CN113717331A - Star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength and preparation method thereof - Google Patents
Star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength and preparation method thereof Download PDFInfo
- Publication number
- CN113717331A CN113717331A CN202111064570.3A CN202111064570A CN113717331A CN 113717331 A CN113717331 A CN 113717331A CN 202111064570 A CN202111064570 A CN 202111064570A CN 113717331 A CN113717331 A CN 113717331A
- Authority
- CN
- China
- Prior art keywords
- sibr
- block
- butadiene
- abs resin
- styrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 title claims abstract description 48
- 229920001400 block copolymer Polymers 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims abstract description 152
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 132
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims abstract description 124
- 239000003999 initiator Substances 0.000 claims abstract description 56
- 229920005683 SIBR Polymers 0.000 claims abstract description 55
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229920001577 copolymer Polymers 0.000 claims abstract description 21
- 239000000178 monomer Substances 0.000 claims abstract description 20
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 claims abstract description 5
- 229920006026 co-polymeric resin Polymers 0.000 claims abstract description 3
- 229920000578 graft copolymer Polymers 0.000 claims abstract description 3
- 239000005062 Polybutadiene Substances 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 29
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 24
- 229910052744 lithium Inorganic materials 0.000 claims description 20
- 238000006116 polymerization reaction Methods 0.000 claims description 19
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical group CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 18
- 230000000977 initiatory effect Effects 0.000 claims description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 12
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 150000002978 peroxides Chemical group 0.000 claims description 10
- 229920002857 polybutadiene Polymers 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 150000003254 radicals Chemical class 0.000 claims description 10
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- -1 alkyl hydroperoxide Chemical compound 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 4
- 239000012986 chain transfer agent Substances 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 claims description 4
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 claims description 3
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000010526 radical polymerization reaction Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- HGXJDMCMYLEZMJ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOOC(=O)C(C)(C)C HGXJDMCMYLEZMJ-UHFFFAOYSA-N 0.000 claims description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 claims description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 claims description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 2
- PYFPOGNWBCNPEO-UHFFFAOYSA-N acetyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(C)=O PYFPOGNWBCNPEO-UHFFFAOYSA-N 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000012933 diacyl peroxide Substances 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 claims description 2
- 230000001502 supplementing effect Effects 0.000 claims description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- VXTYNAYYDYWUSP-UHFFFAOYSA-N 1,1-ditert-butyl-4-(4,4-ditert-butylcyclohexyl)peroxycyclohexane Chemical compound C(C)(C)(C)C1(CCC(CC1)OOC1CCC(CC1)(C(C)(C)C)C(C)(C)C)C(C)(C)C VXTYNAYYDYWUSP-UHFFFAOYSA-N 0.000 claims 1
- FYLJKQFMQFOLSZ-UHFFFAOYSA-N cyclohexylperoxycyclohexane Chemical compound C1CCCCC1OOC1CCCCC1 FYLJKQFMQFOLSZ-UHFFFAOYSA-N 0.000 claims 1
- 239000002861 polymer material Substances 0.000 abstract description 2
- 229920001002 functional polymer Polymers 0.000 abstract 1
- 229920001971 elastomer Polymers 0.000 description 10
- 239000005060 rubber Substances 0.000 description 10
- 239000012745 toughening agent Substances 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- UPFSSGBBQBZBNJ-UHFFFAOYSA-N CC(C)(C)C1(CCC(CC1)OC(=O)OOC(=O)O)C(C)(C)C Chemical compound CC(C)(C)C1(CCC(CC1)OC(=O)OOC(=O)O)C(C)(C)C UPFSSGBBQBZBNJ-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- BLCKNMAZFRMCJJ-UHFFFAOYSA-N cyclohexyl cyclohexyloxycarbonyloxy carbonate Chemical compound C1CCCCC1OC(=O)OOC(=O)OC1CCCCC1 BLCKNMAZFRMCJJ-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 150000008301 phosphite esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- GSECCTDWEGTEBD-UHFFFAOYSA-N tert-butylperoxycyclohexane Chemical compound CC(C)(C)OOC1CCCCC1 GSECCTDWEGTEBD-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F287/00—Macromolecular compounds obtained by polymerising monomers on to block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
- C08F297/042—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a polyfunctional initiator
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
- C08F297/046—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/46—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
- C08F4/48—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
- C08F4/486—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium at least two metal atoms in the same molecule
- C08F4/488—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium at least two metal atoms in the same molecule at least two lithium atoms in the same molecule
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
Abstract
The invention belongs to the technical field of functional polymer materials, and provides a star-shaped block copolymer ABS resin with ultrahigh impact strength for solving the problem of lower impact strength of ABS resin in the prior art, wherein the ABS resin is styrene/acrylonitrile/(SIBR-BR) n-C copolymer resin which is a graft copolymer of (SIBR-BR) n-C and monomer styrene and acrylonitrile; based on 100 percent of the mass of the ABS resin, the acrylonitrile content is 5 to 45 percent, and the (SIBR-BR) n-C content is 3 to 35 percent. Wherein (SIBR-BR) n-C is a butadiene, isoprene, styrene radial block copolymer, SIBR is a butadiene, isoprene, styrene copolymer block, BR is a butadiene homopolymer block, C is a polyfunctional alkyllithium initiator residue, n is an initiator functionality, n is a natural number, and n is 3-50. The ratio of the SIBR block to the BR block in (SIBR-BR) n-C, SIBR/BR mass ratio, is 1: 9-9: 1; based on the mass of the SIBR block as 100 percent, the butadiene content of the SIBR block is 5 to 85 percent, and the isoprene content of the SIBR block is 5 to 85 percent.
Description
Technical Field
The invention belongs to the technical field of functionalized high polymer materials, and particularly relates to an ABS resin with ultrahigh impact strength of a star block copolymer (SIBR-BR) n-C and a preparation method thereof.
Background
Styrene-isoprene-butadiene rubber (SIBR) is an ideal integrated rubber with better comprehensive performance, and the rolling resistance and the traction performance reach good balance, so the SIBR is a novel tread rubber type which is extremely expected. China has abundant C5 resources, but the comprehensive utilization rate is not high, and the isoprene (I) is used as an important component of C5, so that the potential yield is high. Therefore, it is a very realistic problem in the field of synthetic materials to solve the problem of comprehensive utilization of isoprene (I). Secondly, natural rubber resources in China are very limited, so that the domestic requirements are difficult to meet, and isoprene rubber is the most ideal substitute. In the field of polymer modification, it is more desirable to directly produce synthetic materials with excellent comprehensive properties from a reactor to replace the physical blending modification of polymers. The ternary polymerization can just meet the requirement, and can realize the chemical blending of a plurality of polymers to produce integrated rubber. Therefore, the method has practical significance for developing styrene, isoprene and butadiene terpolymer by utilizing abundant domestic C5 resources and producing novel materials with high added values.
At present, the foreign development of styrene, isoprene and butadiene terpolymer takes monofunctional alkyl lithium as initiator, and the application range is limited to tread rubber of vehicles such as trucks. The research institute of Beijing Yanshan petrochemical company uses dilithium initiator which is independently developed by the institute and has better solubility in nonpolar solvent, and takes styrene, isoprene and butadiene as monomers to synthesize a series of symmetrical binary and ternary block copolymers and stereoblock copolymers, and has formed a series of patent technologies. In order to save energy, the automobile industry is striving to develop a novel tread rubber which can reduce rolling resistance, reduce heat generation, and improve wet skid resistance and wear resistance to ensure durability and safe running of a tire. Blending synthetic rubber with natural rubber is commonly used for this purpose, but the results are not completely satisfactory.
The ABS resin is usually prepared by using classical polybutadiene rubber or butadiene, isoprene and styrene copolymer rubber as a toughening agent, dissolving the toughening agent in styrene and acrylonitrile according to a certain proportion, and adopting an initiator initiation method. After the rubber toughening agent is added, the impact resistance of SAN resin is greatly improved, but ABS resin with ultrahigh impact strength is difficult to obtain by adopting the general rubber as the toughening agent, and the Izod impact strength of the ABS resin prepared by adopting the classical polybutadiene rubber or butadiene, isoprene and styrene copolymer rubber as the toughening agent is difficult to be more than 300J/m, so that the use of the ABS olefin resin is limited to a certain extent. At present, no data is reported on how to effectively further improve the impact resistance of ABS resin.
Disclosure of Invention
In order to solve the problem that the ABS resin prepared by adopting the classical polybutadiene rubber or butadiene, isoprene and styrene copolymer rubber as a toughening agent in the prior art has low impact strength, the invention provides the ultrahigh impact strength ABS resin of a star block copolymer (SIBR-BR) n-C and a preparation method thereof.
In a first aspect, the invention provides a star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength, wherein the ABS resin is a styrene/acrylonitrile/(SIBR-BR) n-C copolymer resin which is a graft copolymer of (SIBR-BR) n-C and monomer styrene and acrylonitrile;
wherein (SIBR-BR) n-C is a butadiene, isoprene, styrene radial block copolymer, SIBR is a butadiene, isoprene, styrene copolymer block, BR is a butadiene homopolymer block, C is a polyfunctional alkyllithium initiator residue, n is an initiator functionality, n is a natural number, and n is 3-50;
the ABS resin has a number average molecular weight of 5 × 104-80×104g/mol; based on 100 percent of the mass of the ABS resin, the acrylonitrile content is 5 to 45 percent, the (SIBR-BR) n-C content is 3 to 35 percent,
the number average molecular weight range of the (SIBR-BR) n-C is 4 in a roll104-50×104g/mol, the mass ratio of the SIBR block to the polybutadiene BR block is 1: 9-9: 1;
based on the mass of a butadiene, isoprene and styrene copolymer SIBR block as 100 percent, the butadiene content of the SIBR block is 5 to 85 percent, the isoprene content is 5 to 85 percent, and the styrene content is 5 to 50 percent.
Further, the content of butadiene in the SIBR block is 10-60% by mass of the SIBR block of a copolymer of butadiene, isoprene and styrene as 100%; the content of isoprene is 20-60%; the content of styrene is 10-35%.
Further, the mass ratio of the butadiene, isoprene and styrene copolymer SIBR block to the polybutadiene BR block is 3: 7-7: 3.
further, the number average molecular weight of the ABS resin is in the range of 10 x 104-50×104g/mol; the number average molecular weight of the (SIBR-BR) n-C is in the range of 5X 104-30×104g/mol。
Further, the mass ratio of (SIBR-BR) n-C is 12-16% based on 100% of the mass of the ABS resin; the mass ratio of the butadiene, isoprene and styrene copolymer SIBR block to the polybutadiene BR block is 9: 3-4; based on 100 percent of the total weight of the butadiene, isoprene and styrene copolymer SIBR block, the mass percentage of butadiene in the SIBR block is 40-45 percent, the mass content of isoprene is 40-45 percent, and the mass content of styrene is 15-20 percent.
Further, the acrylonitrile content is 10-25% based on 100% of the mass of the ABS resin; the content of (SIBR-BR) n-C is in the range of 5% to 25%.
Further, the mass ratio of (SIBR-BR) n-C is 12-16% based on 100% of the mass of the ABS resin; the mass ratio of the butadiene, isoprene and styrene copolymer SIBR block to the polybutadiene BR block is 9: 3-4; based on the mass of a butadiene, isoprene and styrene copolymer SIBR block as 100 percent, the butadiene content in the SIBR block is 40 to 45 percent, the isoprene content is 40 to 45 percent, and the styrene content is 15 to 20 percent.
Further, the initiator functionality n is optimally in the range of 3-10.
In a second aspect, the invention provides a preparation method of an ABS resin with ultrahigh impact strength of a star block copolymer (SIBR-BR) n-C, which specifically comprises the following steps:
step one, a star block copolymer (SIBR-BR) n-C; adding a first batch of butadiene monomer and a polar additive into a reactor according to the monomer ratio in a nonpolar hydrocarbon solvent, and adding a polyfunctional group lithium initiator when the initiation reaction temperature reaches 10-90 ℃ to prepare a butadiene homopolymer block BR;
after the butadiene is completely reacted, adding a second batch of butadiene, isoprene and styrene monomers containing polar additives into the reactor once according to the monomer ratio to start to prepare a butadiene, isoprene and styrene copolymer block SIBR, and after the butadiene, isoprene and styrene are completely reacted, terminating the reaction to obtain a (SIBR-BR) n-C star block copolymer;
step two, preparing ABS resin, adding acrylonitrile into the (SIBR-BR) n-C glue solution prepared in the step one according to the requirement of the (SIBR-BR) n-C content in the ABS resin, and supplementing styrene to adjust the concentration of the glue solution; selecting a chain transfer agent to adjust the molecular weight of the ABS resin; adding a free radical initiator to initiate polymerization reaction by adopting a free radical polymerization method, wherein the initiation reaction temperature is 100-120 ℃, and after the reaction is finished, performing post-treatment on the polymer to obtain ABS resin;
the chain transfer agent is ethylbenzene, and the dosage of the ethylbenzene is 5-25% of the total mass of the reaction monomers;
the free radical initiator is peroxide or azodicarbonitrile compound, and the dosage of the free radical initiator is 150ppm-600 ppm;
the multifunctional lithium initiator is selected from one or a mixture of several multifunctional lithium initiators in RLin and T (RLi) n, wherein: r is a hydrocarbon group with 4-20 carbon atoms, and T is a metal atom of Sn, Si, Pb, Ti and Ge; c is a polyfunctional alkyllithium initiator residue, n is the initiator functionality, n is a natural number and ranges from 3 to 50.
Further, the peroxide initiator is selected from at least one of diacyl peroxide, peroxydicarbonate, peroxycarboxylate, alkyl hydroperoxide and dialkyl peroxide.
Further, the azobisnitrile compound is at least one selected from azobisisobutyronitrile and azobisisoheptonitrile.
Further, the peroxide is selected from dibenzoyl peroxide, di-o-methylbenzoyl peroxide, acetyl isobutyryl peroxide, diisolactone peroxydicarbonate, dicyclohexyl peroxydicarbonate, di-tert-butylcyclohexyl peroxydicarbonate, tert-butyl peroxypivalate, tert-butyl peroxybenzoate, tert-butyl hydroperoxide, cumene hydroperoxide, 1-bis (tert-butyl peroxy) cyclohexane, dicumyl peroxide; wherein the azobisnitrile initiator is at least one of azobisisobutyronitrile and azobisisoheptonitrile.
And further, adding an anti-aging agent after the reaction is finished, carrying out post-treatment on the polymer by adopting a traditional method, and carrying out analysis and test after the product is dried. The free radical polymerization initiation method may employ thermal initiation or initiator initiation.
Further, the anti-aging agent is hindered phenol or a mixture of hindered phenol and phosphite ester.
Further, the multifunctional lithium initiator RLin is selected from various polychelated organic lithium initiators obtained by reacting divinylbenzene with alkyl lithium.
Further, the multifunctional lithium initiator T (RLi) n is selected from Sn containing tin, Si type multifunctional organic lithium initiator Sn (RLi) n, Si (RLi) n, and the optimal range is Sn (RLi)4、Si(RLi)4。
Further, the polar additive is selected from one or a mixture of oxygen-containing, nitrogen-containing, sulfur-containing and phosphorus-containing polar compounds and metal alkoxide compounds, and the optimal range is at least one of diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, hexamethylphosphoric triamide and tetramethylethylenediamine.
Further, the nonpolar hydrocarbon solvent is selected from one of benzene, toluene, ethylbenzene, xylene, pentane, hexane, heptane, octane, cyclohexane, mixed xylene, and raffinate oil.
The invention has the beneficial effects that:
the preparation of the ABS resin with ultrahigh impact strength is realized by adopting methods such as a bulk method, a bulk-suspension method, a solution method, a suspension method and the like, and the continuous bulk method is the best implementation process route. Compared with the common ABS resin, the obtained product has obviously improved impact strength.
Detailed Description
In order that the above objects, features and advantages of the present invention may be more clearly understood, a solution of the present invention will be further described below. It should be noted that the embodiments of the present invention and features of the embodiments may be combined with each other without conflict.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, but the present invention may be practiced in other ways than those described herein; it is to be understood that the embodiments described in this specification are only some embodiments of the invention, and not all embodiments.
Preferred embodiments of the present invention will be described in detail with reference to the following examples. It is to be understood that the following examples are given for illustrative purposes only and are not intended to limit the scope of the present invention. Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the spirit and scope of this invention.
The experimental methods and calculation methods used in the following examples are conventional methods unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The performance test instrument used in the embodiment of the present invention:
the microstructure is tested by nuclear magnetic resonance spectroscopy, the molecular weight and the molecular weight distribution thereof are tested by Gel Permeation Chromatography (GPC), the notched Izod impact strength (Izod) is tested according to ISO180:2000 standard, and the tensile yield strength, the tensile breaking strength and the bending strength are tested by a universal tester.
The polyfunctional group lithium initiator used in the following examples is a polychelated organic lithium initiator and the synthesis method is as follows: under the protection of high-purity nitrogen, adding 160 g of cyclohexane, 11 g of butadiene, 80mmol of Tetrahydrofuran (THF) and 100mmol of Divinylbenzene (DVB) into a 500ml dry saline bottle according to the ratio, uniformly mixing, adding 100mmol of n-butyllithium by using a syringe, reacting at 70 ℃ for 30 minutes to generate a deep red homogeneous polychelate organic lithium initiator solution, wherein the initiator concentration is measured by adopting a double titration method. (SIBR-BR) n-C radial block copolymer: b1 is the amount of butadiene in the first batch (for preparing BR block), B2 is the amount of butadiene in the second batch (for preparing SIBR block), I is the amount of isoprene, S is the amount of styrene, the monomer ratio (weight ratio) of butadiene B2, isoprene I and styrene S in the SIBR block, and the SIBR/BR is the weight ratio of the SIBR block to the BR block.
Example 1
(SIBR-BR) n-C radial block copolymer: adding 3.5 liters of cyclohexane and 140 grams of butadiene into a 5 liter stainless steel reaction kettle with a stirrer, heating to 50 ℃, adding a polyfunctional group lithium initiator, and completing the polymerization reaction of the butadiene when the polymerization reaction is carried out for 30 minutes; then 87.5g of butadiene, 87.5g of isoprene and 35g of styrene containing polar additives THF are added, the THF/Li (molar ratio) is 35, the reaction is continued for 60 minutes, and after the polymerization reaction of butadiene, isoprene and styrene is completely finished, a terminator is added to end the reaction. (SIBR-BR) n-C radial block copolymer: b1 represents 140g of the first butadiene charge (used for preparing the BR block); b2 is the amount of butadiene used in the second batch (for preparing the SIBR block) 87.5g, I is the amount of isoprene 87.5g, S is the amount of styrene 35g, the ratio (weight ratio) of butadiene, isoprene and styrene monomers in the SIBR block is 41.5% (by weight), isoprene 41.5% (by weight) and styrene 17% (by weight); the ratio of SIBR block to BR block, SIBR/BR, was 60/40 (weight ratio); the number average molecular weight was 19.2 ten thousand and the molecular weight distribution index was 1.35.
In a 500ml stainless steel reactor with stirrer, 96.6 g of styrene, 32.6 g of acrylonitrile and 18.0 g of toughener (SIBR-BR) n-C were added. The initiation reaction temperature is 105 ℃, the polymerization is carried out by adopting a method initiated by a free radical initiator, the initiator adopts 1, 1-di (tert-butyl peroxide) cyclohexane, the dosage of the initiator is 200ppm, and the dosage of ethylbenzene accounts for 15 percent (weight percent) of the total amount of reaction monomers. After the reaction is finished, the polymer is post-treated by adopting a traditional method, the product is dried and then is analyzed and tested, the structure and the performance of the sample are tested by adopting a classical method, and the result is as follows: izod impact strength of 458J/m, tensile yield strength of 45.6MPa, tensile breaking strength of 38.3MPa, elongation at break of 21.4 percent, styrene content of 65.57 percent (weight percent), acrylonitrile content of 22.20 percent (weight percent), SiBR-BR n-C content of 12.23 percent (weight percent), number average molecular weight of 31.8 ten thousand and molecular weight distribution index of 2.18 in the product.
Example 2
(SIBR-BR) n-C radial block copolymer: adding 3.5 liters of cyclohexane and 210 grams of butadiene into a 5 liter stainless steel reaction kettle with a stirrer, heating to 50 ℃, adding a polyfunctional group lithium initiator, and completing the polymerization reaction of the butadiene when the polymerization reaction is carried out for 30 minutes; then 70g of butadiene containing a polar additive THF, 35g of isoprene and 35g of styrene are added, the THF/Li (molar ratio) is 35, the reaction is continued for 60 minutes, and when the polymerization reaction of butadiene, isoprene and styrene is completely finished, a terminator is added to end the reaction. (SIBR-BR) n-C radial block copolymer: b1 represents 210g of the first butadiene charge (used for preparing the BR block); b2 is the amount of butadiene used in the second batch (for preparing the SIBR block) 70g, I is the amount of isoprene 35g, S is the amount of styrene 35g, the butadiene, isoprene and styrene monomer ratio (weight ratio) in the SIBR block is such that the butadiene content in the SIBR block is 57.5% (by weight), the isoprene content is 28.5% (by weight) and the styrene content is 14% (by weight); the ratio of SIBR block to BR block, SIBR/BR, was 70/30 (weight ratio); the number average molecular weight was 21.6 ten thousand and the molecular weight distribution index was 1.38.
106.1 g of styrene, 30.6 g of acrylonitrile and 42.5 g of toughener (SIBR-BR) n-C were initially introduced into a 500ml stainless steel reactor with stirrer. The initiation reaction temperature is 105 ℃, the polymerization is carried out by adopting a method initiated by a free radical initiator, the initiator adopts 1, 1-di (tert-butyl peroxide) cyclohexane, the dosage of the initiator is 250ppm, and the dosage of ethylbenzene accounts for 15 percent (weight percent) of the total amount of reaction monomers. After the reaction is finished, the polymer is post-treated by adopting a traditional method, the product is dried and then is analyzed and tested, the structure and the performance of the sample are tested by adopting a classical method, and the result is as follows: 358J/m of Izod impact strength, 35.6MPa of tensile yield strength, 34.2MPa of tensile breaking strength and 28.6 percent of breaking elongation, wherein the content of styrene in the product is 67.01 percent (weight percentage), the content of acrylonitrile in the product is 17.08 percent (weight percentage), the content of SiBR-BR n-C in the product is 15.91 percent (weight percentage), the number average molecular weight is 24.5 ten thousand, and the molecular weight distribution index is 2.16.
Example 3
(SIBR-BR) n-C radial block copolymer: adding 3.5 liters of cyclohexane and 140 grams of butadiene into a 5 liter stainless steel reaction kettle with a stirrer, heating to 50 ℃, adding a polyfunctional group lithium initiator, and completing the polymerization reaction of the butadiene when the polymerization reaction is carried out for 30 minutes; then 70g of butadiene, 70g of isoprene and 70g of styrene containing a polar additive THF are added, the THF/Li (molar ratio) is 35, the reaction is continued for 60 minutes, and when the polymerization reaction of butadiene, isoprene and styrene is completely finished, a terminator is added to end the reaction. (SIBR-BR) n-C radial block copolymer: b1 represents 140g of the first butadiene charge (used for preparing the BR block); b2 is the amount of butadiene used in the second batch (for preparing the SIBR block) 70g, I is the amount of isoprene 70g, S is the amount of styrene 70g, the ratio (weight ratio) of butadiene, isoprene and styrene monomers in the SIBR block is 33.5% by weight of butadiene, 33.5% by weight of isoprene and 33% by weight of styrene; the ratio of SIBR block to BR block, SIBR/BR, was 60/40 (weight ratio); the number average molecular weight was 16.9 ten thousand and the molecular weight distribution index was 1.36.
In a 500ml stainless steel reactor with stirrer, 102.2 g of styrene, 33.1 g of acrylonitrile and 9.7 g of toughener (SIBR-BR) n-C were added. The initiation reaction temperature is 115 ℃, the polymerization is carried out by adopting a method initiated by a free radical initiator, the initiator adopts 1, 1-di (tert-butyl peroxide) cyclohexane, the dosage of the initiator is 150ppm, and the dosage of ethylbenzene accounts for 20 percent (weight percent) of the total amount of reaction monomers. After the reaction is finished, the polymer is post-treated by adopting a traditional method, the product is dried and then is analyzed and tested, the structure and the performance of the sample are tested by adopting a classical method, and the result is as follows: 165J/m of Izod impact strength, 45.2MPa of tensile yield strength, 31.6MPa of tensile breaking strength and 11.2 percent of breaking elongation, wherein the styrene content in the product is 70.99 percent (weight percentage), the acrylonitrile content is 22.82 percent (mass percentage), (SIBR-BR) n-C content is 6.19 percent (weight percentage), the number average molecular weight is 21.2 ten thousand, and the molecular weight distribution index is 2.25.
Example 4
(SIBR-BR) n-C radial block copolymer: adding 3.5 liters of cyclohexane and 105 grams of butadiene into a 5 liter stainless steel reaction kettle with a stirrer, heating to 50 ℃, adding a polyfunctional group lithium initiator, and completing the polymerization reaction of the butadiene when the polymerization reaction is carried out for 30 minutes; then 70g of butadiene containing a polar additive THF, 70g of isoprene and 105g of styrene are added, the THF/Li (molar ratio) is 35, the reaction is continued for 60 minutes, and when the polymerization reaction of butadiene, isoprene and styrene is completely finished, a terminator is added to end the reaction. (SIBR-BR) n-C radial block copolymer: b1 is 105g of the first butadiene charge (used for preparing the BR block); b2 is the amount of butadiene used in the second batch (for preparing the SIBR block) 70g, I is the amount of isoprene 70g, S is the amount of styrene 105g, the ratio (weight ratio) of butadiene, isoprene and styrene monomers in the SIBR block is 29% by weight of butadiene, 29% by weight of isoprene and 42% by weight of styrene; 58% (weight percent); the ratio of SIBR block to BR block, SIBR/BR, was 70/30 (weight ratio); the number average molecular weight was 16.5 ten thousand and the molecular weight distribution index was 1.38.
In a 500ml stainless steel reactor with stirrer, 45.3 g of styrene, 17.5 g of acrylonitrile and 14.8 g of toughener (SIBR-BR) n-C were added. The initiation reaction temperature is 125 ℃, the polymerization is carried out by adopting a method initiated by a free radical initiator, the initiator adopts 1, 1-di (tert-butyl peroxide) cyclohexane, the dosage of the initiator is 200ppm, and the dosage of ethylbenzene accounts for 15 percent (weight percentage) of the total amount of reaction monomers. After the reaction is finished, the polymer is post-treated by adopting a traditional method, the product is dried and then is analyzed and tested, the structure and the performance of the sample are tested by adopting a classical method, and the result is as follows: izod impact strength of 233J/m, tensile yield strength of 41.5MPa, tensile breaking strength of 34.8MPa, elongation at break of 19.9%, styrene content of 59.89% (weight percent), acrylonitrile content of 22.60% (weight percent), SiBR-BR n-C content of 17.51% (weight percent), number average molecular weight of 24.2 ten thousand, and molecular weight distribution index of 2.31 in the product.
The foregoing are merely exemplary embodiments of the present invention, which enable those skilled in the art to understand or practice the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
1. A star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength is characterized in that the ABS resin is styrene/acrylonitrile/(SIBR-BR) n-C copolymer resin, and is a graft copolymer of (SIBR-BR) n-C, monomer styrene and acrylonitrile;
wherein (SIBR-BR) n-C is a butadiene, isoprene, styrene radial block copolymer, SIBR is a butadiene, isoprene, styrene copolymer block, BR is a butadiene homopolymer block, C is a polyfunctional alkyllithium initiator residue, n is an initiator functionality, n is a natural number, and n is 3-50;
the ABS resin has a number average molecular weight of 5 × 104-80×104g/mol; based on 100 percent of the mass of the ABS resin, the acrylonitrile content is 5 to 45 percent, and the (SIBR-BR) n-C content is 3 to 35 percent;
the number average molecular weight of the (SIBR-BR) n-C is in the range of 4X 104-50×104g/mol, the mass ratio of the SIBR block to the polybutadiene BR block is 1: 9-9: 1;
based on the mass of a butadiene, isoprene and styrene copolymer SIBR block as 100 percent, the butadiene content of the SIBR block is 5 to 85 percent, the isoprene content is 5 to 85 percent, and the styrene content is 5 to 50 percent.
2. The ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to claim 1, wherein the butadiene content of the SIBR block is 10 to 60% based on 100% by mass of the SIBR block of butadiene, isoprene, styrene copolymer; the content of isoprene is 20-60%; the content of styrene is 10-35%.
3. The ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to claim 1, wherein the mass ratio of the butadiene, isoprene, styrene copolymer SIBR block to the polybutadiene BR block is 3: 7-7: 3.
4. the ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to any of claims 1 to 3, wherein the ABS resin has a number average molecular weight in the range of 10 x 104-50×104g/mol; the number average molecular weight of the (SIBR-BR) n-C is in the range of 5X 104-30×104g/mol。
5. The ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to claim 4, wherein the mass ratio of (SIBR-BR) n-C is 12 to 16% based on 100% by mass of the ABS resin; the mass ratio of the butadiene, isoprene and styrene copolymer SIBR block to the polybutadiene BR block is 9: 3-4; based on 100 percent of the total weight of the butadiene, isoprene and styrene copolymer SIBR block, the mass percentage of butadiene in the SIBR block is 40-45 percent, the mass content of isoprene is 40-45 percent, and the mass content of styrene is 15-20 percent.
6. A preparation method of star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength is characterized by comprising the following steps:
step one, a star block copolymer (SIBR-BR) n-C; adding a first batch of butadiene monomer and a polar additive into a reactor according to the monomer ratio in a nonpolar hydrocarbon solvent, and adding a polyfunctional group lithium initiator when the initiation reaction temperature reaches 10-90 ℃ to prepare a butadiene homopolymer block BR;
after the butadiene is completely reacted, adding a second batch of butadiene, isoprene and styrene monomers containing polar additives into the reactor once according to the monomer ratio to start to prepare a butadiene, isoprene and styrene copolymer block SIBR, and after the butadiene, isoprene and styrene are completely reacted, terminating the reaction to obtain a (SIBR-BR) n-C star block copolymer;
step two, preparing ABS resin, adding acrylonitrile into the (SIBR-BR) n-C glue solution prepared in the step one according to the requirement of the (SIBR-BR) n-C content in the ABS resin, and supplementing styrene to adjust the concentration of the glue solution; selecting a chain transfer agent to adjust the molecular weight of the ABS resin; adding a free radical initiator to initiate polymerization reaction by adopting a free radical polymerization method, wherein the initiation reaction temperature is 100-120 ℃, and after the reaction is finished, performing post-treatment on the polymer to obtain ABS resin;
the chain transfer agent is ethylbenzene, and the dosage of the ethylbenzene is 5-25% of the total mass of the reaction monomers;
the free radical initiator is peroxide or azodicarbonitrile compound, and the dosage of the free radical initiator is 150ppm-600 ppm;
the multifunctional lithium initiator is selected from one or a mixture of several multifunctional lithium initiators in RLin and T (RLi) n, wherein: r is a hydrocarbon group with 4-20 carbon atoms, and T is a metal atom of Sn, Si, Pb, Ti and Ge; c is a polyfunctional alkyllithium initiator residue, n is the initiator functionality, n is a natural number and ranges from 3 to 50.
7. The method for preparing an ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to claim 6, wherein the peroxide initiator is at least one selected from the group consisting of diacyl peroxide, peroxydicarbonate, peroxycarboxylate, alkyl hydroperoxide, and dialkylene peroxide; the azobisnitrile compound is at least one of azobisisobutyronitrile and azobisisoheptonitrile.
8. The method for preparing an ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to claim 7, wherein the peroxide is selected from the group consisting of dibenzoyl peroxide, dicumyl peroxide, acetyl isobutyryl peroxide, diisolactone peroxide, dicyclohexyl peroxide, di-tert-butylcyclohexyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxybenzoate, tert-butyl hydroperoxide, cumene hydroperoxide, 1-bis (tert-butyl peroxide) cyclohexane, dicumyl peroxide; wherein the azobisnitrile initiator is at least one of azobisisobutyronitrile and azobisisoheptonitrile.
9. The method for preparing an ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to claim 6, wherein the polyfunctional lithium initiator T (RLi) n is selected from Sn (RLi)4Or Si (RLi)4。
10. The method for preparing an ultra-high impact strength ABS resin of radial block copolymer (SIBR-BR) n-C according to any of claims 6 to 9, wherein the polar additive is at least one selected from the group consisting of diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, hexamethylphosphoric triamide, and tetramethylethylenediamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111064570.3A CN113717331B (en) | 2021-09-10 | 2021-09-10 | Star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111064570.3A CN113717331B (en) | 2021-09-10 | 2021-09-10 | Star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113717331A true CN113717331A (en) | 2021-11-30 |
CN113717331B CN113717331B (en) | 2022-11-11 |
Family
ID=78683285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111064570.3A Active CN113717331B (en) | 2021-09-10 | 2021-09-10 | Star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113717331B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1109681A (en) * | 1964-05-22 | 1968-04-10 | Pechiney Saint Gobain | Polymers |
US5679751A (en) * | 1996-02-12 | 1997-10-21 | The Goodyear Tire & Rubber Company | Solution polymerization process for synthesis of styrene-butadiene or styrene-isoprene rubber |
CN101157743A (en) * | 2007-10-09 | 2008-04-09 | 大连理工大学 | Butadiene/ isoprene/ diolefin star comb-shaped polymer and preparation method thereof |
CN101899131A (en) * | 2010-02-10 | 2010-12-01 | 大连理工大学 | ABS (Acrylonitrile Butadiene Styrene) resin with ultrahigh impact strength and preparation method thereof |
CN102295733A (en) * | 2010-06-25 | 2011-12-28 | 中国石油化工股份有限公司 | Ternary polymerization rubber with star type block structure, and preparation method and application thereof |
CN102924840A (en) * | 2012-10-09 | 2013-02-13 | 大连理工大学 | Method for preparing ABS resin from phenylethylene-butadiene-isoprene terpolymer composite latex by emulsion grafting |
CN103965410A (en) * | 2014-04-26 | 2014-08-06 | 大连理工大学 | Method for preparing ABS resin by using Nd-SIBR as flexibilizer and by using in-situ mass method |
CN106589247A (en) * | 2015-10-16 | 2017-04-26 | 中国石油化工股份有限公司 | Low cis-polybutadiene rubber and preparing method and application thereof |
CN109503746A (en) * | 2017-09-14 | 2019-03-22 | 中国石油化工股份有限公司 | Low cis polybutadiene rubber and preparation method thereof and HIPS resin and preparation method thereof and ABS resin |
CN109503900A (en) * | 2017-09-14 | 2019-03-22 | 中国石油化工股份有限公司 | Toughening agent composition and preparation method thereof and styrene resin and preparation method thereof |
-
2021
- 2021-09-10 CN CN202111064570.3A patent/CN113717331B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1109681A (en) * | 1964-05-22 | 1968-04-10 | Pechiney Saint Gobain | Polymers |
US5679751A (en) * | 1996-02-12 | 1997-10-21 | The Goodyear Tire & Rubber Company | Solution polymerization process for synthesis of styrene-butadiene or styrene-isoprene rubber |
CN101157743A (en) * | 2007-10-09 | 2008-04-09 | 大连理工大学 | Butadiene/ isoprene/ diolefin star comb-shaped polymer and preparation method thereof |
CN101899131A (en) * | 2010-02-10 | 2010-12-01 | 大连理工大学 | ABS (Acrylonitrile Butadiene Styrene) resin with ultrahigh impact strength and preparation method thereof |
CN102295733A (en) * | 2010-06-25 | 2011-12-28 | 中国石油化工股份有限公司 | Ternary polymerization rubber with star type block structure, and preparation method and application thereof |
CN102924840A (en) * | 2012-10-09 | 2013-02-13 | 大连理工大学 | Method for preparing ABS resin from phenylethylene-butadiene-isoprene terpolymer composite latex by emulsion grafting |
CN103965410A (en) * | 2014-04-26 | 2014-08-06 | 大连理工大学 | Method for preparing ABS resin by using Nd-SIBR as flexibilizer and by using in-situ mass method |
CN106589247A (en) * | 2015-10-16 | 2017-04-26 | 中国石油化工股份有限公司 | Low cis-polybutadiene rubber and preparing method and application thereof |
CN109503746A (en) * | 2017-09-14 | 2019-03-22 | 中国石油化工股份有限公司 | Low cis polybutadiene rubber and preparation method thereof and HIPS resin and preparation method thereof and ABS resin |
CN109503900A (en) * | 2017-09-14 | 2019-03-22 | 中国石油化工股份有限公司 | Toughening agent composition and preparation method thereof and styrene resin and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
YU ZHISHENG等: "Morphological, Mechanical Properties, and Fracture Behavior of Bulk-Made ABS Resins Toughened by High-cis Polybutadiene Rubber", 《POLYMER ENGINEERING AND SCIENCE》 * |
丁磊等: "《最新塑料助剂品种优化选择与性能分析检测标准及应用工艺实用手册 第1卷》", 31 October 2004 * |
于志省等: "ABS增韧树脂的本体法制备和力学性能", 《材料研究学报》 * |
王艳色等: "阻滞阴离子聚合应用I.星形高抗冲聚苯乙烯的制备及其抗冲击性能", 《研究与开发》 * |
Also Published As
Publication number | Publication date |
---|---|
CN113717331B (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107567474A (en) | Use the terminal-modified dose method for preparing rubber composition of the functional group with introducing based on amino silane and rubber composition prepared therefrom | |
CN113717331B (en) | Star block copolymer (SIBR-BR) n-C ABS resin with ultrahigh impact strength and preparation method thereof | |
US20060160971A1 (en) | Method for anionic polymerisation of $g(a)-methylstyrene | |
CN113717336A (en) | Star block copolymer (SIBR-BR) n-C and preparation method thereof | |
CN113817112B (en) | Star-shaped block copolymer (SIBR-BR) n-C HIPS resin with ultrahigh impact strength and preparation method thereof | |
JPS62101618A (en) | Transparent shock-resistant block polymer and manufacture | |
CN111072878B (en) | Block copolymer, block copolymer composition, preparation method of block copolymer, vulcanized rubber, application of vulcanized rubber, tire tread and tire | |
CN113698553B (en) | Ultra-high impact strength ABS resin of star block copolymer (SBR-BR) n-C and preparation method thereof | |
CN114478954B (en) | Preparation method of wide-distribution four-arm comb-shaped star-branched butyl rubber | |
CN113801277A (en) | Star block copolymer (SBR-BR) n-C HIPS resin with ultrahigh impact strength and preparation method thereof | |
CN113831478B (en) | ABS resin containing DPE derivative, butadiene, isoprene and styrene star copolymer block and preparation method thereof | |
CN114763396B (en) | Comb-type butadiene-styrene copolymer and preparation method and application thereof | |
CN113980215B (en) | HIPS resin containing DPE derivative, butadiene, isoprene and styrene star copolymer block and preparation method thereof | |
CN113999355B (en) | HIPS resin containing DPE derivative, butadiene and styrene star copolymer blocks and preparation method thereof | |
CN113980214B (en) | ABS resin containing DPE derivative, butadiene and styrene star copolymer block and preparation method thereof | |
CN113912798B (en) | Star block copolymer based on DPE derivatives, butadiene, isoprene and styrene monomers and preparation method thereof | |
US20100113699A1 (en) | Method of preparing rubber comprising polymeric compositions and isoprene comprising interpolymers | |
CN110128606B (en) | Block copolymer, block copolymer composition, vulcanized rubber, application of vulcanized rubber, and preparation method of block copolymer | |
CN113087829B (en) | End group functionalized synthetic rubber and preparation method and application thereof | |
CN114085434B (en) | Low cis-polybutadiene rubber, preparation method and application thereof, HIPS resin and preparation method thereof | |
US20050272875A1 (en) | Anionically polymerized impact polystyrene having good flowability | |
CN113698543B (en) | Soluble polymerized A-DPE derivative SIBR integrated rubber toughened ABS resin and preparation method thereof | |
CN111072879B (en) | Block copolymer, block copolymer composition, preparation method of block copolymer, vulcanized rubber, application of vulcanized rubber, tire tread and tire | |
CN117567685B (en) | High-wear-resistance solution polymerized styrene-butadiene rubber and preparation method thereof | |
JPH0629302B2 (en) | Polystyrene manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231115 Address after: Room 05, 17th Floor, Network Industry Building, No. 541 Huangpu Road, Ganjingzi District, Dalian City, Liaoning Province, 116085 Patentee after: Dalian Xinmeige New Materials Technology Co.,Ltd. Address before: 116000 No. 2 Ling Road, Ganjingzi District, Liaoning, Dalian Patentee before: DALIAN University OF TECHNOLOGY |
|
TR01 | Transfer of patent right |