CN113708412B - 一种微电网群与低压配电网弱连接结构及方法 - Google Patents

一种微电网群与低压配电网弱连接结构及方法 Download PDF

Info

Publication number
CN113708412B
CN113708412B CN202111176471.4A CN202111176471A CN113708412B CN 113708412 B CN113708412 B CN 113708412B CN 202111176471 A CN202111176471 A CN 202111176471A CN 113708412 B CN113708412 B CN 113708412B
Authority
CN
China
Prior art keywords
micro
power
grid
energy storage
storage system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111176471.4A
Other languages
English (en)
Other versions
CN113708412A (zh
Inventor
刘硕
开山金
周旭
苗浩田
游洪灏
赵立宁
梁真
黄森宇
李潇凡
李星辰
康玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN202111176471.4A priority Critical patent/CN113708412B/zh
Publication of CN113708412A publication Critical patent/CN113708412A/zh
Application granted granted Critical
Publication of CN113708412B publication Critical patent/CN113708412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种微电网群与低压配电网弱连接结构及方法,包括上中下三层结构,上层电网层,电网层是以变压器为枢纽连接配电网与微电网,中层为信息协调控制层,信息协调控制层宝库解耦信息监控与数据处理平台,下层为微源层,微源层包括n个风光储微电网和风光可再生能源系统;所述信息协调控制层将电网层与微源层与可再生能源系统输出电压电流幅值、频率、储能系统的SOC的信息通过通讯手段将数据传到数据处理平台上,完成信息处理后再通过通讯系统反馈到电网层和微源层的风光储微电网和可再生系统中,形成闭环系统。本发明实现微电网群与配电网相互影响小、依赖关系低的一种弱连接状态。

Description

一种微电网群与低压配电网弱连接结构及方法
技术领域
本发明属于电力系统技术领域,特别涉及一种微电网群与低压配电网弱连接结构及方法。
背景技术
随着国家能源技术的不断发展,可再生能源利用率在我国能源生产总量中不断扩大,微电网以其经济、环保、灵活、高效等独特的优势成为解决能源问题的主要研究手段。在传统的运行模式下,微电网群经过大功率变压器与配电网相连接。可再生能源渗透率越来越高,其有功功率的随机性、多变化性对微电网群以及配电网造成不小的影响。在能源管理系统的支持下,配电网与微电网群在日内实时进行能量交互,这会使整个系统结构以及算法更加复杂。配电网频繁的根据日内负荷变化向微电网输送能量,也会大大增加变压器、连接设备的老化损坏几率。
若配电网与微电网群实时能量交互,微电网群发生故障要与低压配电网断开连接转换为孤岛状态以及微电网故障恢复要与低压配电网重新并网连接时,此时微电网群内部瞬时三相电流冲击将非常大。这对于微电网系统的安全稳定是一个很大的问题。改变传统两者连接模式,突出低压配电网在电网系统中的辅助性功能。为构建安全、经济、灵活、高效微电网系统,主要研究微电网群与低压配电网之间相互运作方式的策略是以后微电网运行控制的主要内容。
发明内容
为了克服以上技术问题,本发明的目的在于提供一种微电网群与低压配电网弱连接结构及方法,通过对储能系统控制方式进行优化而提供的一种实现微电网群与低压配电网弱连接的方法,从而实现微电网群与配电网相互影响小、依赖关系低的一种弱连接状态。
为了实现上述目的,本发明采用的技术方案是:
一种微电网群与低压配电网弱连接结构,包括上中下三层结构,上层电网层,电网层是以变压器为枢纽连接配电网与微电网,中层为信息协调控制层,信息协调控制层宝库解耦信息监控与数据处理平台,下层为微源层,微源层包括n个风光储微电网和风光可再生能源系统;
所述信息协调控制层将电网层与微源层与可再生能源系统输出电压电流幅值、频率、储能系统的SOC(剩余电量值)的信息通过通讯手段将数据传到数据处理平台上,完成信息处理后再通过通讯系统反馈到电网层和微源层的风光储微电网和可再生系统中,形成闭环系统。
所述风光储微电网包括风力机组、光伏发电以及储能系统,储能系统用于实现弱连接的控制方式为恒功率控制和恒压频比控制,三者经功率转换装置汇入公共连接点(Point ofCommon Coupling,PCC,)再通过变压器连接到低压配电网侧,所述弱连接点为变压器与PCC处。
所述转换装置为逆变器,用于将风力机组、光伏发电以及储能系统输出的直流电转化为交流电。
所述储能系统分为低、中、高三个阶段,当SOC值小于20%为低阶段;SOC值在20%到85%之间为中阶段;SOC值在85%以上为高阶段,中层信息监控与数据处理平台用于检测各个储能系统的SOC值,当检测到储能系统SOC值小于低阶段值时改变储能系统工作模式,切换到充电模式,以最大功率充电至85%;当检测到储能系统SOC值在20%到85%之间时保持微电网系统处于弱连接状态;当检测储能系统SOC高于85%时,储能停止充电,微电网切换为弱连接模式。
所述信息监控和数据处理平台用于获得储能系统侧有功和无功功率Pbat、Qbat;配电网侧PG、QGt;风力机组侧有功和无功功率Pwind、Qwind;光伏发电侧有功和无功功率Ppv、Qpv;储能系统SOC值。
所述风光可再生系统包括风力机组和光伏发电,风机和光伏通过功率转换装置汇聚到同一个交流母线上。
所述信息存储与数据处理平台包括功率管理单元、并离网控制单元、电能质量分析与控制单元与通信管理单元。
所述微源层包括风力机组和光伏发电组成的风光可再生系统和风光储组成的微电网系统,数量为2-n个。
一种微电网群与低压配电网弱连接结构的运行方法,包括以下步骤;
a、首先确定风光储微电网和可再生能源系统数量,从而配备数量的储能系统数量,n个储能系统可保持m个风光储微电网和p可再生能源系统保持弱连接状态(n=m+p);
b.确定好硬件装备数量之后,根据信息监控与数据处理平台反馈的负荷和可再生能源出力情况的大小进行功率分配;
C.根据信息监控和数据处理平台反馈回来的微电网和电网数据进行微源层设备的弱连接。
所述功率分配具体为:
当储能系统侧有功功率为负,吸收风力机组和光伏发电剩余的能量,若储能系统SOC值处在20%以下,立即改变储能系统有功功率给定若储能系统SOC值处在20%到85%之间时,储能系统工作在恒功率控制策略下,其有功功率给定Pref和无功功率给定Qref如式(1)所示,可使配电网侧输出的有功和无功功率为0,此时仍然连接配电网,配电网呈现一个辅助性作用,维持微电网系统电压和频率恒定,即实现微电网弱连接,式(2)为可再生能源输出功率大于微电网中的负荷时弱连接状态的功率守恒方程;
当可再生能源输出功率小于微电网中的负荷时,储能系统侧发出有功功率,协助风力机组和光伏发电向负荷供电,若储能系统SOC值处在20%到85%之间时,储能系统工作在恒功率控制策略下,其有功功率给定Pref和无功功率给定Qref如式(3)所示,即实现微电网弱连接;若储能系统SOC值处在20%以下,储能系统以最大功率充电至85%;若微电网发生故障需要断开,可以立即断开弱连接点,储能系统工作在VF模式维持微电网系统电压和频率恒定,式(4)为可再生能源输出功率大于微电网中的负荷时弱连接状态的功率守恒方程。
本发明的有益效果。
本发明在传统中电网与微电网群实时能量交互,微电网群发生故障要与低压配电网断开连接转换为孤岛状态以及微电网故障恢复要与低压配电网重新并网连接时,此时微电网群内部瞬时三相电流冲击将非常大。这对于微电网系统的安全稳定是一个很大的问题。由于电网与微电网系统处于弱连接的状态,电网与微电网群的依赖关系低、相互影响小。所以当电网或者微电网发生故障需要两者需要独立运行时,两者均不会因为之前传统模式下的连接模式导致两者受到非常大的冲击。突出了电网对于微电网群的辅助性作用。
附图说明:
图1是本发明系统整体层次图。
图2是本发明单体风光储微电网弱连接状态结构图。
图3是本发明风光储微电网与风光可再生系统组成图。
图4是本发明微电网群与配电网弱连接结构关系图。
图5是本发明储能系统模式切换流程图。
图6为本发明微电网群分层控制框图。
图7为功率转换装置示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图7所示:为所提出的微电网群与配电网整体系统图,由三层组成,上层是以变压器为枢纽连接配电网与微电网。中层为风光储微电网整体信息监控与数据处理平台。下层为n个风光储微电网和风光可再生能源系统。
如图2所示为单体风光储微电网弱连接状态结构图。所提出的微电网系统由风力机组、光伏发电以及储能系统组成。储能系统实现弱连接的控制方式为恒功率控制和恒压频比控制。三者经功率转换装置汇入公共连接点(Point ofCommon Coupling,PCC,)再通过变压器连接到低压配电网侧。所提出的弱连接点为变压器与PCC处。
如图3所示为风光储微电网与风光可再生能源系统组成图,风光储微电网系统包括风力机组、光伏发电与储能系统。风光可再生系统由风力机组和光伏发电组成。
如图4所示为微电网群与配电网弱连接示意图。以两个风光储微电网和一个风光可再生能源系统为例组成。三者之间通过输电线路相互连接组成一个微电网群。微电网群中的单体微电网通过各自的PCCi(i=1,2,3)连接到一个总的PCC,然后在连接到配电网上。此系统例子中有两个储能系统,可保持两处PCCi(i=1,2,3)呈现弱连接状态。
如图5所示为微电网中储能系统模式切换流程图。定义储能系统荷电状态值(State ofCharge,SOC,)共分为低、中、高三个阶段。SOC值小于20%为低阶段;SOC值在20%到85%之间为中阶段;SOC值在85%以上为高阶段。中层信息监控与数据处理平台始终检测各个储能设备的SOC值。当检测到储能设备SOC值小于低阶段值时改变储能系统工作模式,切换到充电模式,以最大功率充电至85%;当检测到储能设备SOC值在20%到85%之间时保持微电网系统处于弱连接状态;当检测储能系统SOC高于85%时,储能停止充电,微电网切换为弱连接模式。
由于可再生能源渗透率逐年上升,风力机组、光伏发电等分布式电源在输出功率方面有较大得随机性、不确定性。若微电网或配电网因为发生故障需要立即断开时,因为两者在传统方式上具有很强的耦合性,相互影响较大。在断开时微电网会有很大的电流冲击,这在很大程度上影响到了微电网与配电网的平衡。为解决这些问题,需要建立一种微电网与配电网弱连接状态,来保证在故障和故障恢复时微电网系统安全稳定运行。
通过信息监控和数据处理平台,获得储能系统侧有功和无功功率Pbat、Qbat;配电网侧PG、QGt;风力机组侧有功和无功功率Pwind、Qwind;光伏发电侧有功和无功功率Ppv、Qpv;储能系统SOC值;
一种微电网群与低压配电网弱连接结构的运行方法,包括以下步骤;
a、首先确定风光储微电网和可再生能源系统数量,从而配备数量的储能系统数量。n个储能系统可保持m个风光储微电网和p可再生能源系统保持弱连接状态(n=m+p)。
b.确定好硬件装备数量之后,根据信息监控与数据处理平台反馈的负荷和可再生能源出力情况的大小进行功率分配。
此结构中微电网和风光可再生系统实现弱连接储能具体功率分配为,
1、可再生能源输出有功功率大于区域所需负荷时,储能的有功与无功功率给定功率按照式(1)分配.微电网功率守恒式为式(2)。
2、可再生能源输出有功功率小于区域所需负荷时,储能的有功与无功功率给定功率按照式(3)分配.微电网功率守恒式为式(4)。
C.根据信息监控和数据处理平台反馈回来的微电网和电网数据进行微源层设备的弱连接。此表和图5相同意思。
由于可再生能源输出功率和负荷之间的差值正负决定了储能系统是否充放电状态,所以将分为两个情况考虑。
当储能系统侧有功功率为负,吸收风力机组和光伏发电剩余的能量,若储能系统SOC值处在20%以下,立即改变储能系统有功功率给定若储能系统SOC值处在20%到85%之间时,储能系统工作在恒功率控制策略下,其有功功率给定Pref和无功功率给定Qref如式(1)所示,可使配电网侧输出的有功和无功功率为0,此时仍然连接配电网,配电网呈现一个辅助性作用,维持微电网系统电压和频率恒定,即实现微电网弱连接,式(2)为可再生能源输出功率大于微电网中的负荷时弱连接状态的功率守恒方程;
当可再生能源输出功率小于微电网中的负荷时,储能系统侧发出有功功率,协助风力机组和光伏发电向负荷供电,若储能系统SOC值处在20%到85%之间时,储能系统工作在恒功率控制策略下,其有功功率给定Pref和无功功率给定Qref如式(3)所示,即实现微电网弱连接;若储能系统SOC值处在20%以下,储能系统以最大功率充电至85%;若微电网发生故障需要断开,可以立即断开弱连接点,储能系统工作在VF模式维持微电网系统电压和频率恒定,式(4)为可再生能源输出功率大于微电网中的负荷时弱连接状态的功率守恒方程。

