CN113705020A - 一种催化裂化汽油过程中的辛烷值损失的计算方法 - Google Patents

一种催化裂化汽油过程中的辛烷值损失的计算方法 Download PDF

Info

Publication number
CN113705020A
CN113705020A CN202111076098.5A CN202111076098A CN113705020A CN 113705020 A CN113705020 A CN 113705020A CN 202111076098 A CN202111076098 A CN 202111076098A CN 113705020 A CN113705020 A CN 113705020A
Authority
CN
China
Prior art keywords
gasoline
octane number
temperature
number loss
catalytic cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111076098.5A
Other languages
English (en)
Other versions
CN113705020B (zh
Inventor
李长俊
王国云
贾文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202111076098.5A priority Critical patent/CN113705020B/zh
Priority claimed from CN202111076098.5A external-priority patent/CN113705020B/zh
Publication of CN113705020A publication Critical patent/CN113705020A/zh
Application granted granted Critical
Publication of CN113705020B publication Critical patent/CN113705020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/06Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2829Mixtures of fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种催化裂化汽油过程中的辛烷值损失的计算方法,其步骤是:收集催化裂化汽油装置的历史运行参数;将催化裂化装置的历史运行数据代入计算公式,计算得到催化裂化汽油过程中的辛烷值损失。本发明能够对,催化裂化汽油装置运行过程中的辛烷值进行有效的分析,并且克服现有辛烷值监测装置的不稳定性和无法应对实际需求的问题,计算出的辛烷值损失更准确,计算的方法更高效,为催化裂化汽油过程中的辛烷值损失实时监测提供了指导依据。

Description

一种催化裂化汽油过程中的辛烷值损失的计算方法
技术领域
本发明涉及石油炼制与化工技术领域,尤其涉及一种催化裂化汽油过程中的辛烷值损失的计算方法。
背景技术
目前,在商品汽油中,高达70%的汽油由精制工艺生产。我国现有技术在汽油精制过程中普遍降低了辛烷值,每降低一个单位辛烷值相当于损失150CNY/t。汽油辛烷值损失计算的传统方法有马达法和辛烷法,但采用这些方法污染大,时间长,花费高,均不适用化工生产中的在线监测。而由于催化裂化汽油精制过程是连续的,虽然操作变量每3分钟就采样一次,但辛烷值(因变量)的测量比较麻烦,一周仅2次无法对应实际。
辛烷值损失的传统预测方法主要包括红外光谱分析方法和化工过程建模的方法。但由于不同的炼油工艺、不同产地的原油将会导致油品结构存在差异,而这类差异对红外光谱分析分析非常敏感,从而导致红外光谱分析预测方法在实际生产中应用效果不佳;而通过化工过程建模来预测辛烷值损失,由于炼化设备多,操作变量间具有强耦合性,机理建模对原料要求高,对优化相应不及时,所以效果并不理想。
对于汽油精制过程中的辛烷值损失,目前尚未有快速、高效的监测方法。针对于此,建立一种催化裂化汽油过程中的辛烷值损失的计算方法,可完善汽油精制过程中的辛烷值损失在线监测方法,对汽油精制过程中的辛烷值损失在线监测具有一定指导意义。
发明内容
本发明是为了解决汽油精制过程中的难以快速、准确的获得汽油的辛烷值损失,无法满足实际应用需求等问题。
为了解决上述问题,本发明的技术方案是:一种催化裂化汽油过程中的辛烷值损失的计算方法,包括以下步骤:
步骤一,根据催化裂化汽油装置历史运行参数,收集所述催化裂化汽油装置内的泵入口过滤器差压、出口总管温度、还原器温度、换热器壳程出口管温度、精制汽油出装置温度及原料油的辛烷值数据等计算参数;
步骤二,将收集到的计算参数代入公式中,计算得到催化裂化汽油装置过程中的辛烷值损失,其计算公式为:
Figure RE-RE-GDA0003292355830000021
Figure RE-RE-GDA0003292355830000022
式中:F为催化裂化汽油过程中的辛烷值损失;下标i为第i个变量;下标 ij为第i个变量的第j个值,X1为泵入口过滤器差压,KPa;X2为出口总管温度,℃;X3为还原器温度,℃;X4为换热器壳程出口管温度,℃;X5为精制汽油出装置温度,℃;X6为原料油辛烷值;max(Xi)为第i个变量的最大值;min(Xi) 为第i个变量的最小值;X′ij为第i项变量的第j个值处理后的值。
与现有的技术相比,本发明根据催化裂化汽油装置的特殊性提供了一种辛烷值损失计算方法,能够避免辛烷值测量装置的无法应对实际需求的问题,能够为催化裂化汽油装置提供在线辛烷值损失监测,计算的结果更准确,计算的方法更高效。
附图说明
图1为催化裂化汽油过程中的辛烷值损失的计算方法流程图;
具体实施方式
下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
本发明提供一种催化裂化汽油过程中的辛烷值损失的计算方法,该方法包含以下步骤:
步骤一,根据催化裂化汽油装置的历史运行数据,收集所述的催化裂化汽油装置运行的泵入口过滤器差压、出口总管温度、还原器温度、换热器壳程出口管温度,精制汽油出装置温度及原料油的辛烷值数据等计算参数;
步骤二,将处理后的数据代入公式中,计算得到催化裂化汽油过程中的辛烷值损失,具体的计算公式为:
Figure RE-RE-GDA0003292355830000031
Figure RE-RE-GDA0003292355830000032
式中:F为催化裂化汽油过程中的辛烷值损失;下标i为第i个变量;下标 ij为第i个变量的第j个值,X1为泵入口过滤器差压,KPa;X2为出口总管温度,℃;X3为还原器温度,℃;X4为换热器壳程出口管温度,℃;X5为精制汽油出装置温度,℃;X6为原料油辛烷值;max(Xi)为第i个变量的最大值;min(Xi) 为第i个变量的最小值;X′ij为第i项变量的第j个值处理后的值。
下面结合具体实例对本发明的应用原理作进一步描述。
一、催化裂化汽油装置设备信息
某石化企业的催化裂化汽油装置中,其泵入口过滤器差压、出口总管温度、还原器温度、换热器壳程出口管温度、精制汽油出装置温度及原料油的辛烷值历史数据如下表1所示。
表1催化裂化汽油装置基本信息情况
Figure RE-RE-GDA0003292355830000033
Figure RE-RE-GDA0003292355830000041
二、催化裂化汽油装置的辛烷值损失计算
对收集的数据进行处理计算得到X′ij的值如下表2所示。
表2变量处理后的值
Figure RE-RE-GDA0003292355830000042
以2020/4/14日数据为例,将通过变量处理后的数据代入公式中进行计算如下式所示:
Figure RE-RE-GDA0003292355830000043
其所有计算结果如下表3所示:
表2辛烷值损失计算结果
Figure RE-RE-GDA0003292355830000051
根据以上结果可以看出,本方法计算的辛烷值损失与实际的辛烷值损失的误差最大为9.37%,催化裂化过程中的辛烷值损失计算可靠,能够更有针对性地开展辛烷值损失在线监测工作,为催化裂化汽油装置的辛烷值损失实时监测及提升经济效益提供指导。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种催化裂化汽油过程中的辛烷值损失的计算方法,其特征在于包括以下步骤:
步骤一,根据催化裂化汽油装置历史运行参数,收集所述催化裂化汽油装置内的泵入口过滤器差压、出口总管温度、还原器温度、换热器壳程出口管温度、精制汽油出装置温度及原料油的辛烷值的历史数据作为计算参数;
步骤二,将收集到的计算参数代入公式中,计算得到催化裂化汽油装置过程中的辛烷值损失。
2.如权利要求1所述的催化裂化汽油过程中的辛烷值损失的计算方法,其特征在于,将收集到的计算数据代入公式中,计算得到催化裂化汽油装置过程中的辛烷值损失,具体计算公式为:
Figure FDA0003262314200000011
Figure FDA0003262314200000012
式中:F为催化裂化汽油过程中的辛烷值损失;下标i为第i个变量;下标ij为第i个变量的第j个值,X1为泵入口过滤器差压,KPa;X2为出口总管温度,℃;X3为还原器温度,℃;X4为换热器壳程出口管温度,℃;X5为精制汽油出装置温度,℃;X6为原料油辛烷值;max(Xi)为第i个变量的最大值;min(Xi)为第i个变量的最小值;X′ij为第i项变量的第j个值处理后的值。
CN202111076098.5A 2021-09-14 一种催化裂化汽油过程中的辛烷值损失的计算方法 Active CN113705020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111076098.5A CN113705020B (zh) 2021-09-14 一种催化裂化汽油过程中的辛烷值损失的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111076098.5A CN113705020B (zh) 2021-09-14 一种催化裂化汽油过程中的辛烷值损失的计算方法

Publications (2)

Publication Number Publication Date
CN113705020A true CN113705020A (zh) 2021-11-26
CN113705020B CN113705020B (zh) 2024-07-02

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110580545A (zh) * 2019-08-21 2019-12-17 汉谷云智(武汉)科技有限公司 一种多组分汽油调和配方优化方法及装置
CN112420132A (zh) * 2020-10-29 2021-02-26 重庆大学 一种汽油催化裂化过程产品质量优化控制方法
CN112489733A (zh) * 2020-12-14 2021-03-12 郑州轻工业大学 基于粒子群算法和神经网络的辛烷值损失预测方法
CN112908424A (zh) * 2021-01-21 2021-06-04 上海海事大学 降低S-zorb装置催化裂化汽油过程中辛烷值损耗方法
CN113362913A (zh) * 2021-05-27 2021-09-07 南通大学 一种基于随机森林回归的汽油辛烷值损失预测及优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110580545A (zh) * 2019-08-21 2019-12-17 汉谷云智(武汉)科技有限公司 一种多组分汽油调和配方优化方法及装置
CN112420132A (zh) * 2020-10-29 2021-02-26 重庆大学 一种汽油催化裂化过程产品质量优化控制方法
CN112489733A (zh) * 2020-12-14 2021-03-12 郑州轻工业大学 基于粒子群算法和神经网络的辛烷值损失预测方法
CN112908424A (zh) * 2021-01-21 2021-06-04 上海海事大学 降低S-zorb装置催化裂化汽油过程中辛烷值损耗方法
CN113362913A (zh) * 2021-05-27 2021-09-07 南通大学 一种基于随机森林回归的汽油辛烷值损失预测及优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高洁;王莉娟;孙丽琳;: "优化操作条件降低汽油辛烷值损失", 石油化工应用, no. 11, 25 November 2011 (2011-11-25) *

Similar Documents

Publication Publication Date Title
CN212646694U (zh) 一种带油品在线检测的润滑油站
CN111080074B (zh) 基于网络多特征关联的系统服役安全态势要素获取方法
CN109190141B (zh) 一种多股流换热器的换热效率计算方法
CN113705020B (zh) 一种催化裂化汽油过程中的辛烷值损失的计算方法
CN113705020A (zh) 一种催化裂化汽油过程中的辛烷值损失的计算方法
WO2007009322A1 (fr) Méthode optimisée de fonctionnement temps réel de procédure multi-entrée et multi-sortie de fabrication en continu
CN104977847B (zh) 一种面向常减压优化的稳态工况判别方法
WO2024120046A1 (zh) 一种柴油机机油使用状态智能识别的方法、装置及系统
CN108009337B (zh) 一种基于流程模拟软件的在线标定系统
CN109387538B (zh) 炼油装置氯含量预警值评估方法
CN104263960A (zh) 金湿法冶金置换过程中置换率和金泥品位的在线预测方法
CN216113308U (zh) 一种风机齿轮箱在线监测系统
CN108167654B (zh) 一种移动式输油管道在线监测装置及其监测方法
CN105511454B (zh) 一种工业控制回路时变振荡行为检测方法
CN212321539U (zh) 一种焦炭产量的在线计量装置
CN105607477B (zh) 一种基于改进局部均值分解的工业控制回路振荡检测方法
CN2468053Y (zh) 油品在线调合装置
CN114593788A (zh) 一种基于顶升电流小波变换的rh钢液面检测方法
CN110458408B (zh) 典型故障对动设备及装置影响后果的分析方法
CN112749469B (zh) 原油管道监控方法和装置、计算机可读存储介质
CN103468860A (zh) 一种转炉煤气热值计量装置和计量方法
CN204177761U (zh) 一种反渗透脱盐率在线检测装置
CN210894106U (zh) 一种用于换热过程石脑油中泄漏原油自动检测装置的近红外光谱分析管路
CN112807906A (zh) 一种碳化硅冶炼烟气智能处理系统
Demin et al. Condition monitoring of heat-exchange equipment of the diesel fuel hydrotreatment processes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant