CN113704003B - 基于b-m2m的协同识别方法、边缘计算服务器及介质 - Google Patents

基于b-m2m的协同识别方法、边缘计算服务器及介质 Download PDF

Info

Publication number
CN113704003B
CN113704003B CN202111006196.1A CN202111006196A CN113704003B CN 113704003 B CN113704003 B CN 113704003B CN 202111006196 A CN202111006196 A CN 202111006196A CN 113704003 B CN113704003 B CN 113704003B
Authority
CN
China
Prior art keywords
information
data
measuring unit
identification
identified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111006196.1A
Other languages
English (en)
Other versions
CN113704003A (zh
Inventor
李希金
李红五
安岗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China United Network Communications Group Co Ltd
Original Assignee
China United Network Communications Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China United Network Communications Group Co Ltd filed Critical China United Network Communications Group Co Ltd
Priority to CN202111006196.1A priority Critical patent/CN113704003B/zh
Publication of CN113704003A publication Critical patent/CN113704003A/zh
Application granted granted Critical
Publication of CN113704003B publication Critical patent/CN113704003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/542Event management; Broadcasting; Multicasting; Notifications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5072Grid computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本公开提供一种基于B‑M2M的协同识别方法、边缘计算服务器及计算机可读存储介质,其中,所述方法包括:构建广播机器对机器B‑M2M网络架构,所述B‑M2M网络架构包括各个测量单元之间能够进行广播通信的B‑M2M信道;基于所述B‑M2M信道向各个测量单元广播待识别信息,以使各个测量单元之间利用所述B‑M2M信道基于所述待识别信息对待识别目标进行协同识别,得到各个测量单元的识别信息;以及,基于各个测量单元的识别信息获取待识别目标的全方位数据。本公开通过建立B‑M2M网络架构,各个测量单元以及MEC利用B‑M2M信道进行广播通信并完成协同识别,至少可以解决目前工业现场的广播模式,网络的可靠性和稳定性不能保证的问题,有效提高协同识别效率,同时降低成本。

Description

基于B-M2M的协同识别方法、边缘计算服务器及介质
技术领域
本公开涉及通信技术领域,尤其涉及一种基于B-M2M的协同识别方法、一种边缘计算服务器以及一种计算机可读存储介质。
背景技术
多机械臂和多机器人系统通过广播通信体系和协同算法,来实现各个机械臂或者机器人信息共享、协同合作的复杂系统,具有单机械臂或者单机器人不可比拟的巨大优势。目前的多机器人系统所采用的广播通信模式(例如5G网络通信广播模式),通常需要在网络层实现,面对工业现场大量机器人的节点广播,效率低、成本高,需要新的空口实现广播模式,且一旦网络的可靠性和稳定性存在问题,将导致机器人系统的协同识别出现异常等问题。
发明内容
本公开提供了一种基于B-M2M的协同识别方法、边缘计算服务器及计算机可读存储介质,以至少解决目前工业现场的广播模式,所产生的效率低、成本高,以及网络的可靠性和稳定性不能保证等问题。
根据本公开的一方面,提供一种基于B-M2M的协同识别方法,包括:
构建广播机器对机器B-M2M网络架构,所述B-M2M网络架构包括各个测量单元之间能够进行广播通信的B-M2M信道;
基于所述B-M2M信道向各个测量单元广播待识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述待识别信息对待识别目标进行协同识别,得到各个测量单元的识别信息;以及,
基于各个测量单元的识别信息获取待识别目标的全方位数据。
在一种实施方式中,还包括:
在预设区域设置公共标定标志,得到标志信息;以及,
将所述标志信息发送至各个测量单元,以使各个测量单元之间基于所述标志信息进行归一化位置标定。
在一种实施方式中,在基于所述B-M2M信道向各个测量单元广播待识别信息之前,还包括:
按照预设规则划分第一识别类别和第二识别类别;
判断待识别信息是否为第一识别类别;
若为第一识别类别,则在所述待识别信息中添加特征识别数据,得到第一预识别信息;
所述基于所述B-M2M信道向各个测量单元广播待识别信息,包括:
基于所述B-M2M信道向各个测量单元广播所述第一预识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述第一预识别信息对待识别目标进行协同识别,得到各个测量单元的第一识别信息;
所述基于各个测量单元的识别信息获取待识别目标的全方位数据,包括:
对各个测量单元的第一识别信息进行合并,得到待识别目标的全方位数据。
在一种实施方式中,所述各个测量单元之间利用所述B-M2M信道基于所述第一预识别信息对待识别目标进行协同识别,得到各个测量单元的第一识别信息,包括:
各个测量单元分别对待识别目标进行预识别,得到其各自的关于待识别目标的图像信息,并基于B-M2M信道将其各自的图像信息广播至其它测量单元;
各个测量单元分别判断其各自的图像信息中是否包含所述第一预识别信息对应类型的数据信息,若包含所述数据信息,则各个测量单元分别基于所述第一预识别信息判断所述数据信息是否符合预设规则,若符合预设规则,则各个测量单元标注所述数据信息,并基于B-M2M信道将其经过标注的数据信息广播至其它测量单元;或者,
各个测量单元基于B-M2M信道获取其它测量单元的图像信息及其经过标注的数据信息;
各个测量单元基于某一其它测量单元的图像信息及其经过标注的数据信息,从各自的图像信息中定位到所述标注的数据信息,并对其进行标注,得到各自经过标注的数据信息;
其中,各个测量单元将其经过标注的数据信息作为各自的第一识别信息。
在一种实施方式中,所述特征识别数据包括文字特征数据,所述数据信息为文字数据;
所述各个测量单元分别基于所述第一预识别信息判断所述数据信息是否符合预设规则,包括:
各个测量单元对所述文字数据所在图像区域进行垂直方向和水平方向进行投影,并将进行投影获得的投影结果进行分割,得到各自的分割图像;
各个测量单元将其各自的分割图像进行二值化处理,得到各自的二进制文字数据的特征数据;
各个测量单元分别计算其各自的特征数据和所述文字特征数据之间的方差;
各个测量单元分别判断其各自的方差是否小于第一预设阈值,若小于第一预设阈值,则判定为符合预设规则。
在一种实施方式中,所述特征识别数据包括图形特征数据,所述数据信息为图形数据;
所述各个测量单元基于所述第一预识别信息判断所述数据信息是否符合预设规则,包括:
各个测量单元分别基于所述图形特征数据和所述图形数据计算二者对应图像之间的平均绝对差;
各个测量单元分别判断所述平均绝对差是否小于第二预设阈值,若小于第二预设阈值,则判定为符合预设规则。
在一种实施方式中,所述各个测量单元分别基于所述图形特征数据和所述图形数据计算二者对应图像之间的平均绝对差,根据以下公式得到:
Figure BDA0003237175330000031
式中,D(i,j)表示所述图形特征数据和所述图形数据二者对应图像之间的绝对差,S表示图形数据对应的搜索图,T表示图形特征数据对应的模板图,(i,j)、M×N分别表示m×n的S搜索图中,以(i,j)为左上角,取M×N大小的子图T,其中,1≤i≤m-M+1,1≤j≤n-N+1,1≤s≤M,1≤t≤N。
在一种实施方式中,在判断所述待识别信息是否为第一识别类别之后,还包括:
若不是第一识别类别,则继续判断所述待识别信息是否为第二识别类别;
若为第二识别类别,则在所述待识别信息中添加识别指示信息,得到第二预识别信息;
所述基于所述B-M2M信道向各个测量单元广播待识别信息,包括:
基于所述B-M2M信道向各个测量单元广播所述第二预识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述第二预识别信息对待识别目标进行协同识别,得到各个测量单元的第二识别信息;
所述基于各个测量单元的识别信息获取待识别目标的全方位数据,包括:
获取各个测量单元的历史数据信息,并基于所述历史数据信息训练出关于各个测试单元的分类器;
采用所述关于各个测试单元的分类器分别识别各个测试单元的第二识别信息,得到各个测试单元的识别结果;
判断各个测试单元的识别结果是否相同,若相同,则将所述识别结果基于B-M2M信道广播至各个测量单元,以使各个测量单元基于所述识别结果对待识别目标进行定位识别,得到各自的第三识别信息;以及,
对各个测量单元的第三识别信息进行合并,得到待识别目标的全方位数据。
根据本公开的另一方面,提供一种边缘计算服务器,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行所述的基于B-M2M的协同识别方法。
根据本公开的再一方面,提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,所述处理器执行所述的基于B-M2M的协同识别方法。
本公开提供的技术方案可以包括以下有益效果:
本公开通过建立B-M2M网络架构,各个测量单元以及MEC利用B-M2M信道进行广播通信并完成协同识别,无增加新的空口实现广播模式,即可在物理层实现工业现场大量测量单元广播通信,较现有的广播通信模式而言有效提高了广播效率同时降低成本,并且基于专用信道可以满足工业现场大量应用对可靠性和稳定性的要求,进而提高协同识别效率。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的一种基于B-M2M的协同识别方法的流程示意图;
图2为本公开实施例测量单元部署在工业现场的场景示意图;
图3为本公开实施例提供的另一种基于B-M2M的协同识别方法的流程示意图;
图4为本公开实施例提供的又一种基于B-M2M的协同识别方法的流程示意图;
图5为本公开实施例提供的一种基于B-M2M的系统识别框架的结构示意图;
图6为图5中实时视觉目标协同识别和定位架构53的结构示意图;
图7为本公开实施例提供的一种边缘计算服务器的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序;并且,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本公开的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
随着多机器人协同识别的应用,其所产生的问题也日渐突出:协同识别和定位算法需要各个模块之间实时的通信交互,当前5G通信网络广播模式效率不高;高性能的识别算法需要强大的数据处理能力和灵活的算法调度,部署到设备侧会造成设备的成本急剧上升,而且未来升级和可扩展性较差;低复杂度识别算法识别速度快,但是准确性差,高复杂度识别算法准确性好,但是需要高性能的数据处理。
为解决上述问题,本公开实施例结合5G技术,构建基于5G网络的广播空口技术B-M2M(Broad Machine-to-Machine,广播机器对机器),利用协同识别技术,构建新的技术架构应用于工业现场的多节点协同识别和定位,同时利用MEC算法部署灵活的特点,运营商为不同客户提供功能丰富的识别和定位服务,不仅可以应用于工业和生产企业,还可以应用于智能交通、智慧城市等大量的场景,从而构建B-M2M的技术生态,丰富5G的服务形态,具有积极的意义。以工业现场的视频协同识别为例:
请参照图1,图1为本公开实施例提供的一种基于B-M2M的协同识别方法的流程示意图,所述方法应用于基站的边缘计算服务器(MobileEdge Computing,MEC),具体包括以下步骤S101-S103。
在步骤S101中,构建广播机器对机器B-M2M网络架构,所述B-M2M网络架构包括各个测量单元之间能够进行广播通信的B-M2M信道。
本实施例中,利用5G的授权频段构建B-M2M网络架构,在工业现场基站覆盖范围内,动态划分出专用的频段,采用时分方式部署广播信道,网络内所有设备节点(即,测量单元)具有接收所有广播时隙能力,测量单元可以在该B-M2M信道动态选择空闲时隙发送广播信息,从而实现所有测量单元的广播发送和接收,同时配置专用的控制时隙。具体地,B-M2M网络架构包括:
设备节点,设备节点具有无线广播信息发送和接收功能,安装在工业生产设备的各个核心部位,所有设备节点具有接收公共广播信道资源池所有时隙的功能。
公共广播信道资源池(即,B-M2M信道):在基站覆盖范围内,由基站内的B-M2M管理单元进行管理的具有连续频段和时隙的公共广播信道资源池,资源池的频段宽度和时隙数量由B-M2M管理单元根据实时的广播强度进行动态调整,以保证各个设备节点的广播发送延迟符合生产现场的质量要求。
B-M2M管理单元:部署在基站和移动边缘计算中,在5G基站的接入网(5G NG-RAN)中部署B-M2M广播发送接收模块,具有广播管理信息、确认信息和状态信息的功能、系统管理以及接收公共广播信道资源池所有时隙的功能。基站的移动边缘计算平台部署B-M2M管理和控制系统,以及生产应用系统的运行。
可以理解的是,测量单元可以是机械臂,机器人,机械臂、机器人上或者工业现场中其它具有测量识别功能的电子设备,各个测量单元设置可以设置在不同的位置,并从不同角度对待识别目标进行协同识别。以本实施例的工业现场为例,结合图2所示,工业现场包括多个测量单元21(包括全局视频识别单元、机上识别单元、机侧视频识别单元),各个测量单元21包括B-M2M模块211(该模块能够基于B-M2M信道进行广播通信),对不规则运动被测目标22进行协同识别。其中,待识别目标可以是不规则运动被测目标22上的某个待识别目标。
本实施例中,测量单元具有视频采集、图像数字化、低复杂度协同识别定位等功能,可以根据采集图像的像素分布和亮度、颜色等信息,转变成数字化信号,然后对信号进行运算来获得目标的特征数据,然后将特征数据通过B-M2M信道广播
在步骤S102中,基于所述B-M2M信道向各个测量单元广播待识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述待识别信息对待识别目标进行协同识别,得到各个测量单元的识别信息。
本实施例中,各个测量单元在接收到待识别信息之后,各自对待识别信息进行识别定位,同时利用B-M2M信道将识别定位信息广播给其它测量单元,例如某个测量单元基于其角度或者位置优势根据识别信息快速定位到了待识别目标,此时将其识别信息广播至B-M2M信道中,其它测量单元无需耗费资源寻找待识别目标,基于广播信息获取该测量单元的识别定位信息并直接对待识别目标进行进一步地识别分析,有效提高了识别效率。
在步骤S103中,基于各个测量单元的识别信息获取待识别目标的全方位数据。
可以理解的是,全方位数据即根据各个测量单元从不同角度、速度以及距离下获取到的整体数据。
具体地,MEC针对复杂度较低的待识别目标,通过获取各个测量单元在不同角度、速度及距离等所测得的识别信息,利用合并算法对识别信息进行识别,得到待识别目标的全方位数据,而针对复杂度较高,测量单元基于自身计算能力无法准确识别的待识别目标(例如没有固定文字和简单图形标注的目标),MEC通过获取各个测量单元的基础识别信息,并利用其数据处理能力的优势根据基础识别信息进行训练分类等过程识别出待测目标,进而完成待识别目标全方位数据的获取。
相较于相关技术,本实施例各个测量单元之间、以及MEC和各个测量单元之间利用B-M2M信道进行广播通信,其广播通信过程不需要在网络层实现,且无增加新的空口实现广播模式,即可以实现工业现场大量机器人的节点广播,较现有的5G广播通信模式而言有效提高了广播效率同时降低成本,并且基于专用信道可以满足工业现场大量应用对可靠性和稳定性的要求,有效解决现有技术中现有WiFi工作在公用频段,可靠性和稳定性不能保证的问题,保证机器人系统的协同识别过程不会因为网络原因出现广播异常。
进一步地,本实施例通过设定公共标定标志,以便于各个测量单元进行归一化位置标定,使得最终获得的识别信息在同一坐标下,所述方法还包括以下步骤:
在预设区域设置公共标定标志,得到标志信息;以及,
将所述标志信息发送至各个测量单元,以使各个测量单元之间基于所述标志信息进行归一化位置标定。
在实际应用中,可以在工作空间多处位置设置公共标定标志(标志信息),各个测量单元运动中基于标志信息动态对空间公共标定标志进行归一化位置标定,并将归一化位置通过各自的B-M2M模块广播,MEC和各个测量单元通过B-M2M广播信道接收到周围单元的归一化标定数据,从而可以确定各个测量单元的位置、通过插值获得各单元之间的相对位置、距离、方位。由于遮挡等原因,测量单元运动中暂时丢失对公共标定标志的跟踪时,采用测量单元协同标定的方式,测量单元通过接收能看到的其他测量节点的标定数据,然后再对这些测量单元进行标定,从而间接获得归一化位置标定。MEC基于上述视频坐标体系,实现在各测量单元运动中动态将每测量单元的视频归一化到同一坐标系下。
请参照图3,图3为本公开实施例提供的另一种基于B-M2M的协同识别方法的流程示意图,考虑到针对识别目标的复杂程度,对于测量单元的计算能力的要求也不相同,本实施例基于待识别目标的复杂程度划分两种识别类别,测量单元基于待识别目标的识别类别进行识别,以提高协同识别效率,具体地,在上一实施例的基础上,本实施例在步骤S102之前还包括步骤S301-S303,并将步骤S102进一步划分为步骤S102a,以及S103进一步划分为步骤S103a中。
在步骤S301中,按照预设规则划分第一识别类别和第二识别类别。
可以理解的是,本领域技术人员可以基于现有技术和实际应用对预设规则进行设定,例如基于测量单元的计算能力划分第一识别类别和第二识别列表,其中第一识别类别即利用测量单元进行协同识别,第二识别类别则需要借助MEC的计算能力完成高复杂度的协同识别。
本实施例中,将第一识别类别定义为本地低复杂度目标识别类别,将第二识别类别定义为MEC高复杂度识别类别。
在步骤S302中,判断所述待识别信息是否为第一识别类别,若为第一识别类别,则执行步骤S303,否则,结束流程。
在步骤S303中,在所述待识别信息中添加特征识别数据,得到第一预识别信息。
具体地,其中,特征识别数据可以为文字特征数据或者图片特征主句,MEC通过B-M2M信道,将系统设定的被测目标区域的特征识别数据(以第一预识别信息的形式)广播到各测量单元。
在步骤S102a中,基于所述B-M2M信道向各个测量单元广播所述第一预识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述第一预识别信息对待识别目标进行协同识别,得到各个测量单元的第一识别信息。
进一步地,本实施例针对低复杂度识别类别,各个测量单元在本地处理单元对采集的图像信息进行低复杂度被测目标识别,对于具有预先设定的明确的文字标注、明确的图像标注的待识别目标进行识别,采用低复杂度目标识别和跟踪,可以极大减少广播发送的图像信息,提高识别的速度和准确性。具体地,步骤S102中所述各个测量单元之间利用所述B-M2M信道基于所述第一预识别信息对待识别目标进行协同识别,得到各个测量单元的第一识别信息,包括以下步骤a-d:
a、各个测量单元分别对待识别目标进行预识别,得到其各自的关于待识别目标的图像信息,并基于B-M2M信道将其各自的图像信息广播至其它测量单元。
具体地,各测量单元的本地处理模块将摄像头采集的视频数据背景等变化缓慢的部分进行空间冗余处理,将相邻帧图像通过相关性处理进行时间冗余处理,采用运动估计和运动补偿的技术满足解码重建图像的质量要求。通过B-M2M模块动态接收其他测量单元和MEC周期性广播的目标识别结果,对测量目标及其周边区域进行敏感处理,同时对其他部分进行非敏感处理,然后将视频转换成周期性的图像信息,通过测量单元的B-M2M模块周期性广播。
b、各个测量单元分别判断其各自的图像信息中是否包含所述第一预识别信息对应类型的数据信息,若包含所述数据信息,则各个测量单元分别基于所述第一预识别信息判断所述数据信息是否符合预设规则,若符合预设规则,则各个测量单元标注所述数据信息,并基于B-M2M信道将其经过标注的数据信息广播至其它测量单元;
需要说明的是,对应类型的数据信息,即,与第一预识别信息同类型的数据信息,例如第一预识别信息中的特征识别数据为文字数据,对应类型的数据信息即是否包含文字;本领域技术人员可以根据现有技术和实际应用对预设规则进行适应性设定,例如针对特征文字识别,预设规则可以为是否具有文字数据且文字数据与文字特征数据之间的相似度是否小于定值,而针对特征图像识别,预设规则为另外的判断方式,具体详见后文,本实施例对此并不做具体限定。
或者,
c、各个测量单元基于B-M2M信道获取其它测量单元的图像信息及其经过标注的数据信息;
d、各个测量单元基于某一其它测量单元的图像信息及其经过标注的数据信息,从各自的图像信息中定位到所述标注的数据信息,并对其进行标注,得到各自经过标注的数据信息;
其中,各个测量单元将其经过标注的数据信息作为各自的第一识别信息。
可以理解的是,步骤c和d利用测量单元之间的B-M2M广播通信,可以快速获得其他测量单元的标注信息,进而提高自身节点寻找待识别目标的效率及准确率。
在步骤S103a中,对各个测量单元的第一识别信息进行合并,得到待识别目标的全方位数据。
本实施例中,对于低复杂度目标识别和跟踪(例如具有固定文字特征和图像特征的目标),各个测量单元进行协同识别,获得待识别目标在不同角度、速度、距离等下的第一识别信息,MEC利用合并算法将这些信息进行合并,就能得到待识别目标的全方位数据。
以待识别目标具有固定文字为例,在一种实施方式中,所述特征识别数据包括文字特征数据,所述数据信息为文字数据;
步骤b中所述各个测量单元分别基于所述第一预识别信息判断所述数据信息是否符合预设规则,包括以下步骤b1-b4:
b1、各个测量单元对所述文字数据所在图像区域进行垂直方向和水平方向进行投影,并将进行投影获得的投影结果进行分割,得到各自的分割图像;
b2、各个测量单元将其各自的分割图像进行二值化处理,得到各自的二进制文字数据的特征数据;
b3、各个测量单元分别计算其各自的特征数据和所述文字特征数据之间的方差;
b4、各个测量单元分别判断其各自的方差是否小于第一预设阈值,若小于第一预设阈值,则判定为符合预设规则。
在一种更为具体的实现方式中,MEC首先通过B-M2M信道,将系统设定的被测目标区域的标注文字的特征数据(文字特征数据)通过B-M2M信道广播到各测量单元。各测量单元在目标测量和跟踪过程中,通过本地处理单元将视频单元处理后的图像划分成块,通过滤波器灰度化后,通过Robert算子(利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑)对其进行边缘检测,然后判断是否有文本,如果有文本,则对确定的文本块分别在垂直和水平两个方向进行投影,然后对获得的垂直和水平投影结果进行分割.对分割出图像进行二值化处理,就可以获得二进制文本块的特征数据,然后与MEC广播的特征数据进行方差的计算,如果小于设定的门限,则完成本地标注文本的识别,并将识别结果通过测量单元的B-M2M模块广播。重复上述过程,进行被测目标的跟踪识别。
以待识别目标为图形为例,在一种实施方式中,所述特征识别数据包括图形特征数据,所述数据信息为图形数据;
步骤b中所述各个测量单元基于所述第一预识别信息判断所述数据信息是否符合预设规则,包括以下步骤b5和b6。
b5、各个测量单元分别基于所述图形特征数据和所述图形数据计算二者对应图像之间的平均绝对差;
b6、各个测量单元分别判断所述平均绝对差是否小于第二预设阈值,若小于第二预设阈值,则判定为符合预设规则。
具体地,低复杂度图像信息识别处理固定形状和大小的被测目标,或者被测目标上具有预先设定的、具有唯一性的固定图形标识,例如已知形状和大小的箭头等。MEC首先通过B-M2M信道,将系统设定的被测目标的模板图像(图形特征数据)广播到对应的各测量单元,各测量单元在目标测量和跟踪过程中,通过本地处理单元在视频单元处理后的图像中,然后通过计算绝对差进行标识模板图像的查找和定位。
进一步地,所述各个测量单元分别基于所述图形特征数据和所述图形数据计算二者对应图像之间的平均绝对差,根据以下公式得到:
Figure BDA0003237175330000131
式中,D(i,j)表示所述图形特征数据和所述图形数据二者对应图像之间的绝对差,S表示图形数据对应的搜索图,T表示图形特征数据对应的模板图,(i,j)、M×N分别表示m×n的S搜索图中,以(i,j)为左上角,取M×N大小的子图T,其中,1≤i≤m-M+1,1≤j≤n-N+1,1≤s≤M,1≤t≤N。
具体地,本实施例根据上述公式不断计算所有子图与模板的绝对差D(i,j),当D(i,j)小于系统设定的门限值时,即可完成标识图形的识别并确定其位置和距离。测量单元将各自识别的被测目标的位置、距离、行进方向和速度信息通过各自的B-M2M模块广播,其他测量模块接收到来自同一被测目标不同部分、不同角度、不同方向的数据后,就可以采用合并算法得到被测目标具有距离、速度、角度信息的的全方位数据。MEC通过B-M2M模块接收到各测量单元广播的被测目标的信息后,也可以通过合并算法获得被测目标的全方位数据。
请参照图4,图4为本公开实施例提供的又一种基于B-M2M的协同识别方法的流程示意图,本实施例针对第二识别类别—MEC高复杂度协同识别进一步示例,解决现有技术中机械手协同识别因计算能力有限以及识别准确性差等问题,在上一实施例的基础上,本实施例在判断所述待识别信息是否为第一识别类别(步骤302)之后,还包括步骤S401和步骤S402,并将步骤S102进一步划分为步骤S102b,将步骤S103进一步划分为步骤S103b-S103f。
对于没有固定文字和简单图形标注的被测目标,由于被测目标在每次操作中位置、形状和大小是变化的(例如传送带上的苹果的识别),测量单元低复杂度的识别不能完成这类复杂目标的识别,需要基于机器学习构筑高复杂度算法。而高复杂度算法需要大量学习数据和强大的数据处理能力,高性能的识别算法需要强大的数据处理能力和灵活的算法调度,部署到设备侧会造成设备的成本急剧上升,而且未来升级和可扩展性较差;低复杂度识别算法识别速度快,但是准确性差,高复杂度识别算法准确性好,但是需要高性能的数据处理。
为解决上述问题,本实施例利用MEC强大的数据处理和存储能力,各个测量单元通过B-M2M模块将处理后的图像数据广播到B-M2M信道,MEC的B-M2M模块接收到各个测量单元广播的图像数据后对其进行处理识别。MEC具有高速网络和良好的数据处理和存储能力,可以动态获得有标记的训练数据和海量无标记的训练数据,以及各类算法。具体地,
在步骤S401中,若不是第一识别类别,则继续判断所述待识别信息是否为第二识别类别;
在步骤S402中,若为第二识别类别,则在所述待识别信息中添加识别指示信息,得到第二预识别信息。
需要说明的是,本实施例的识别指示信息用于指示各测量单元对待测目标进行预处理,MEC对经过预处理的数据信息(第二识别信息)进一步运用其计算能力分析识别。
所述基于所述B-M2M信道向各个测量单元广播待识别信息(步骤S102),包括:
在步骤S102b中,基于所述B-M2M信道向各个测量单元广播所述第二预识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述第二预识别信息对待识别目标进行协同识别,得到各个测量单元的第二识别信息;
所述基于各个测量单元的识别信息获取待识别目标的全方位数据(步骤S103),包括步骤S103b-S103f。
本实施例采用多分类器协同(Co-training)的方式实现被测目标的识别。由于被测目标处于位置和角度不断变化中,协同训练的数据从不同的角度(视图)进行分类,不同视图可以训练出不同的分类器,然后用这些从不同视图训练出来的分类器相互协同,对无标签样本进行分类。由于这些分类器从不同视图训练出来的,可以解决任意方向运动和转动的被测目标的识别,而且多个分类器形成一种互补而提高分类精度,就如同从多个角度可以更好地识别事物一样。
在步骤S103b中,获取各个测量单元的历史数据信息,并基于所述历史数据信息训练出关于各个测试单元的分类器。
具体地,以两个测量单元的数据为例(更多节点算法原理相同),在学习训练阶段,输入:测量单元1和测量单元2通过各自的B-M2M信道广播的数据经过MEC的B-M2M模块接收后,部分进行标记,生成标记训练集L,其他没有标记的生成无标记训练集U,输出:分类器h1、分类器h2。执行过程如下:
从训练集U随机选取取u个数据到无标记分类池U'
Do
利用L中来自测量单元1的数据训练分类器h1
利用L中来自测量单元2的数据训练分类器h2
利用h1对U'中所有未标记元素进行标记,从中选出置信度高的p个正标记和n个负标记数据;(此处是针对二分类的判断识别,所以类别只有两种,例如是和否,即对第一类取p,第二类取n,其中p和n可以相等也可以不等,p+n小于等于U’中元素个数。若是三分类,第一类取p1,第二类取p2,第三类取p3,其余分类以此类推)
利用h2对U'中所有未标记元素进行标记,从中选出置信度高的p个正标记和n个负标记数据;
将上面选出的2(p+n)个标记加入L中;
随机从U中选取2(p+n)个数据补充到U'中;
i=i+1
While(i<k)
在步骤S103c中,采用所述关于各个测试单元的分类器分别识别各个测试单元的第二识别信息,得到各个测试单元的识别结果。
在工作识别阶段,输入:测量单元1和测量单元2通过各自的B-M2M信道广播实时采集的数据x1和x2,MEC通过B-M2M模块接收后,生成工作数据集x1和x2;输出:分类结果。执行过程如下:
采用分类器h1识别x1
采用分类器h2识别x2
如果分类器h1和h2识别结果相同,则取该识别结果;
如果分类器h1和h2识别结果不同,则更换识别数据后识别,两次识别结果合并后取多数;如果还不能获得结果,则本时刻识别结果输出未知(本算法是两个节点协同,如果多个节点,可以通过投票机制获得最终结果);并继续识别下一个时刻的数据(即测量单元下一刻广播的第二识别信息)。
在步骤S103d中,判断各个测试单元的识别结果是否相同;
在步骤S103e中,若相同,则将所述识别结果基于B-M2M信道广播至各个测量单元,以使各个测量单元基于所述识别结果对待识别目标进行定位识别,得到各自的第三识别信息;以及,
在步骤S103f中,对各个测量单元的第三识别信息进行合并,得到待识别目标的全方位数据。
具体地,各测量单元在接收到MEC广播的识别结果(第三识别信息)后,即可确定被测目标;采用动态标定数据实时广播和相互定位中的方法进行定位;测量单元将各自识别的被测目标的位置、距离、行进方向和速度信息通过各自的B-M2M模块广播,其他测量模块接收到来自同一被测目标不同部分、不同角度、不同方向的数据后,就可以采用合并算法得到被测目标具有距离、速度、角度信息的的全方位数据。MEC通过B-M2M模块接收到各测量单元广播的被测目标的信息后,通过合并算法获得被测目标的全方位数据。
本实施例中,结合B-M2M高效广播网络,将高复杂度的协同识别算法部署到MEC中,低复杂度的协同识别和定位算法部署到现场单元本地,现场单元识别具有速度快的优势,但是识别性能差;MEC具有识别能力强但是占用资源大,识别速度慢的缺陷,将两者结合,可以发挥各自的优势,克服各自的缺陷,尤其对于现场本地无法处理的高复杂数据进行协同识别,并进行数据融合,以提高识别的速度、准确性和全局性。
基于相同的技术构思,本公开实施例相应还提供一种基于B-M2M的系统识别框架,如图5所示,包括:
工业现场单元51、B-M2M广播网络架构52、实时视觉目标协同识别和定位架构(MEC以及测量单元的协同识别)53三个部分。
其中,工业现场单元51包括视频采集、图像数字化、B-M2M通信单元、低复杂度协同识别定位、机械运动和控制执行部分、光源系统等功能。工业现场单元部署在多机械臂或者多机器人的机械臂上、被测目标周围以及工作环境中,完成工业现场的视频数据采集,根据采集图像的像素分布和亮度、颜色等信息,转变成数字化信号,然后对信号进行运算来获得目标的特征数据,然后将特征数据通过B-M2M信道广播;
B-M2M无线广播网络52包括B-M2M模块、B-M2M广播信道和系统管理三个部分,为各个模块提供高效的实时广播信道;
实时视觉目标协同识别和定位架构53包括本地识别和MEC识别两部分,其中本地识别由测量单元21(其包括B-M2M模块211)协同完成,结合图6所示,在工业现场进行坐标归一化标定,本地低复杂度协同识别定位和MEC集中式识别定位,具有固定文字和固定图形标记的被测目标在本地测量单元21进行识别;在移动边缘计算61中采用机器学习模式,其包括协同识别模块611(例如S103b-S103e中协同识别的作用)、控制模块612(例如步骤S301、S302中的作用等)、B-M2M模块613(例如步骤S102的作用等)、数据处理模块614(例如步骤S103的作用等)以及分类器615(例如步骤S103b和S103c中的作用等),其中各个测量单元之间及其与MEC之间通过B-M2M广播信息进行广播通信,MEC中包括对现场本地无法处理的高复杂数据进行协同识别,并进行数据融合,以提高识别的速度、准确性和全局性。
其中,实时视觉目标协同识别和定位架构由部署在多个机械臂或者机器人,以及周围环境的现场单元组成,现场单元可以分为全局视频识别单元、多个机侧视频识别单元和机上识别单元,MEC协同识别单元,每个单元都配置B-M2M模块。本实施例以附图2所示的单个机械臂为例描述实时视觉目标协同识别和定位策略,多个机械臂相互之间的协同识别和定位与单个机械臂原理相同。
基于相同的技术构思,本公开实施例相应还提供一种边缘计算服务器,如图7所示,包括存储器71和处理器72,所述存储器71中存储有计算机程序,当所述处理器72运行所述存储器71存储的计算机程序时,所述处理器执行所述的基于B-M2M的协同识别方法。
基于相同的技术构思,本公开实施例相应还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,所述处理器执行所述的基于B-M2M的协同识别方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (10)

1.一种基于B-M2M的协同识别方法,其特征在于,包括:
构建广播机器对机器B-M2M网络架构,所述B-M2M网络架构包括各个测量单元之间能够进行广播通信的B-M2M信道;
基于所述B-M2M信道向各个测量单元广播待识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述待识别信息对待识别目标进行协同识别,得到各个测量单元的识别信息;以及,
基于各个测量单元的识别信息获取待识别目标的全方位数据。
2.根据权利要求1所述的方法,其特征在于,还包括:
在预设区域设置公共标定标志,得到标志信息;以及,
将所述标志信息发送至各个测量单元,以使各个测量单元之间基于所述标志信息进行归一化位置标定。
3.根据权利要求1所述的方法,其特征在于,在基于所述B-M2M信道向各个测量单元广播待识别信息之前,还包括:
按照预设规则划分第一识别类别和第二识别类别;
判断待识别信息是否为第一识别类别;
若为第一识别类别,则在所述待识别信息中添加特征识别数据,得到第一预识别信息;
所述基于所述B-M2M信道向各个测量单元广播待识别信息,包括:
基于所述B-M2M信道向各个测量单元广播所述第一预识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述第一预识别信息对待识别目标进行协同识别,得到各个测量单元的第一识别信息;
所述基于各个测量单元的识别信息获取待识别目标的全方位数据,包括:
对各个测量单元的第一识别信息进行合并,得到待识别目标的全方位数据。
4.根据权利要求3所述的方法,其特征在于,所述各个测量单元之间利用所述B-M2M信道基于所述第一预识别信息对待识别目标进行协同识别,得到各个测量单元的第一识别信息,包括:
各个测量单元分别对待识别目标进行预识别,得到其各自的关于待识别目标的图像信息,并基于B-M2M信道将其各自的图像信息广播至其它测量单元;
各个测量单元分别判断其各自的图像信息中是否包含所述第一预识别信息对应类型的数据信息,若包含所述数据信息,则各个测量单元分别基于所述第一预识别信息判断所述数据信息是否符合预设规则,若符合预设规则,则各个测量单元标注所述数据信息,并基于B-M2M信道将其经过标注的数据信息广播至其它测量单元;或者,
各个测量单元基于B-M2M信道获取其它测量单元的图像信息及其经过标注的数据信息;
各个测量单元基于某一其它测量单元的图像信息及其经过标注的数据信息,从各自的图像信息中定位到所述标注的数据信息,并对其进行标注,得到各自经过标注的数据信息;
其中,各个测量单元将其经过标注的数据信息作为各自的第一识别信息。
5.根据权利要求4所述的方法,其特征在于,所述特征识别数据包括文字特征数据,所述数据信息为文字数据;
所述各个测量单元分别基于所述第一预识别信息判断所述数据信息是否符合预设规则,包括:
各个测量单元对所述文字数据所在图像区域进行垂直方向和水平方向进行投影,并将进行投影获得的投影结果进行分割,得到各自的分割图像;
各个测量单元将其各自的分割图像进行二值化处理,得到各自的二进制文字数据的特征数据;
各个测量单元分别计算其各自的特征数据和所述文字特征数据之间的方差;
各个测量单元分别判断其各自的方差是否小于第一预设阈值,若小于第一预设阈值,则判定为符合预设规则。
6.根据权利要求4所述的方法,其特征在于,所述特征识别数据包括图形特征数据,所述数据信息为图形数据;
所述各个测量单元基于所述第一预识别信息判断所述数据信息是否符合预设规则,包括:
各个测量单元分别基于所述图形特征数据和所述图形数据计算二者对应图像之间的平均绝对差;
各个测量单元分别判断所述平均绝对差是否小于第二预设阈值,若小于第二预设阈值,则判定为符合预设规则。
7.根据权利要求6所述的方法,其特征在于,所述各个测量单元分别基于所述图形特征数据和所述图形数据计算二者对应图像之间的平均绝对差,根据以下公式得到:
Figure FDA0003237175320000031
式中,D(i,j)表示所述图形特征数据和所述图形数据二者对应图像之间的绝对差,S表示图形数据对应的搜索图,T表示图形特征数据对应的模板图,(i,j)、M×N分别表示m×n的S搜索图中,以(i,j)为左上角,取M×N大小的子图T,其中,1≤i≤m-M+1,1≤j≤n-N+1,1≤s≤M,1≤t≤N。
8.根据权利要求3所述的方法,其特征在于,在判断所述待识别信息是否为第一识别类别之后,还包括:
若不是第一识别类别,则继续判断所述待识别信息是否为第二识别类别;
若为第二识别类别,则在所述待识别信息中添加识别指示信息,得到第二预识别信息;
所述基于所述B-M2M信道向各个测量单元广播待识别信息,包括:
基于所述B-M2M信道向各个测量单元广播所述第二预识别信息,以使各个测量单元之间利用所述B-M2M信道基于所述第二预识别信息对待识别目标进行协同识别,得到各个测量单元的第二识别信息;
所述基于各个测量单元的识别信息获取待识别目标的全方位数据,包括:
获取各个测量单元的历史数据信息,并基于所述历史数据信息训练出关于各个测试单元的分类器;
采用所述关于各个测试单元的分类器分别识别各个测试单元的第二识别信息,得到各个测试单元的识别结果;
判断各个测试单元的识别结果是否相同,若相同,则将所述识别结果基于B-M2M信道广播至各个测量单元,以使各个测量单元基于所述识别结果对待识别目标进行定位识别,得到各自的第三识别信息;以及,
对各个测量单元的第三识别信息进行合并,得到待识别目标的全方位数据。
9.一种边缘计算服务器,其特征在于,包括存储器和处理器,所述存储器中存储有计算机程序,当所述处理器运行所述存储器存储的计算机程序时,所述处理器执行根据权利要求1至8中任一项所述的基于B-M2M的协同识别方法。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,所述处理器执行根据权利要求1至8中任一项所述的基于B-M2M的协同识别方法。
CN202111006196.1A 2021-08-30 2021-08-30 基于b-m2m的协同识别方法、边缘计算服务器及介质 Active CN113704003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111006196.1A CN113704003B (zh) 2021-08-30 2021-08-30 基于b-m2m的协同识别方法、边缘计算服务器及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111006196.1A CN113704003B (zh) 2021-08-30 2021-08-30 基于b-m2m的协同识别方法、边缘计算服务器及介质

Publications (2)

Publication Number Publication Date
CN113704003A CN113704003A (zh) 2021-11-26
CN113704003B true CN113704003B (zh) 2023-05-12

Family

ID=78656927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111006196.1A Active CN113704003B (zh) 2021-08-30 2021-08-30 基于b-m2m的协同识别方法、边缘计算服务器及介质

Country Status (1)

Country Link
CN (1) CN113704003B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114274146B (zh) * 2022-01-20 2024-02-27 中国联合网络通信集团有限公司 机器人控制系统及机器人跟随控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065136A (zh) * 2013-01-29 2013-04-24 中国电子科技集团公司第二十八研究所 一种基于视觉注意机制的sar图像协同目标识别方法
CN103733546A (zh) * 2011-08-26 2014-04-16 Lg电子株式会社 在机器对机器通信中发射终端组区标识符的方法
CN103828431A (zh) * 2011-12-16 2014-05-28 英特尔公司 更改机器到机器(m2m)装置的m2m群组
KR20150063906A (ko) * 2013-11-29 2015-06-10 주식회사 케이티 M2m 환경에서 사용 가능한 장치를 검색하는 방법 및 장치
CN108776819A (zh) * 2018-06-05 2018-11-09 Oppo广东移动通信有限公司 一种目标识别方法、移动终端及计算机可读存储介质
CN112598899A (zh) * 2020-12-03 2021-04-02 中国联合网络通信集团有限公司 一种数据处理方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733546A (zh) * 2011-08-26 2014-04-16 Lg电子株式会社 在机器对机器通信中发射终端组区标识符的方法
CN103828431A (zh) * 2011-12-16 2014-05-28 英特尔公司 更改机器到机器(m2m)装置的m2m群组
CN103065136A (zh) * 2013-01-29 2013-04-24 中国电子科技集团公司第二十八研究所 一种基于视觉注意机制的sar图像协同目标识别方法
KR20150063906A (ko) * 2013-11-29 2015-06-10 주식회사 케이티 M2m 환경에서 사용 가능한 장치를 검색하는 방법 및 장치
CN108776819A (zh) * 2018-06-05 2018-11-09 Oppo广东移动通信有限公司 一种目标识别方法、移动终端及计算机可读存储介质
CN112598899A (zh) * 2020-12-03 2021-04-02 中国联合网络通信集团有限公司 一种数据处理方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nawel Zangar 等.Service differentiation strategy based on MACB factor for M2M Communications in LTE-A Networks.《2016 13th IEEE Annual Consumer Communications &amp Networking Conference (CCNC)》.2016,第1-6页. *
机器型通信(M2M)的负荷控制研究;张俊 等;《上海师范大学学报(自然科学版)》;第72-76页 *

Also Published As

Publication number Publication date
CN113704003A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN111695622B (zh) 变电作业场景的标识模型训练方法、标识方法及装置
Mi et al. Research on regional clustering and two-stage SVM method for container truck recognition
Keller et al. A new benchmark for stereo-based pedestrian detection
US10410354B1 (en) Method and apparatus for multi-model primitive fitting based on deep geometric boundary and instance aware segmentation
CN111753757B (zh) 一种图像识别处理方法及装置
CN103077236B (zh) 便携式设备实现视频知识采集与标注功能的系统及方法
Fleck et al. Towards large scale urban traffic reference data: Smart infrastructure in the test area autonomous driving baden-württemberg
CN113962274B (zh) 一种异常识别方法、装置、电子设备及存储介质
CN110175528B (zh) 人体跟踪方法及装置、计算机设备及可读介质
CN102799935A (zh) 一种基于视频分析技术的人流量统计方法
de Almeida et al. A systematic review on computer vision-based parking lot management applied on public datasets
CN110443824A (zh) 用于生成信息的方法和装置
CN113704003B (zh) 基于b-m2m的协同识别方法、边缘计算服务器及介质
De Pinho et al. Vision-aided radio: User identity match in radio and video domains using machine learning
CN113393448A (zh) 一种形变检测方法、装置、设备及计算机可读存储介质
CN116543261A (zh) 用于图像识别的模型训练方法、图像识别方法设备及介质
Agrawal et al. Multi-angle parking detection system using mask r-cnn
CN109903308B (zh) 用于获取信息的方法及装置
Wang et al. An improved YOLOX approach for low-light and small object detection: PPE on tunnel construction sites
US11341736B2 (en) Methods and apparatus to match images using semantic features
CN114627365B (zh) 场景重识别方法、装置、电子设备及存储介质
Micheal et al. Automatic object tracking in optimized UAV video
CN114648572A (zh) 虚拟定位方法及装置、虚拟定位系统
Katsamenis et al. Evaluating YOLO transferability limitation for road infrastructures monitoring
WO2021161008A1 (en) Object location status monitoring apparatus and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant