CN113723479A - 一种基于grnn与均值漂移算法的非侵入式负荷识别方法 - Google Patents

一种基于grnn与均值漂移算法的非侵入式负荷识别方法 Download PDF

Info

Publication number
CN113723479A
CN113723479A CN202110947198.4A CN202110947198A CN113723479A CN 113723479 A CN113723479 A CN 113723479A CN 202110947198 A CN202110947198 A CN 202110947198A CN 113723479 A CN113723479 A CN 113723479A
Authority
CN
China
Prior art keywords
grnn
window
voltage
track
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110947198.4A
Other languages
English (en)
Inventor
卞海红
孙鑫
李丙华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202110947198.4A priority Critical patent/CN113723479A/zh
Publication of CN113723479A publication Critical patent/CN113723479A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,包括选取V‑I轨迹特性曲线作为投切监测识别特征;接着引入基于GRNN的神经网络架构对V‑I图像进行特征提取得到轨迹图像的低维表示;最后结合均值漂移聚类算法通过对低维向量进行分类,间接实现初始识别特征的分类,进而完成对此场景下的异常电器的监测本发明的有益效果:电压电流信号包含的信息更加丰富,负荷特征保留相对完整,识别准确率较高。

Description

一种基于GRNN与均值漂移算法的非侵入式负荷识别方法
技术领域
本发明涉及非侵入式负荷监测技术领域,具体是一种基于GRNN与均值漂移算法的非侵入式负荷识别方法。
背景技术
世界各国正在进行智能电网和相关应用的开发和部署,利用智能电表采集的数据,可以最大程度地发挥智能电网的优势。利用智能电表采集的数据,可以识别用户家庭中的电器类型,即实现负荷识别。负荷识别方法从传感器数目可以分为侵入式和非侵入式两种。侵入式负荷识别需要针对每个电器进行安装对应传感器,额外的设备和较高的成本使得侵入式方法难以推广。非侵入式负荷识别仅仅需要从家庭已安装的单个总线智能电表收集数据,并通过对智能电表的数据分析,将家庭总用电量分解到单一电器的能耗,有助于实现用电情况反馈,帮助用户节省能源,同时有利于供给侧准确计费。相比于侵入式负荷识别,非侵入式负荷识别成本较低,易于推广,因此被广泛研究。
非侵入式负荷监测技术可以分为三大类,第一类是基于暂态和稳态电气特征的识别方法,第二类是数学优化类识别方法,第三类是基于有功功率和无功功率的智能识别方法。这三类负荷设备识别方法都属于计算密集型方法,需要大量样本数据进行训练,这些方法计算复杂度高,对硬件要求较高,从而限制了该方法在智能电表的应用。
发明内容
本发明的目的在于提供一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,包括以下步骤:
步骤一:根据家庭电表处功率数据的变化判断投切事件的发生;
步骤二:当发生投切事件时,采集发生投切事件的电器电压和电流信号特征,并对其进行平滑处理,然后根据V-I轨迹特征的量化算法得出轨迹的十个特征值;
步骤三:设计适用于非侵入式负荷识别的GRNN网络,所述GRNN网络由输入层、模式层、求和层和输出层组成,设置输入层的神经元数目,模式层神经元传递函数、求和层神经元计算公式和传递函数、输出层神经元数目,输入层神经元数目等于学习样本中输入向量的维度,输出层中的神经元个数等于训练样本中输出向量维度,输出层输出是第二个节点除以第一个节点;
步骤四:将负荷的特征作为GRNN模型的输入,电器类别作为GRNN模型的输出,使用公开数据集对GRNN网络进行训练,然后将经过处理的轨迹特征值输入到训练完毕的GRNN模型中,得到负荷辨识的结果;
步骤五:将GRNN模型处理之后的低维特征向量运用均值漂移算法进行聚类,减少因部分电器V-I轨迹近似而带来的辨识错误。
作为本发明进一步的方案:在步骤五中,所述漂移算法的具体步骤如下:
S1:确定滑动窗口半径R,以随机选取的中心点C为半径r的圆形滑动窗口开始滑动,在每一次迭代中向密度更高的区域移动,直到收敛;
S2:每一次滑动到新的区域,计算滑动窗口内的均值来作为中心点,滑动窗口内的点的数量为窗口内的密度,在每一次的移动中,窗口会向密度更高的区域移动;
S3:移动窗口,计算窗口内的中心点以及窗口内的密度,直到没有方向在窗口内可以容纳更多的点,即一直移动到圆内密度不再增加为止;
S4:在步骤一到步骤三中会产生多个滑动窗口,当多个滑动窗口重叠时,保留包含最多点的窗口,然后根据数据点所在的滑动窗口进行聚类。
作为本发明进一步的方案:在步骤二中,选取V-I轨迹特性曲线作为投切监测识别特征;接着引入基于GRNN的神经网络架构对V-I图像进行特征提取得到轨迹图像的低维表示。
作为本发明进一步的方案:在步骤二中,轨迹特征的量化是对轨迹上点的数值运算,因此,轨迹数据的准确性将直接影响特征提取和负载识别过程,考虑ton前T秒和Toff后T秒每秒的电压和电流波形数据周期,VVon,VVoff,IIon和IIoff分别表示事件之前和之后的T个周期中的电压和电流数据集,由于V-I轨迹的提取需要在不同的电压和电流波形周期上运行,因此每个周期的VVon,VVoff,IIon和IIoff的初始相位角必须相同,取每个周期VVon,VVoff,IIon和IIoff的相同点的平均值,以获得事件前后循环中的稳定电压和电流数据,它们表示为Von,Voff,Ion和Ioff,电器的电压和电流分别定义为(Von+Voff)/2和Ioff-Ion。
与现有技术相比,本发明的有益效果是:电压电流信号包含的信息更加丰富,负荷特征保留相对完整,识别准确率较高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明GRNN网络结构示意图;
图2为本发明流程步骤图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明实施例中,一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,包括以下步骤:
步骤一:根据家庭电表处功率数据的变化判断投切事件的发生;
步骤二:当发生投切事件时,采集发生投切事件的电器电压和电流信号特征,并对其进行平滑处理,然后根据V-I轨迹特征的量化算法得出轨迹的十个特征值;
步骤三:设计适用于非侵入式负荷识别的GRNN网络,所述GRNN网络由输入层、模式层、求和层和输出层组成,设置输入层的神经元数目,模式层神经元传递函数、求和层神经元计算公式和传递函数、输出层神经元数目,输入层神经元数目等于学习样本中输入向量的维度,输出层中的神经元个数等于训练样本中输出向量维度,输出层输出是第二个节点除以第一个节点;
步骤四:将负荷的特征作为GRNN模型的输入,电器类别作为GRNN模型的输出,使用公开数据集对GRNN网络进行训练,然后将经过处理的轨迹特征值输入到训练完毕的GRNN模型中,得到负荷辨识的结果;
步骤五:将GRNN模型处理之后的低维特征向量运用均值漂移算法进行聚类,减少因部分电器V-I轨迹近似而带来的辨识错误。
值得注意的是,在步骤五中,所述漂移算法的具体步骤如下:
S1:确定滑动窗口半径R,以随机选取的中心点C为半径r的圆形滑动窗口开始滑动,在每一次迭代中向密度更高的区域移动,直到收敛;
S2:每一次滑动到新的区域,计算滑动窗口内的均值来作为中心点,滑动窗口内的点的数量为窗口内的密度,在每一次的移动中,窗口会向密度更高的区域移动;
S3:移动窗口,计算窗口内的中心点以及窗口内的密度,直到没有方向在窗口内可以容纳更多的点,即一直移动到圆内密度不再增加为止;
S4:在步骤一到步骤三中会产生多个滑动窗口,当多个滑动窗口重叠时,保留包含最多点的窗口,然后根据数据点所在的滑动窗口进行聚类。
值得注意的是,在步骤二中,选取V-I轨迹特性曲线作为投切监测识别特征;接着引入基于GRNN的神经网络架构对V-I图像进行特征提取得到轨迹图像的低维表示。
值得注意的是,在步骤二中,轨迹特征的量化是对轨迹上点的数值运算,因此,轨迹数据的准确性将直接影响特征提取和负载识别过程,考虑ton前T秒和Toff后T秒每秒的电压和电流波形数据周期,VVon,VVoff,IIon和IIoff分别表示事件之前和之后的T个周期中的电压和电流数据集,由于V-I轨迹的提取需要在不同的电压和电流波形周期上运行,因此每个周期的VVon,VVoff,IIon和IIoff的初始相位角必须相同,取每个周期VVon,VVoff,IIon和IIoff的相同点的平均值,以获得事件前后循环中的稳定电压和电流数据,它们表示为Von,Voff,Ion和Ioff,电器的电压和电流分别定义为(Von+Voff)/2和Ioff-Ion。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。。

Claims (4)

1.一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,其特征在于:包括以下步骤:
步骤一:根据家庭电表处功率数据的变化判断投切事件的发生;
步骤二:当发生投切事件时,采集发生投切事件的电器电压和电流信号特征,并对其进行平滑处理,然后根据V-I轨迹特征的量化算法得出轨迹的十个特征值;
步骤三:设计适用于非侵入式负荷识别的GRNN网络,所述GRNN网络由输入层、模式层、求和层和输出层组成,设置输入层的神经元数目,模式层神经元传递函数、求和层神经元计算公式和传递函数、输出层神经元数目,输入层神经元数目等于学习样本中输入向量的维度,输出层中的神经元个数等于训练样本中输出向量维度,输出层输出是第二个节点除以第一个节点;
步骤四:将负荷的特征作为GRNN模型的输入,电器类别作为GRNN模型的输出,使用公开数据集对GRNN网络进行训练,然后将经过处理的轨迹特征值输入到训练完毕的GRNN模型中,得到负荷辨识的结果;
步骤五:将GRNN模型处理之后的低维特征向量运用均值漂移算法进行聚类,减少因部分电器V-I轨迹近似而带来的辨识错误。
2.根据权利要求1所述的一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,其特征在于:在步骤五中,所述漂移算法的具体步骤如下:
S1:确定滑动窗口半径R,以随机选取的中心点C为半径r的圆形滑动窗口开始滑动,在每一次迭代中向密度更高的区域移动,直到收敛;
S2:每一次滑动到新的区域,计算滑动窗口内的均值来作为中心点,滑动窗口内的点的数量为窗口内的密度,在每一次的移动中,窗口会向密度更高的区域移动;
S3:移动窗口,计算窗口内的中心点以及窗口内的密度,直到没有方向在窗口内可以容纳更多的点,即一直移动到圆内密度不再增加为止;
S4:在步骤一到步骤三中会产生多个滑动窗口,当多个滑动窗口重叠时,保留包含最多点的窗口,然后根据数据点所在的滑动窗口进行聚类。
3.根据权利要求1所述的一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,其特征在于:在步骤二中,选取V-I轨迹特性曲线作为投切监测识别特征;接着引入基于GRNN的神经网络架构对V-I图像进行特征提取得到轨迹图像的低维表示。
4.根据权利要求1所述的一种基于GRNN与均值漂移算法的非侵入式负荷识别方法,其特征在于:在步骤二中,轨迹特征的量化是对轨迹上点的数值运算,因此,轨迹数据的准确性将直接影响特征提取和负载识别过程,考虑ton前T秒和Toff后T秒每秒的电压和电流波形数据周期,VVon,VVoff,IIon和IIoff分别表示事件之前和之后的T个周期中的电压和电流数据集,由于V-I轨迹的提取需要在不同的电压和电流波形周期上运行,因此每个周期的VVon,VVoff,IIon和IIoff的初始相位角必须相同,取每个周期VVon,VVoff,IIon和IIoff的相同点的平均值,以获得事件前后循环中的稳定电压和电流数据,它们表示为Von,Voff,Ion和Ioff,电器的电压和电流分别定义为(Von+Voff)/2和Ioff-Ion。
CN202110947198.4A 2021-08-18 2021-08-18 一种基于grnn与均值漂移算法的非侵入式负荷识别方法 Pending CN113723479A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110947198.4A CN113723479A (zh) 2021-08-18 2021-08-18 一种基于grnn与均值漂移算法的非侵入式负荷识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110947198.4A CN113723479A (zh) 2021-08-18 2021-08-18 一种基于grnn与均值漂移算法的非侵入式负荷识别方法

Publications (1)

Publication Number Publication Date
CN113723479A true CN113723479A (zh) 2021-11-30

Family

ID=78676207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110947198.4A Pending CN113723479A (zh) 2021-08-18 2021-08-18 一种基于grnn与均值漂移算法的非侵入式负荷识别方法

Country Status (1)

Country Link
CN (1) CN113723479A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302217A (zh) * 2017-06-02 2017-10-27 广东中粤售电科技有限公司 基于v‑i轨迹的非侵入式负荷分解方法及系统
CN107330517A (zh) * 2017-06-14 2017-11-07 华北电力大学 一种基于S_Kohonen非侵入式居民负荷识别方法
CN110633867A (zh) * 2019-09-23 2019-12-31 国家电网有限公司 一种基于gru和注意力机制的超短期负荷预测模型
CN111553444A (zh) * 2020-05-15 2020-08-18 东南大学 一种基于非侵入负荷终端数据的负荷辨识方法
CN111766462A (zh) * 2020-05-14 2020-10-13 中国计量大学 一种基于v-i轨迹的非侵入式负荷识别方法
CN111830347A (zh) * 2020-07-17 2020-10-27 四川大学 一种基于事件的两阶段非侵入式负荷监测方法
CN112067918A (zh) * 2020-07-27 2020-12-11 南京航灵信息科技有限公司 基于事件检测的非侵入式负荷识别方法和系统
CN112418722A (zh) * 2020-12-08 2021-02-26 浙江大学 基于v-i轨迹图和神经网络的非侵入式负荷识别方法
CN112821559A (zh) * 2021-01-22 2021-05-18 西安理工大学 一种非侵入式家电负荷深度再识别方法
CN113036759A (zh) * 2021-03-31 2021-06-25 上海电力大学 一种电力用户负荷细粒度识别方法及识别系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302217A (zh) * 2017-06-02 2017-10-27 广东中粤售电科技有限公司 基于v‑i轨迹的非侵入式负荷分解方法及系统
CN107330517A (zh) * 2017-06-14 2017-11-07 华北电力大学 一种基于S_Kohonen非侵入式居民负荷识别方法
CN110633867A (zh) * 2019-09-23 2019-12-31 国家电网有限公司 一种基于gru和注意力机制的超短期负荷预测模型
CN111766462A (zh) * 2020-05-14 2020-10-13 中国计量大学 一种基于v-i轨迹的非侵入式负荷识别方法
CN111553444A (zh) * 2020-05-15 2020-08-18 东南大学 一种基于非侵入负荷终端数据的负荷辨识方法
CN111830347A (zh) * 2020-07-17 2020-10-27 四川大学 一种基于事件的两阶段非侵入式负荷监测方法
CN112067918A (zh) * 2020-07-27 2020-12-11 南京航灵信息科技有限公司 基于事件检测的非侵入式负荷识别方法和系统
CN112418722A (zh) * 2020-12-08 2021-02-26 浙江大学 基于v-i轨迹图和神经网络的非侵入式负荷识别方法
CN112821559A (zh) * 2021-01-22 2021-05-18 西安理工大学 一种非侵入式家电负荷深度再识别方法
CN113036759A (zh) * 2021-03-31 2021-06-25 上海电力大学 一种电力用户负荷细粒度识别方法及识别系统

Similar Documents

Publication Publication Date Title
Dinesh et al. Residential appliance identification based on spectral information of low frequency smart meter measurements
Shi et al. Nonintrusive load monitoring in residential households with low-resolution data
CN112434799B (zh) 基于全卷积神经网络的非侵入式负荷识别方法
Chen et al. NeuCast: Seasonal Neural Forecast of Power Grid Time Series.
Sulaiman et al. Artificial neural network based day ahead load forecasting using Smart Meter data
CN109193635B (zh) 一种基于自适应稀疏回归方法的配电网拓扑结构重建方法
CN111027408A (zh) 一种基于支持向量机和v-i曲线特征的负荷识别方法
CN111639586B (zh) 非侵入式负荷识别模型构建方法、负荷识别方法及系统
CN114970633B (zh) 一种基于lstm的非侵入式用电器识别方法、系统及设备
CN113036759B (zh) 一种电力用户负荷细粒度识别方法及识别系统
CN116381517A (zh) 基于时间卷积注意力机制的锂电池剩余寿命概率预测方法
Zhan et al. A Two-Stage transient stability prediction method using convolutional residual memory network and gated recurrent unit
Yoon et al. Deep learning-based method for the robust and efficient fault diagnosis in the electric power system
CN113193654A (zh) 一种基于暂稳态组合特征的由事件驱动的非侵入式电力负荷监测方法
CN113010985A (zh) 一种基于并行aann的非侵入式负荷识别方法
CN113723479A (zh) 一种基于grnn与均值漂移算法的非侵入式负荷识别方法
Gurbuz et al. A brief review of non-intrusive load monitoring and its impact on social life
CN115859190A (zh) 一种基于因果关系的非侵入式家庭电气分类方法
Guohua et al. Research on non-intrusive load monitoring based on random forest algorithm
Hasan et al. A new smart approach of an efficient energy consumption management by using a machinelearning technique
CN114325081A (zh) 一种基于多模态特征的非侵入式负荷识别方法
CN110244115B (zh) 一种基于信号连接性的负载开关事件检测方法及系统
Wei et al. Working Status Mining Enhanced Sequence-to-sequence Network for Non-intrusive Load Monitoring on Industrial Power Data
Li et al. Extraction of Abnormal Points from On-line Operation Data of Intelligent Meter Based on LSTM
Yang et al. Simulation‐data‐driven load disaggregation based on multi‐channel neural network for industrial and commercial users

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination