CN113698364A - 一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用 - Google Patents

一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用 Download PDF

Info

Publication number
CN113698364A
CN113698364A CN202110240464.XA CN202110240464A CN113698364A CN 113698364 A CN113698364 A CN 113698364A CN 202110240464 A CN202110240464 A CN 202110240464A CN 113698364 A CN113698364 A CN 113698364A
Authority
CN
China
Prior art keywords
aie
compound
tpe
molecular structure
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110240464.XA
Other languages
English (en)
Inventor
丁丹
高贺麒
章经天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202110240464.XA priority Critical patent/CN113698364A/zh
Publication of CN113698364A publication Critical patent/CN113698364A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D293/00Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring hetero atoms
    • C07D293/10Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D293/12Selenazoles; Hydrogenated selenazoles

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明AIE材料合成领域,具体涉及一种兼具长波长和高量子产率的AIE分子结构、组合物、纳米粒子及其应用。所述AIE分子结构为通式(I)所示的化合物及其所有可能的异构体或其盐或水合物或螯合物。有益效果在于:提供一种新的AIE分子,兼具长波长和高量子产率的特点;纳米粒子低生物毒性,用作肿瘤细胞标记探针;制备的纳米粒子可以稳定、均匀的分散在水体系中长达7天以上。

Description

一种兼具长波长和高量子产率的AIE分子结构、组合物、纳米 粒子及其应用
技术领域
本发明AIE材料合成领域,具体涉及一种兼具长波长和高量子产率的AIE 分子结构、组合物、纳米粒子及其应用。
背景技术
近年来,荧光生物成像技术由于具有高灵敏度、成像速度快、实时成像、高生物安全性、检测便捷、成本低等优势,在生物成像领域发展迅速。与其它分子成像技术相比,荧光生物成像技术可以非侵入性实时肿瘤诊断和成像引导肿瘤切除手术,辅助外科医生灵敏、准确地检测和切掉微小的肿瘤,使肿瘤手术的治疗效果显著提高。虽然包括荧光蛋白、无机量子点和碳纳米管和有机小分子染料等在内的荧光染料迅速发展,但是各种材料都存在自身局限性,如荧光蛋白容易被酶和激光辐照降解;无机材料生物副作用大等。而有机染料因其种类丰富、易修饰、生物相容性好等优点,具有良好的应用前景。然而,在活体成像应用中,要求染料具有高亮度、高对比度的特性。因此,具有组织穿透性高、细胞损伤低、生物自体荧光干扰小等优势的远红/近红外(FR/NIR)发射(>650nm)的荧光染料,展现出巨大的应用潜力。目前,一些传统的有机小分子染料已经被开发出来并用在光介导的生物医学临床应用中,如食品药品管理局(FDA)批准的吲哚菁绿和亚甲基蓝等,更是凸显了有机小分子染料在临床转化和实际应用中的潜力。
然而,传统小分子材料仍存在着诸多问题,如水体系中易降解、光稳定性差、斯托克斯位移小、肿瘤积蓄性差等,尤其是传统的有机小分子染料往往具有平面分子结构。有机小分子染料由于其疏水性往往会在生物水环境中产生聚集,聚集体内的分子间相互作用(如π-π堆积),极大地阻碍了电子激发态的辐射衰减,产生聚集引起淬灭(ACQ)效应,如卟啉类染料和尼罗红等,导致荧光染料在生物活体应用中的发射效率、灵敏度和有效性大幅降低,限制了实际应用[13]。因此,开发出聚集态下具有高量子产率(QY)、大斯托克斯位移,稳定性好的近红外荧光染料仍是一个挑战。
2001年,唐本忠等首次提出的“聚集诱导发光(AIE)”概念,为解决这一问题开辟了新的途径。与ACQ有机染料相反的是,聚集诱导发光体(AIEgen) 通常具有周边苯基单元作为分子螺旋桨结构。因此,AIEgen在溶解状态下,激发态电子由于分子内运动(如周边苯环旋转)而倾向于非辐射耗散,导致没有荧光或荧光很弱;反之,在聚集状态下,AIEgen因其具有扭曲的三维分子结构,减少了分子间的相互作用;并且由于分子内运动/旋转受限(RIM/RIR),抑制激发态能量的非辐射耗散,导致产生强烈的荧光。
AIEgen的出现解决了传统荧光材料的大部分问题。尽管许多研究小组已经证明了AIEgen在生物成像领域的独特优势,但大多数AIEgen是疏水的或不稳定的导致在生物水体系中难以应用。为了克服这些障碍,研究人员广泛采用PEG-b-PPG-b-PEG(F127)或1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基-(聚乙二醇)-2000](MPEG2000-DSPE)作为掺杂基质共组装制备生物相容性纳米颗粒(NPs),该方法可以便捷地提高AIEgen的水分散稳定性和光热稳定性。同时,由于纳米颗粒独特的高渗透/滞留的“被动”肿瘤靶向能力,使负载AIEgen的纳米粒子用于体内癌症诊断成为可能。
要获得具有远红/近红外发射的AIE纳米粒子,研究人员常采用D-π-A、 D-A-D或A-D-A方式将电子供体和受体部分连接成一个分子,并且所使用的受体部分必须具有低的能隙。然而,这种低能隙有机材料通常表现出比短发射波长荧光团更低的量子产率。因此,尽管最近已有大量新型AIEgen被报道,开发出兼具长波长和高量子产率的染料也具有挑战性。
发明内容
本发明所要解决的技术问题是提供一种兼具长波长和高量子产率的AIE 分子结构,不需要制成纳米粒子,能够直接将AIE化合物标记在特异性蛋白上形成的检测试剂。
本发明公开了一种兼具长波长和高量子产率的AIE分子结构,为通式(I) 所示的化合物及其所有可能的异构体或其盐或水合物或螯合物:
Figure RE-GDA0003158513120000021
Figure RE-GDA0003158513120000031
其中,R1、R2分别采用如下结构或其衍生物中至少一种:
Figure RE-GDA0003158513120000032
进一步地,所述的兼具长波长和高量子产率的AIE分子结构,通式(I) 所述化合物的结构为:
Figure RE-GDA0003158513120000033
Figure RE-GDA0003158513120000041
及上述化合物所有可能的异构体、或上述化合物及其所有可能的异构体的盐、或上述化合物及其所有可能的异构体的水合物。
进一步地,本发明还公开了一种AIE组合物,通式(I)所述化合物及上述化合物所有可能的异构体、或上述化合物及其所有可能的异构体的盐、或上述化合物及其所有可能的异构体的水合物中至少一种组成的组合物。
进一步地,本发明还公开了所述的AIE分子,作为探针试剂用于直接标记特异性蛋白的用途。
进一步地,所述特异性蛋白为肿瘤特征蛋白。
进一步地,本发明还公开了一种AIE分子纳米粒子,包括所述的AIE分子。
优选的,所述AIE分子纳米粒子以两亲性共聚物MPEG2000-DSPE为掺杂基质。
优选的,所述AIE分子纳米粒子采用超声共沉淀方法制备。
本发明的有益效果在于:
1、提供一种新的AIE分子,兼具长波长和高量子产率的特点;
2、低生物毒性,用作肿瘤细胞标记探针;
3、制备的纳米粒子可以稳定、均匀的分散在水体系中长达7天以上。
附图说明
图1本发明实施例1-3中化合物A1~A3的光物理性质检测谱图;
图2本发明实施例1-3中化合物A1~A3在不同THF/水比例混合溶液中的发光性质检测谱图;
图3本发明实施例4-6中化合物A1~A3纳米粒子形态及稳定性测试图;
图4本发明实施例4-6中化合物A1~A3纳米粒子的光物理性质检测谱图;
图5与TPE-DPA-Se NPs共孵育的4T1细胞激光共聚焦显微镜图;
图6为TPE-DPA-Se NPs的荧光影像图。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步描述,以下实施例仅用于更加清楚地说明本发明的技术实施例,而不能以此来限制本发明的保护范围。
实施例1
选取R1、R2均为如下结构
Figure RE-GDA0003158513120000051
则通式(I)所述化合物A结构如下:
Figure RE-GDA0003158513120000052
化合物A1按照如下反应方程式合成:
Figure RE-GDA0003158513120000053
实施例2
选取R1、R2均为如下结构
Figure RE-GDA0003158513120000061
则通式(I)所述化合物A结构如下:
Figure RE-GDA0003158513120000062
化合物A2按照如下反应方程式合成:
Figure RE-GDA0003158513120000063
实施例3
选取R1、R2均为如下结构
Figure RE-GDA0003158513120000064
则通式(I)所述化合物A结构如下:
Figure RE-GDA0003158513120000071
化合物A3按照如下反应方程式合成:
Figure RE-GDA0003158513120000072
实施例4
为了使化合物A1能够被应用于生物环境水体系,以一种两亲性共聚物 MPEG2000-DSPE为掺杂基质,采用超声共沉淀的方法制备纳米粒子。
其方法包括如下步骤:
将化合物A1和MPEG2000-DSPE溶解在纯THF溶液中,在超声条件下向水中缓慢滴加,在超声作用和亲疏水相互作用下制备成负载化合物A1的纳米粒子,然后用持续的氮气吹拂浓缩至指定浓度;即为化合物A1纳米粒子 (TPE-Se NPs)。
由于,疏水的化合物A1和MPEG2000-DSPE的疏水部分相互作用,形成纳米粒子的内核,而亲水性的聚乙二醇链则分散在粒子表面,使化合物A1纳米粒子均匀而稳定的分散在水体系中,防止沉淀。
实施例5-6
将化合物A1替换为化合物A2、利用与实施例4相同方法即可制备化合物 A1纳米粒子(TPA-Se NPs)。
将化合物A1替换为化合物A3、利用与实施例4相同方法即可制备化合物 A3纳米粒子(TPE-DPA-Se NPs)。
为了进一步说明本发明实施例的有益效果,特设置如下检测试验:
光物理性质测试:
由四氢呋喃溶液下的归一化紫外-可见吸收光谱(附图1a)可知:
化合物A1(TPE-Se)在波长为332nm及422nm的光线下有吸收峰;
化合物A2(TPA-Se)在波长为318nm及480nm的光线下有吸收峰;
化合物A3(TPE-DPA-Se)在波长为333nm及487nm的光线下有吸收峰。
由归一化光致发光光谱(附图1b)可知:
化合物A1在波长为567nm有发射峰;
化合物A2在波长为647nm有发射峰;
化合物A3在波长为653nm有发射峰。
AIE性质测试:
为了验证分子的AIE性质,设计测试了化合物A1(TPE-Se)、化合物A2 (TPA-Se)和化合物A3(TPE-DPA-Se)在不同THF/水比例的混合溶液中发射的强度变化。
检测结果如下:
图2a为化合物A1(TPE-Se)在不同水含量下的归一化光致发光光谱;
图2b为化合物A2(TPA-Se)在不同水含量下的归一化光致发光光谱;
图2c为化合物A3(TPE-DPA-Se)在不同水含量下的归一化光致发光光谱;
图2d为化合物A1(TPE-Se)、化合物A2(TPA-Se)和化合物A3 (TPE-DPA-Se)随水含量变化时的相对光致发光强度变化图。
如图2-c所示,随着水含量增加,溶剂极性增大,所有化合物荧光强度降低,最大发射波长稍有红移,这一现象可能是由于分子形成TICT态引起的,分子的发光行为由TICT效应主导。
以质量分数计,当水含量超过40%时,化合物TPA-Se和TPE-DPA-Se的荧光强度逐渐升高,当水含量超过50%时,化合物TPE-Se的荧光强度也开始升高,并伴随着最大发射波长蓝移,这一现象可能是由于分子形成聚集体导致的,此时分子的发光行为转变为由AIE性质主导。
如图2d所示,化合物A1(TPE-Se)、化合物A2(TPA-Se)和化合物A3 (TPE-DPA-Se)具备TICT性质。随着溶剂极性的增大,所有化合物的最大发射波长逐渐红移。以上数据表明,化合物TPE-Se、TPA-Se和TPE-DPA-Se均兼具TICT和AIE两种性质。
与此同时,图2d数据表明,化合物A3(TPE-DPA-Se)分子在水含量为 90%的混合溶液中,荧光强度继续升高,展现出最好的AIE性质,这也为 TPE-DPA-Se分子进一步在纳米粒子(聚集态)中的应用奠定了基础。
纳米粒子的制备、表征:
如图3所示:
图3a为化合物A1纳米粒子(TPE-Se NPs)的动态光散射直径(DLS),左上角插图为其透射电子显微镜图(TEM);
图3b为化合物A2纳米粒子(TPA-Se NPs)的动态光散射直径(DLS),左上角插图为其透射电子显微镜图(TEM);
图3c为化合物A3纳米粒子(TPE-DPA-Se NPs)的动态光散射直径(DLS),左上角插图为其透射电子显微镜图(TEM);
图3d为实施例4-6所述纳米粒子在4℃条件下存储1,4,7天后的粒径。
由图3a、图3b、图3c所示,实施例4-6所述纳米粒子的平均流体力学直 径分别为109nm、120nm和113nm。据文献报道,这种尺寸处于100nm附 近的纳米粒子有利于体内长时间血液循环。
由图3a、图3b、图3c所示,透射电子显微镜(TEM)对这三个AIE NPs 的形貌进行了表征后可知,实施例4-6所述纳米粒子均表现出类球形的形状。
由图3d所示,实施例4-6所述纳米粒子均具有良好的粒径稳定性,在4℃冰箱保存的AIE NPs可以稳定、均匀的分散在水体系中长达7天以上。
纳米粒子的光物理性质:
我们研究了实施例4-6所述纳米粒子在水介质中的光物理性质。如图由图 4所示:
图4a为实施例4(TPE-Se NPs)、实施例5(TPA-Se NPs)和实施例6 (TPE-DPA-SeNPs)分别在365nm紫外光照射下的荧光照片;
图4b为实施例4(TPE-Se NPs)的归一化UV-Vis吸收光谱和归一化光致发光光谱;
图4c为实施例5(TPA-Se NPs)的归一化UV-Vis吸收光谱和归一化光致发光光谱;
图4d为实施例6(TPE-DPA-Se NPs)的归一化UV-Vis吸收光谱和归一化光致发光光谱。
由图4a可以观察到,实施例4-6产品在365nm的紫外灯照射下可以发出明亮的荧光,并且实施例5(TPA-Se NPs)和实施例6(TPE-DPA-Se NPs)可以发出近红外的明亮的红色荧光。
由图4b~d显示了实施例4-6产品纳米粒子在水中的归一化UV-Vis吸收光谱和归一化荧光光谱。与在THF中的TPE-Se、TPA-Se和TPE-DPA-Se溶液相比,这三种纳米粒子的UV-Vis吸收的峰形与主峰位置都没有明显变化,而TPE-Se NPs、TPA-Se NPs和TPE-DPA-Se NPs的发射峰的峰值则均表现出轻微的蓝移,分别位于551nm,626nm和642nm,这可能是由于分子形成了聚集体导致的。
值得注意的是,对比TPE-Se溶液和TPE-Se NPs,TPE-DPA-Se溶液和 TPE-DPA-SeNPs,纳米粒子的最大发射峰相较于稀溶液中蓝移约10nm,而相同情况下,TPA-Se NPs相较于TPA-Se稀溶液蓝移约20nm。这一结果从另一方面证明了四苯乙烯部分比三苯胺部分更有效地阻碍在聚集状态下的分子堆积。此外,采用校准积分球的方法测量了TPE-Se、TPA-Se和TPE-DPA-Se掺杂的AIE NPs在水中的量子产率(QY)的值分别为12.01%、13.88%和16.48%。 TPE-DPA-Se NPs的量子产率高于TPA-Se NPs的这一现象不同于以往的大多数结果,即非辐射衰减通常随着带隙的减小而增加。这可能是由于在聚集状态下分子运动受阻,扭曲的分子结构抑制非辐射衰减占据主要地位,这与我们的实验结果一致。
实施6(TPE-DPA-Se NPs)的细胞毒性试验
由于TPE-DPA-Se NPs在上述实验结果中表现出最近红外的最大吸收和荧光发射,以及最好的AIE性质和最高的量子产率,有利于进一步的体外、体内生物成像研究,我们选取TPE-DPA-Se NPs进行了下一步的生物应用研究。
我们用小鼠乳腺癌细胞(4T1细胞)进行3-(4,5-二甲基噻唑-2-基)-2,5- 二苯基四唑溴化铵(MTT)细胞毒性评价。不同浓度的TPE-DPA-Se NPs与4T1细胞共孵育12小时的细胞活性。结果表明,在最大为200μM的浓度下,细胞活性仍保持在90%以上,表明TPE-DPA-SeNPs基本无毒且生物相容性非常好。
实施6(TPE-DPA-Se NPs)的细胞成像
在验证了TPE-DPA-Se NPs的细胞安全性之后,进行了体外细胞成像研究。用浓度为20μM的纳米粒子与4T1细胞在37℃条件下共孵育4小时,然后加入4',6-diamidino-2-phenylindole(DAPI)培养5至10分钟,使细胞核着色。随后,使用共聚焦激光扫描显微镜(CLSM)捕捉细胞内荧光图像,以此确定 TPE-DPA-Se NPs作为生物成像染料的潜力。
首先用CLSM采集了4T1细胞的明场照片(图5a),随后分别在405nm (DAPI)和488nm(TPE-DPA-Se NPs)的激发光源下,捕获DAPI(图5b)和 TPE-DPA-Se NPs(图5c)的荧光信号,再叠加图5b和图5c获得图5d。
结果显示,4T1细胞的细胞质中有强烈的红色荧光,可以很好的与DAPI 着色的细胞核共同定位细胞,证明了TPE-DPA-Se NPs可以被4T1细胞有效地内化并滞留在细胞质中。
TPE-DPA-Se NPs的荧光影像
为了进一步论证本发明产品应用于肿瘤切除术探针试剂的可行性,设计如下测试:
首先,建立了腹膜癌荷瘤小鼠模型,以评估TPE-DPA-Se NPs辅助微小肿瘤结节的外科鉴别和切除。为了使肿瘤的分布可以被监测,我们选择了荧光素酶表达的4T1肿瘤,这些肿瘤在注射荧光素后显示出生物发光。再将 TPE-DPA-Se NPs尾静脉注射入小鼠体内后得到结果如图6所示:
图6a为肿瘤切除前小鼠腹腔的生物发光和荧光显像图;
图6b为荧光影像引导切除前后的腹腔荧光图像和肿瘤结节荧光显像
图6c为未引导组和TPE-DPA-Se NPs引导组切除的肿瘤结节的生物发光图像
由图6分析可知:将TPE-DPA-Se NPs尾静脉注射入小鼠体内循环12小时后,TPE-DPA-Se NPs的荧光与荧光素的生物发光信号在腹腔内完全重合(图 6a),证明了TPE-DPA-Se NPs对肿瘤的准确诊断。在临床上,外科医生主要依靠肉眼分辨哪些组织需要切除和保存。虽然相对较大(>1mm)的肿瘤已被外科医生(天津市第一中心医院)在肉眼分辨条件下切除,但仍有一些微小的肿瘤结节残留,难以被识别。因此,在近红外荧光的引导下进行了二次手术切除,观察到肿瘤被基本切除干净(图6b)。所有切除的肿瘤结节的生物发光信号与荧光信号重合,证实切除的组织为肿瘤(图6c)。更进一步地,我们进行了苏木精和伊红(H&E)组织学分析,证实TPE-DPA-Se NPs对主要器官无明显损害,并且切除的微小组织确实为肿瘤。这些结果表明,用TPE-DPA-Se NPs准确识别微小肿瘤结节可以提高肿瘤手术疗效,大大降低肿瘤原位复发的风险。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种兼具长波长和高量子产率的AIE分子结构,其特征在于,为通式(I)所示的化合物及其所有可能的异构体或其盐或水合物或螯合物:
Figure FDA0002962024000000011
其中,R1、R2分别采用如下结构或其衍生物中至少一种:
Figure FDA0002962024000000012
2.根据权利要求1所述的兼具长波长和高量子产率的AIE分子结构,其特征在于,通式(I)所述化合物的结构为:
Figure FDA0002962024000000013
Figure FDA0002962024000000021
及上述化合物所有可能的异构体、或上述化合物及其所有可能的异构体的盐、或上述化合物及其所有可能的异构体的水合物。
3.一种AIE组合物,其特征在于,由权利要求1-2任意一项通式(I)所述化合物及上述化合物所有可能的异构体、或上述化合物及其所有可能的异构体的盐、或上述化合物及其所有可能的异构体的水合物中至少一种组成的组合物。
4.根据权利要求1-3任意一项所述的AIE分子的用途,其特征在于,作为探针试剂用于直接标记特异性蛋白。
5.根据权利要求4所述的AIE分子的用途,其特征在于,所述特异性蛋白为肿瘤特征蛋白。
6.一种兼具长波长和高量子产率的AIE分子纳米粒子,其特征在于,包括权利要求1-3任意一项所述的AIE分子结果。
7.根据权利要求6所述的AIE分子纳米粒子,其特征在于,所述AIE分子纳米粒子以两亲性共聚物MPEG2000-DSPE为掺杂基质。
8.根据权利要求6所述的AIE分子纳米粒子,其特征在于,所述AIE分子纳米粒子采用超声共沉淀方法制备。
9.根据权利要求6所述的AIE分子纳米粒子的用途,其特征在于,作为探针试剂用于直接标记特异性蛋白。
10.根据权利要求6所述的AIE分子纳米粒子的用途,其特征在于,所述特异性蛋白为肿瘤特征蛋白。
CN202110240464.XA 2021-03-04 2021-03-04 一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用 Pending CN113698364A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110240464.XA CN113698364A (zh) 2021-03-04 2021-03-04 一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110240464.XA CN113698364A (zh) 2021-03-04 2021-03-04 一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用

Publications (1)

Publication Number Publication Date
CN113698364A true CN113698364A (zh) 2021-11-26

Family

ID=78647784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110240464.XA Pending CN113698364A (zh) 2021-03-04 2021-03-04 一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用

Country Status (1)

Country Link
CN (1) CN113698364A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751917A (zh) * 2022-04-21 2022-07-15 南京邮电大学 一种近红外发光荧光分子及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328764A1 (en) * 2011-09-01 2014-11-06 National University Of Singapore Biocompatible Nanoparticles with Aggregation Induced Emission Characteristics as Fluorescent Bioprobes and Methods of Using the Same for In Vitro and In Vivo Imaging
CN106831650A (zh) * 2017-04-10 2017-06-13 江西师范大学 一种2,1,3‑苯并硒二唑衍生物的制备方法和应用
CN110312708A (zh) * 2016-12-15 2019-10-08 香港科技大学 用于生物应用的发光材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328764A1 (en) * 2011-09-01 2014-11-06 National University Of Singapore Biocompatible Nanoparticles with Aggregation Induced Emission Characteristics as Fluorescent Bioprobes and Methods of Using the Same for In Vitro and In Vivo Imaging
CN110312708A (zh) * 2016-12-15 2019-10-08 香港科技大学 用于生物应用的发光材料
CN106831650A (zh) * 2017-04-10 2017-06-13 江西师范大学 一种2,1,3‑苯并硒二唑衍生物的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AIHUI LIANGA 等: "Benzoselenadiazole-based donor-acceptor small molecule: Synthesis, aggregation-induced emission and electroluminescence", DYES AND PIGMENTS, vol. 149, pages 399 - 406, XP085306332, DOI: 10.1016/j.dyepig.2017.10.020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751917A (zh) * 2022-04-21 2022-07-15 南京邮电大学 一种近红外发光荧光分子及其制备方法与应用

Similar Documents

Publication Publication Date Title
Molaei Carbon quantum dots and their biomedical and therapeutic applications: a review
Wang et al. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy
Li et al. “Irregular” aggregation-induced emission luminogens
Wu et al. Stability enhancement of fluorophores for lighting up practical application in bioimaging
Yang et al. Biomineralization-inspired crystallization of manganese oxide on silk fibroin nanoparticles for in vivo MR/fluorescence imaging-assisted tri-modal therapy of cancer
Ai et al. Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery
Feng et al. Fluorescence bioimaging with conjugated polyelectrolytes
Damasco et al. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging
Wang et al. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy
Li et al. In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates
Yu et al. Near-infrared fluorescence imaging using organic dye nanoparticles
US8236284B1 (en) Multimodal, multifunctional polymer coated nanoparticles
WO2019027370A1 (en) POLYMERIC NANOPARTICLES FOR MOLECULAR IMAGING WITH RESIDUAL LUMINESCENCE
Ke et al. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes
Wang et al. Lipid coated upconverting nanoparticles as NIR remote controlled transducer for simultaneous photodynamic therapy and cell imaging
He et al. Recent advances of aggregation-induced emission materials for fluorescence image-guided surgery
Zhao et al. Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy
CN103509552A (zh) 一种功能性近红外荧光纳米微粒及其制备与应用
CN108853497B (zh) 基于上转换纳米颗粒和超薄二氧化硅层构建靶向光动力纳米探针
Wang et al. One-step self-assembly of ZnPc/NaGdF 4: Yb, Er nanoclusters for simultaneous fluorescence imaging and photodynamic effects on cancer cells
US9675713B2 (en) Nanoprobes for sensing of reactive oxygen and reactive nitrogen species
Li et al. Tumor microenvironment enhanced NIR II fluorescence imaging for tumor precise surgery navigation via tetrasulfide mesoporous silica-coated Nd-based rare-earth nanocrystals
CN109180715B (zh) 一种硼-二吡咯亚甲基衍生物、纳米粒子、制备方法及应用
Zhao et al. Photovoltaic polymer Photosensitizer-Doped Nano-Therapeutic reagent for in vivo enhanced bioimaging guided photodynamic therapy
CN113698364A (zh) 一种兼具长波长和高量子产率的aie分子结构、组合物、纳米粒子及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211126

WD01 Invention patent application deemed withdrawn after publication