Claims (4)

1.一种微电网群与低压配电网弱连接结构的运行方法,其特征在于,包括以下步骤;
a、首先确定风光储微电网和可再生能源系统数量,从而配备数量的储能系统数量,n个储能系统可保持m个风光储微电网和p可再生能源系统保持弱连接模式;
b.确定好硬件装备数量之后,根据信息监控与数据处理平台反馈的负荷和可再生能源出力情况的大小进行功率分配;
c.根据信息监控和数据处理平台反馈回来的微电网和电网数据进行微源层设备的弱连接;
所述功率分配具体为:
当储能系统侧有功功率为负,吸收风力机组和光伏发电剩余的能量,若储能系统SOC值处在20%以下,立即改变储能系统有功功率给定若储能系统SOC值处在20%到85%之间时,储能系统工作在恒功率控制策略下,其有功功率给定Pref和无功功率给定Qref如式(1)所示,使配电网侧输出的有功和无功功率为0,此时仍然连接配电网,配电网呈现一个辅助性作用,维持微电网系统电压和频率恒定,即实现微电网弱连接,式(2)为可再生能源输出功率大于微电网中的负荷时弱连接模式的功率守恒方程;
当可再生能源输出功率小于微电网中的负荷时,储能系统侧发出有功功率,协助风力机组和光伏发电向负荷供电,若储能系统SOC值处在20%到85%之间时,储能系统工作在恒功率控制策略下,其有功功率给定Pref和无功功率给定Qref如式(3)所示,即实现微电网弱连接;若储能系统SOC值处在20%以下,储能系统以最大功率充电至85%;若微电网发生故障需要断开,立即断开弱连接点,储能系统工作在VF模式维持微电网系统电压和频率恒定,式(4)为可再生能源输出功率大于微电网中的负荷时弱连接模式的功率守恒方程;
连接结构包括上中下三层结构,上层电网层,电网层是以变压器为枢纽连接配电网与微电网,中层为信息协调控制层,信息协调控制层解耦信息监控与数据处理平台,下层为微源层,微源层包括n个风光储微电网和风光可再生能源系统;
所述信息协调控制层将电网层与微源层输出电压电流幅值、频率、储能系统的SOC的信息通过通讯手段将数据传到信息监控与数据处理平台上,完成信息处理后再通过通讯系统反馈到电网层和微源层的风光储微电网和风光可再生能源系统中,形成闭环系统;
所述风光储微电网包括风力机组、光伏发电以及储能系统,储能系统用于实现弱连接的控制方式为恒功率控制和恒压频比控制,三者经功率转换装置汇入公共连接点(Pointof Common Coupling,PCC,)再通过变压器连接到低压配电网侧,所述弱连接点为变压器与PCC处;
所述信息监控和数据处理平台用于获得储能系统侧有功和无功功率Pbat、Qbat;配电网侧有功和无功功率PG、QG;风力机组侧有功和无功功率Pwind、Qwind;光伏发电侧有功和无功功率Ppv、Qpv;储能系统SOC值。
2.根据权利要求1所述的一种微电网群与低压配电网弱连接结构的运行方法,其特征在于,所述功率转换装置为逆变器,用于将风力机组、光伏发电以及储能系统输出的直流电转化为交流电。
3.根据权利要求1所述的一种微电网群与低压配电网弱连接结构的运行方法,其特征在于,所述储能系统分为低、中、高三个阶段,当SOC值小于20%为低阶段;SOC值在20%到85%之间为中阶段;SOC值在85%以上为高阶段,中层信息监控与数据处理平台用于检测各个储能系统的SOC值,当检测到储能系统SOC值小于低阶段值时改变储能系统工作模式,切换到充电模式,以最大功率充电至85%;当检测到储能系统SOC值在20%到85%之间时保持微电网系统处于弱连接模式;当检测储能系统SOC高于85%时,储能停止充电,微电网切换为弱连接模式。
4.根据权利要求1所述的一种微电网群与低压配电网弱连接结构的运行方法,其特征在于,所述风光可再生能源系统包括风力机组和光伏发电,风机和光伏通过功率转换装置汇聚到同一个交流母线上。
CN202111176471.4A 2021-10-09 2021-10-09 一种微电网群与低压配电网弱连接结构及方法 Active CN113708412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111176471.4A CN113708412B (zh) 2021-10-09 2021-10-09 一种微电网群与低压配电网弱连接结构及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111176471.4A CN113708412B (zh) 2021-10-09 2021-10-09 一种微电网群与低压配电网弱连接结构及方法

Publications (2)

Publication Number Publication Date
CN113708412A CN113708412A (zh) 2021-11-26
CN113708412B true CN113708412B (zh) 2023-09-15

Family

ID=78662652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111176471.4A Active CN113708412B (zh) 2021-10-09 2021-10-09 一种微电网群与低压配电网弱连接结构及方法

Country Status (1)

Country Link
CN (1) CN113708412B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545261A (zh) * 2012-01-16 2012-07-04 沈阳工程学院 一种微电网实验系统
CN104022528A (zh) * 2014-06-12 2014-09-03 国家电网公司 一种基于多元复合储能的微网系统协调控制方法
CN104836334A (zh) * 2014-02-08 2015-08-12 中国农业大学 一种低压微电网群的自主与协调控制系统
CN105356505A (zh) * 2015-11-20 2016-02-24 沈阳工业大学 适用于微电网的多源分布式发电系统及控制方法
CN105429297A (zh) * 2015-12-07 2016-03-23 海南电力技术研究院 微电网多运行模式控制及切换方法
CN105515039A (zh) * 2015-11-30 2016-04-20 华南理工大学 一种适用于用户侧微电网的中央控制系统及方法
CN106972542A (zh) * 2015-04-13 2017-07-21 张琴 一种可并网运行的风光储一体微电网及其监控方法
CN109347095A (zh) * 2018-10-29 2019-02-15 国网山东省电力公司枣庄供电公司 考虑多能互补特性的主动配电网分层分布式协调控制器
CN112072641A (zh) * 2020-08-19 2020-12-11 国网江苏省电力有限公司扬州供电分公司 一种源网荷储柔性协调控制和运行优化方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545261A (zh) * 2012-01-16 2012-07-04 沈阳工程学院 一种微电网实验系统
CN104836334A (zh) * 2014-02-08 2015-08-12 中国农业大学 一种低压微电网群的自主与协调控制系统
CN104022528A (zh) * 2014-06-12 2014-09-03 国家电网公司 一种基于多元复合储能的微网系统协调控制方法
CN106972542A (zh) * 2015-04-13 2017-07-21 张琴 一种可并网运行的风光储一体微电网及其监控方法
CN105356505A (zh) * 2015-11-20 2016-02-24 沈阳工业大学 适用于微电网的多源分布式发电系统及控制方法
CN105515039A (zh) * 2015-11-30 2016-04-20 华南理工大学 一种适用于用户侧微电网的中央控制系统及方法
CN105429297A (zh) * 2015-12-07 2016-03-23 海南电力技术研究院 微电网多运行模式控制及切换方法
CN109347095A (zh) * 2018-10-29 2019-02-15 国网山东省电力公司枣庄供电公司 考虑多能互补特性的主动配电网分层分布式协调控制器
CN112072641A (zh) * 2020-08-19 2020-12-11 国网江苏省电力有限公司扬州供电分公司 一种源网荷储柔性协调控制和运行优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩帅.分层结构多微网协调控制策略的研究.《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》.2021,C042-555. *

Also Published As

Publication number Publication date
CN113708412A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN109659980B (zh) 集成混合储能与光伏装置的牵引供电系统能量管理优化方法
CN110601248B (zh) 一种环状交直流混合微电网系统的多模式协调控制方法
CN108649602A (zh) 风光柴储智能交流微电网系统
CN214674375U (zh) 多端海上风电柔性直流与储能协同并网系统
CN107681700B (zh) 一种交直流混合微电网运行模式转换方法
Xu et al. Study on black start strategy of microgrid with PV and multiple energy storage systems
CN109888811B (zh) 利用储能提升直流输电系统暂态稳定性的协调控制方法
CN108258728A (zh) 一种基于下垂控制的可调度型风光柴储独立微网的控制方法
CN110912242A (zh) 含混合储能直流微电网的大扰动暂态稳定协调控制方法
CN108400593A (zh) 基于分层多代理技术的主动配电网电气模型建立方法
CN203951202U (zh) 一种风光互补户用微电网供电系统
CN108347067A (zh) 一种含有电池储能和发电机的微网架构和控制方法
Colak et al. Intelligent techniques to connect renewable energy sources to the grid: A review
CN106300323B (zh) 分布式电源电网
Wen et al. Hierarchical coordinated control for DC microgrid with crowbar and load shedding control
CN206211536U (zh) 分布式电源电网
Ghasemi-Marzbali et al. Energy management of an isolated microgrid: A practical case
Pozo et al. Battery energy storage system for a hybrid generation system grid connected using fuzzy controllers
CN113708412B (zh) 一种微电网群与低压配电网弱连接结构及方法
CN203135466U (zh) 一种带双向逆变器的微网系统
Priya et al. Design and analysis of a sustainable LV residential microgrid
Percis et al. Reactive power compensation using fuzzy logic controlled UPFC in a hybrid microgrid
Haidar et al. Flexibility-based anti-islanding protection of a microgrid integrated with power grid
Tongge et al. The Research on Black Start Strategy of Distributed Photovoltaic-Battery Energy Storage Systems Based on Cluster Division
Benlahbib et al. Power management and DC link voltage regulation in renewable energy system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant