兴材料,同超导体一道被列为80年代凝聚态物理两大重大进展,不仅带来了传统晶体学的一场革命,而且对材料科学的各个领域产生了深远的影响。经过十余年的研究,人们已经基本了解该材料的结构、制备和性能,初步认识到其应用潜力。如法国学者研制出准晶不粘锅,近期的研究成果又揭示出准晶作为隔热、储氢和吸收太阳能材料的前景。准晶材料具有较高的硬度、低的摩擦系数、不粘性、耐蚀、耐热、耐磨等良好的综合性能,这些性能与陶瓷相似,可以作为复合材料增强相。日本学者制备出数微米大小的准晶粉末,然后按适当比例均匀混合Al粉(<0.2mm)和准晶粉,再进行热压,含25%准晶的材料具有最佳硬度,达1200N·mm-2。准晶从结构角度看是一种新的物质形态,但实质上它们仅在特定的金属合金中形成,是成分范围较窄的金属间化合物,所以与铝、镁等金属有较好的相容性和浸润性,这对于简化颗粒增强复合材料的制备工艺是至关重要的。经对现有技术的文献检索,发现美国爱荷华州立大学能源部Ames实验室的Suleyman B.Biner等人申报了“雾化准晶颗粒增强复合材料及该材料的制备方法”的发明专利(美国专利5851317申请日为:Dec.22,1998)。该发明采用AlCuFe准晶颗粒增强铝及铝合金,得到颗粒增强铝基复合材料。其中,准晶颗粒由雾化方法制得,颗粒尺寸1-100μm。该复合材料可以采用热等静压、热压、冷压等各种压缩方法制备,增强颗粒的体积分数为5-70%。但该发明的基体材料是仅考虑铝及铝合金,没有考虑镁及镁合金;准晶颗粒仅采用雾化方法制得,没有考虑机械粉碎方法;复合材料的制备仅采用固体压缩方法,而没有考虑液态搅拌凝固方法。
本发明的目的在于克服现有技术中的不足,特别是扩大了准晶颗粒增强复合材料设计和制造的范围,提出了一种准晶颗粒增强镁基复合材料。
本发明的技术方案和发明内容如下:
本发明选用AlCuFe准晶颗粒作为镁合金基体增强材料,AlCuFe准晶除具有准晶材料的优良性能以外,同时其成分为三种最常用金属,原料来源丰富;AlCuFe准晶在热力学上稳定,属于稳定准晶,可以用任何一种常规合金制备方法来制备,只要熔化成分准确的合金料,浇铸成型,再进行适当的热处理即可,所以AlCuFe准晶的制备也是很方便的。本发明的基体材料成分选择如下:MgaAlbXcMd,其中:a+b+c+d=100表示重量百分比,
    80≤a≤100,
    0≤b≤15,
    0≤c≤3,
    0≤d≤2,
X表示Mn,Zn的一种或两种;M表示Ce,Zr,Cu,Ni,Si,Fe,Be中的至少一种,
本发明的增强材料选用AlCuFe准晶颗粒,准晶颗粒在复合材料中的体积百分比即体积分数≤50%,颗粒的直径即粒子尺度≤100μm。其准晶成分选择如下原子百分比:AlaCubFec,其中:a+b+c=100表示原子百分比,
    60≤a≤66,
    22≤b≤27,
    11≤c≤15。
以下根据上述基体材料成分和准晶颗粒成分的选择,分别提供本发明三种组分的实施例:
基体成分(重量百分比):
No.1  100%Mg
No.2  89%Mg,9.0%Al,0.5%Mn,0.5%Zn,0.5%Si,0.3%Cu,0.1%Ni,0.1%Fe
No.3 80%Mg,15.0%Al,1.6%Mn,1.4%Zn,1.0%Si,0.5%Cu,0.3%Ni,
0.2%Fe
准晶颗粒成分(原子百分比):
63%Al,25%Cu,12%Fe
准晶材料采用真空熔炼后于800℃进行24小时加热处理。采用机械粉碎方法制成约50μm的准晶颗粒。
采用搅拌铸造方法,将一定量的准晶颗粒加入氩气氛保护下的700℃熔融镁合金中,搅拌约10分钟后浇铸成锭。
本发明具有实质性特点和显著进步,现选用AZ91镁合金和AZ91-13%SiCP复合材料进行对比,SiCP的下标P表示颗粒,颗粒大小约为20μm左右,AZ91镁合金的化学成分为:8.1-9.3%Al,≥0.13%Mn,0.40-1.0%Zn,≤0.30%Si,≤0.10%Cu,≤0.01%Ni,≤0.30%其他元素,其余为Mg。本发明与AZ91镁合金相比可以显著提高基体的强度、硬度、耐磨性和热稳定性,同时具有细化晶粒作用。与陶瓷颗粒增强AZ91镁基复合材料相比,在保持其优点的同时,还具有不损害韧性,材料的制备、加工相对简单,回收利用方便,不会增加环境的负荷的优点。本发明中准晶颗粒的体积分数为15%,经410℃1小时热处理后测试其性能,其性能和效果指标对比如下:
材料     弹性模量GPa   屈服强度MPa   拉伸强度MPa   延伸率%
  No.1     43.2     113.4     143.5     2.5
  No.2     50.8     121.3     154.2     2.0
  No.3     52.1     125.2     155.6     1.6
  AZ91     34.3     102.9     140.7     4.1
  AZ91-13%SiCP     49.0     120.4     152.3     0.7

Claims (2)

1、一种准晶颗粒增强镁基复合材料,其特征在于以粒子尺度小于100μm的AlCuFe准晶颗粒增强镁基合金,增强颗粒的体积分数≤50%,准晶成分为:AlaCubFec,其中:a+b+c=100为原子百分比,
    60≤a≤66,
    22≤b≤27,
    11≤c≤15,
基体材料成分为:MgaAlbXcMd,其中:a+b+c+d=100为重量百分比,
    80≤a≤100,
    0≤b≤15,
    0≤c≤3,
    0≤d≤2,
X表示Mn,Zn的一种或两种,M表示Ce,Zr,Cu,Ni,Si,Fe,Be中的至少一种。
2、一种准晶颗粒增强镁基复合材料的制造方法,其特征在于准晶材料采用真空熔炼后于800℃进行24小时加热处理,采用机械粉碎方法制成约50μm的准晶颗粒,采用搅拌铸造方法,将一定量的准晶颗粒加入氩气氛保护下的700℃熔融镁合金中,搅拌约10分钟后浇铸成锭。
CNB00111624XA 2000-01-28 2000-01-28 准晶颗粒增强镁基复合材料 Expired - Fee Related CN1137278C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB00111624XA CN1137278C (zh) 2000-01-28 2000-01-28 准晶颗粒增强镁基复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB00111624XA CN1137278C (zh) 2000-01-28 2000-01-28 准晶颗粒增强镁基复合材料

Publications (2)

Publication Number Publication Date
CN1264746A CN1264746A (zh) 2000-08-30
CN1137278C true CN1137278C (zh) 2004-02-04

Family

ID=4581533

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00111624XA Expired - Fee Related CN1137278C (zh) 2000-01-28 2000-01-28 准晶颗粒增强镁基复合材料

Country Status (1)

Country Link
CN (1) CN1137278C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709417B (zh) * 2009-12-14 2011-06-08 南京信息工程大学 镁基原位复合材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316048C (zh) * 2005-04-07 2007-05-16 上海交通大学 镀铜碳化硅颗粒增强镁基复合材料
CN105331866B (zh) * 2015-10-14 2017-06-23 济南大学 一种Mg‑Zn‑Gd准晶增强的AZ91镁合金及其制备方法
CN111139433A (zh) * 2018-11-02 2020-05-12 佛山市顺德区美的电热电器制造有限公司 锅具及其制备方法和烹饪器具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709417B (zh) * 2009-12-14 2011-06-08 南京信息工程大学 镁基原位复合材料及其制备方法

Also Published As

Publication number Publication date
CN1264746A (zh) 2000-08-30

Similar Documents

Publication Publication Date Title
Sharma et al. Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application
Ozden et al. Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites
Sankaranarayanan et al. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach
Nishiyama et al. Damping properties of a sintered Mg–Cu–Mn alloy
Suresh et al. Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy
Logesh et al. Mechanical properties and microstructure of A356 alloy reinforced AlN/MWCNT/graphite/Al composites fabricated by stir casting
Sharma et al. Experimental investigation on effect of RE oxides addition on tribological and mechanical properties of Al-6063 based hybrid composites
Wang et al. Simultaneously improving strength and ductility of AZ91-type alloys with minor Gd addition
Yuan et al. A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes
CN101538672B (zh) 一种金属间化合物超细颗粒增强金属基复合材料
Milenkovic et al. Microstructure and mechanical properties of directionally solidified Fe–Al–Nb eutectic
CN102517479B (zh) 轴瓦用复合材料及其制备方法
Adamiak Selected properties of the aluminium alloy base composites reinforced with intermetallic particles
CN1137278C (zh) 准晶颗粒增强镁基复合材料
Shamim et al. Microstructures and mechanical properties of Al-Si-Mg-Ti/egg shell particulate composites
Ning et al. Redistribution and re-precipitation of solute atom during retrogression and reaging of Al-Zn-Mg-Cu alloys
Tunçay et al. The effects of Cr and Zr additives on the microstructure and mechanical properties of A356 alloy
Zhenzhen et al. Effect of Cu content on the microstructures and wear performance of Al–Si–Cu–Ni–Mg alloy based SiC reinforcement composites
Singh et al. Tribological behaviour of eggshell ash and boron carbide reinforced ZA-27 hybrid metal matrix composites under dry sliding conditions
CN1151299C (zh) 钛基复合材料自反应-粉末冶金制备的方法
Gairola et al. Laser powder bed fusion on Ti modified Al 2024 alloy: Influence of build orientation and T6 treatment on mechanical behaviour, microstructural features and strengthening mechanisms
Zhao et al. Influence of reheating temperature on the microstructures and tensile properties of a short-carbon-fiber-reinforced magnesium matrix composite
Akinwande et al. Mechanical strengthening and micro-mechanical modelling of newly fabricated 7068-aluminium/lightweight-high-entropy-alloy as aero-material
Palanivendhan et al. Fabrication and characterization of ADC-12 hybrid composites utilizing lemon grass ash and boron nitride through stir-squeeze casting method
Li et al. In situ synthesized Ti5Si3/Ti–Mo lightweight structural composites

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee