CN113685234B - Labyrinth sealing device based on hedging principle - Google Patents
Labyrinth sealing device based on hedging principle Download PDFInfo
- Publication number
- CN113685234B CN113685234B CN202111013691.5A CN202111013691A CN113685234B CN 113685234 B CN113685234 B CN 113685234B CN 202111013691 A CN202111013691 A CN 202111013691A CN 113685234 B CN113685234 B CN 113685234B
- Authority
- CN
- China
- Prior art keywords
- grate
- hedging
- face
- arc
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
Abstract
Description
技术领域technical field
本发明涉及航空发动机封严领域,具体来说是一种基于对冲原理的篦齿封严装置。The invention relates to the field of aero-engine sealing, in particular to a grate sealing device based on the hedging principle.
背景技术Background technique
篦齿封严是航空发动机中广泛使用的一种有效的非接触式密封结构。篦齿封严结构简单,寿命长,易于维护、在高温和高转速下具有高可靠性的优点,普遍应用于航空发动机的各种结构中,如压气机和涡轮级间气路封严、轮缘燃气封严、内流空气封严以及主轴承滑油封严系统中的滑油封严等,其封严质量在很大程度上控制着气流在整个发动机冷却网络上的分布,直接影响发动机的效率及可靠性。篦齿封严泄漏流量大于设计值会直接降低发动机的效率和性能,篦齿封严泄漏流量过小时又会导致气流显著升温和转子热膨胀增大,缩短发动机使用寿命。因此,能提高封严效果的篦齿设计对于提高航空发动机性能有着重要意义。Grate seal is an effective non-contact sealing structure widely used in aero-engines. The grate seal has the advantages of simple structure, long service life, easy maintenance, and high reliability at high temperature and high speed. The sealing quality of the edge gas seal, the internal flow air seal and the oil seal in the main bearing oil seal system, to a large extent, controls the distribution of the air flow in the entire engine cooling network, which directly affects the efficiency of the engine. and reliability. If the leakage flow rate of the grate seal is larger than the design value, it will directly reduce the efficiency and performance of the engine. If the leakage flow rate of the grate seal is too small, it will cause the airflow to heat up significantly and the thermal expansion of the rotor to increase, shortening the service life of the engine. Therefore, the grate design that can improve the sealing effect is of great significance for improving the performance of aero-engines.
传统台阶篦齿是一种非接触式动封严结构,如图1所示,由篦齿盘1(转子)和阶梯衬套2(静子)组成。篦齿盘1上沿轴向具有2个以上的篦齿3,且沿篦齿盘1轴向各篦齿3的高度间存在高度差,呈台阶分布;相邻的两个篦齿3之间形成齿腔4。阶梯衬套2为篦齿盘1外部套设的封严衬套,其侧壁轴向呈台阶状,与篦齿盘2轴向各篦齿3的高度差匹配,每级台阶周向侧壁对应一个篦齿3的齿顶,每个篦齿3的齿顶与其对应的台阶侧壁间留有间隙。当气流通过两者间的间隙时,被节流加速产生一个射流区,一部分压力能转化为动能,气流碰撞在阶梯衬套2内壁上,产生一个回流区,由于齿腔4的结构将会在齿腔4下部产生一个更大的回流区。由于这些回流区的存在,气流动能在湍流和黏性耗散的作用下转换成热能而消耗掉,最终达到封严效果。The traditional stepped grate is a non-contact dynamic sealing structure, as shown in Figure 1, which consists of a grate disc 1 (rotor) and a stepped bushing 2 (stator). There are more than two
对于台阶篦齿来说,封严作用主要借助于齿顶处的节流效应以及齿腔间的涡流耗散。当射流冲击到衬套部分后会形成滞止,并由于剪切作用形成涡流,在正向轴向位移较大时,也会与衬套之间形成节流,进一步降低流量系数。For stepped grate teeth, the sealing effect mainly relies on the throttling effect at the tooth top and the eddy current dissipation between the tooth cavities. When the jet impinges on the bushing part, it will form stagnation, and eddy current will be formed due to shearing action. When the positive axial displacement is large, it will also form throttling with the bushing, further reducing the flow coefficient.
发明内容SUMMARY OF THE INVENTION
针对航空发动机现有的台阶篦齿封严效果有限,容易失去封严效果,安全性低的现状,本发明,提出一种能提高封严效果的基于对冲原理的篦齿封严结构。Aiming at the current situation that the existing step grate sealing effect of aero-engine is limited, the sealing effect is easy to lose, and the safety is low, the present invention proposes a grate sealing structure based on the hedging principle that can improve the sealing effect.
本发明基于对冲原理的篦齿封严装置,包括篦齿盘,篦齿盘轴向上设计的台阶篦齿,以及与台阶篦齿配合的台阶衬套。The grate sealing device based on the hedging principle of the present invention comprises a grate disc, a stepped grate designed axially on the grate disc, and a stepped bush matched with the stepped grate.
其中,台阶衬套中,每级台阶具有台阶侧壁与台阶末端面,台阶末端面上设计有内凹的圆弧对冲槽。由此,当气流在通过篦齿齿顶处时,近阶梯衬套一侧会由于阻力相对较小而以较高的速度流经篦齿齿顶,并沿阶梯衬套壁面射流至圆弧对冲槽内,在对冲槽的影响下形成顺时针涡流,在圆弧对冲槽槽口处以较高的速度逆向冲出,与原齿间射流形成对冲。Wherein, in the step bushing, each step has a step side wall and a step end surface, and a concave arc hedging groove is designed on the step end surface. Therefore, when the airflow passes through the tooth top of the grate, the side near the stepped bushing will flow through the tooth top of the grate at a high speed due to the relatively small resistance, and the jet will flow along the wall of the stepped bushing to the arc hedging. In the groove, a clockwise eddy current is formed under the influence of the hedging groove, and it rushes out at a higher speed at the notch of the arc hedging groove, forming a hedging with the original interdental jet.
本发明的优点在于:The advantages of the present invention are:
1、本发明基于对冲原理的篦齿封严装置,在台阶衬套的每级台阶处增加内凹环状对冲槽,使得气流沿壁面射流至对冲槽内,在对冲槽的影响下形成顺时针涡流,在槽口处以较高的速度逆向冲出,与原齿间射流形成对冲,降低篦齿的透气效应,达到封严优化的目的;1. The grate sealing device of the present invention is based on the hedging principle, and a concave annular hedging groove is added at each step of the step bushing, so that the air jet flows into the hedging groove along the wall surface, and forms a clockwise direction under the influence of the hedging groove. The eddy current rushes out at a relatively high speed at the notch, and forms a hedge with the jet between the original teeth, reducing the ventilation effect of the grate teeth and achieving the purpose of sealing optimization;
2、本发明基于对冲原理的篦齿封严装置,适当大小的对冲槽空间使得齿后耗散涡得以充分发展,进一步加剧了能量的耗散;2. The grate tooth sealing device of the present invention is based on the hedging principle, and the appropriate size of the hedging groove space enables the full development of the dissipative vortex behind the tooth, which further intensifies the dissipation of energy;
3、本发明基于对冲原理的篦齿封严装置,通过对冲槽设计,增加了气流与壁面的接触也在一定程度上增加了粘性剪切耗散;在较大径向间隙的情况下,由于对冲涡流的形成,能量耗散更大,封严效果较为明显。3. The grate sealing device of the present invention is based on the hedging principle. Through the design of the hedging groove, the contact between the airflow and the wall surface is increased, and the viscous shear dissipation is also increased to a certain extent; Hedging the formation of eddy currents, the energy dissipation is greater, and the sealing effect is more obvious.
4、本发明基于对冲原理的篦齿封严装置,在篦齿间隙变化时,对间隙变化的敏感性较低,稳定性更强。4. The grate sealing device based on the hedging principle of the present invention has lower sensitivity to the gap change and stronger stability when the grate gap changes.
附图说明Description of drawings
图1为传统阶梯斜篦齿结构与流场示意图。Figure 1 is a schematic diagram of the structure and flow field of a traditional stepped inclined grate.
图2为本发明基于对冲原理的篦齿封严装置的结构及流场示意图。2 is a schematic diagram of the structure and flow field of the grate sealing device based on the hedging principle of the present invention.
图3为本发明基于对冲原理的篦齿封严装置中每级台阶局部放大示意图。3 is a partial enlarged schematic diagram of each step in the grate sealing device based on the hedging principle of the present invention.
图4为本发明基于对冲原理的篦齿封严装置的梯形对冲槽结构示意图;4 is a schematic diagram of the trapezoidal hedging groove structure of the grate sealing device based on the hedging principle of the present invention;
图5为本发明基于对冲原理的篦齿封严装置的倒梯形对冲槽结构示意图;5 is a schematic diagram of the structure of the inverted trapezoidal hedging groove of the grate sealing device based on the hedging principle of the present invention;
图6为仿真得到的本发明篦齿封严装置与传统阶梯斜篦齿结构在相同条件下的封严效果对比图。6 is a comparison diagram of the sealing effect of the grate tooth sealing device of the present invention and the traditional stepped inclined grate tooth structure under the same conditions obtained by simulation.
图中:In the picture:
1-篦齿盘 2-阶梯衬套 3-篦齿1-grate tooth plate 2-step bushing 3-grate tooth
4-齿腔 5-台阶侧面 6-圆弧对冲面4-Tooth cavity 5-Step side 6-Arc hedging surface
7-台阶末端面7-Step end face
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明基于对冲原理篦齿封严装置,对于传动台阶篦齿来说,对阶梯衬套2进行改进,设计阶梯衬套2中每一个台阶具有台阶侧面5、对冲面6及台阶末端面7,如图2、图3所示。The invention is based on the grate sealing device based on the hedging principle. For the transmission step grate, the
其中,台阶侧面5为与篦齿3齿顶相对的面;台阶末端面7为朝向篦齿盘2末端的面;令台阶侧面5两相对侧边为侧面A边与侧面B边;台阶末端面7两相对侧边分别为末端面A边与末端面B边。则有当前第i级台阶的侧面A边与第i-1级台阶的末端面B边相接;当前第i级台阶的侧面B边与第i级台阶的末端面A边间通过圆弧对冲面6相接;令圆弧对冲面6相对两侧直边分别为直边A与直边B,则有直边A与末端面A边相接,直边B与侧面B边相接,使得在台阶末端面外侧形成内凹的圆弧对冲槽。Among them, the
上述结构的篦齿封严装置中,篦齿盘1包括至少两个篦齿3,每个篦齿3形状相同,且相邻篦齿3之间的间距相等;且各级台阶的台阶侧面5与对应的篦齿3齿顶间的径向距离相等。In the grate sealing device of the above structure, the
如图3所示,上述结构的阶梯衬套2还同时具有以下特征:As shown in Figure 3, the
a、台阶侧面5与圆弧对冲面6相切;a. The
b、台阶侧面5与圆弧对冲面6相接一端向外倾斜,使台阶侧面5与篦齿盘2轴向呈6~10度夹角。b. The end of the
c、圆弧对冲面6圆心角γ设计为180°~240°;c. The central angle γ of the
d、第i级台阶的台阶侧面5与第i-1级台阶的台阶末端面7间夹角α设计为70°~105°。d. The angle α between the
为达到更好的封严效果,设计各级台阶中台阶末端面位置低于侧面B边,即更靠近于台阶所对应的篦齿3,且圆弧对冲面6半径Ra与台阶末端面径向宽度a间需满足2Ra>a。In order to achieve a better sealing effect, the position of the end surface of the step in each step is designed to be lower than the side B side, that is, closer to the
本发明基于对冲原理篦齿封严装置,在每级台阶处增加内凹的圆弧对冲槽。气流在通过篦齿3齿顶处时,近阶梯衬套2一侧会由于阻力相对较小而以较高的速度流经篦齿3齿顶,并沿阶梯衬套2壁面射流至圆弧对冲槽内,在对冲槽的影响下形成顺时针涡流,在圆弧对冲槽槽口处以较高的速度逆向冲出,与原齿间射流形成对冲,降低篦齿的透气效应,达到封严优化的目的;同时适当大小的对冲槽空间使得齿后耗散涡得以充分发展,进一步加剧了能量的耗散;此外,本发明增加了气流与壁面的接触也在一定程度上增加了粘性剪切耗散。The invention is based on the grate sealing device based on the hedging principle, and a concave arc hedging groove is added at each step. When the airflow passes through the tooth crest of the
本发明基于对冲原理在每级台阶处增加内凹环状对冲槽的形状除了可以是上述提到的环状、还可以设计为梯形凹槽、倒梯形凹槽等,如图4,图5所示,其中,对冲槽的深度、角度、形状等几何参数也会对封严优化效果造成一定的影响,根据不同发动机型号和工作环境可在一定范围内通过仿真计算进行优选。但在对冲槽面积相近的条件下,综合考虑封严效果、加工制造等方面的原因,选取前述圆弧对冲槽更好。In the present invention, the shape of the concave annular hedging groove at each step based on the hedging principle can be designed as a trapezoidal groove, an inverted trapezoidal groove, etc., as shown in FIG. 4 and FIG. 5. Among them, the geometric parameters such as the depth, angle, and shape of the hedging groove will also have a certain impact on the sealing optimization effect. According to different engine models and working environments, the optimization can be carried out within a certain range through simulation calculations. However, under the condition that the area of the hedging groove is similar, and considering the reasons of sealing effect and processing and manufacturing, it is better to select the aforementioned arc hedging groove.
图6给出了本方案与基准台阶斜篦齿在相同工作条件下轴向位移变化时封严效果的对比图,可以看出,倘若采用本发明提出的对冲篦齿,可以明显减小流量,提高封严效果。Figure 6 shows the comparison chart of the sealing effect of this scheme and the reference step inclined grate when the axial displacement changes under the same working conditions. Improve sealing effect.
综上所述,本发明通过对基准台阶篦齿进行结构改进,提高了安全性和封严效果,减少了泄漏量,且结构简单,易于实现。To sum up, the present invention improves the safety and sealing effect by improving the structure of the reference step grate, reduces the leakage, and has a simple structure and is easy to implement.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111013691.5A CN113685234B (en) | 2021-08-31 | 2021-08-31 | Labyrinth sealing device based on hedging principle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111013691.5A CN113685234B (en) | 2021-08-31 | 2021-08-31 | Labyrinth sealing device based on hedging principle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113685234A CN113685234A (en) | 2021-11-23 |
CN113685234B true CN113685234B (en) | 2022-08-09 |
Family
ID=78584501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111013691.5A Active CN113685234B (en) | 2021-08-31 | 2021-08-31 | Labyrinth sealing device based on hedging principle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113685234B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117027968B (en) * | 2023-08-31 | 2024-10-08 | 哈尔滨汽轮机厂有限责任公司 | Steam turbine and gland seal structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3572728A (en) * | 1968-06-17 | 1971-03-30 | Gen Eelctric Co | Rotary seal |
US6139019A (en) * | 1999-03-24 | 2000-10-31 | General Electric Company | Seal assembly and rotary machine containing such seal |
US7445213B1 (en) * | 2006-06-14 | 2008-11-04 | Florida Turbine Technologies, Inc. | Stepped labyrinth seal |
CN203669938U (en) * | 2014-01-16 | 2014-06-25 | 华北电力大学 | Tilting labyrinth vapor seal steam turbine |
CN106761956A (en) * | 2017-02-21 | 2017-05-31 | 北京航空航天大学 | It is a kind of to turn quiet system's encapsulating method using the aero-engine being axially combined with radial direction comb tooth |
CN110529194A (en) * | 2019-08-13 | 2019-12-03 | 北京航空航天大学 | A kind of guide structure reducing rotation bolt windage |
CN112012801A (en) * | 2020-09-18 | 2020-12-01 | 中国航发四川燃气涡轮研究院 | Tooth point hook type labyrinth seal structure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5029876A (en) * | 1988-12-14 | 1991-07-09 | General Electric Company | Labyrinth seal system |
DE102009042857A1 (en) * | 2009-09-24 | 2011-03-31 | Rolls-Royce Deutschland Ltd & Co Kg | Gas turbine with shroud labyrinth seal |
CN109296402A (en) * | 2017-07-25 | 2019-02-01 | 中国航发商用航空发动机有限责任公司 | Labyrinth gas seals structure and aero-engine |
GB201717015D0 (en) * | 2017-10-17 | 2017-11-29 | Rolls Royce Plc | Fluid seal |
CN208831046U (en) * | 2018-08-14 | 2019-05-07 | 中国航发商用航空发动机有限责任公司 | Step comb tooth for gas turbines |
CN109611160B (en) * | 2018-12-26 | 2020-08-11 | 北京航空航天大学 | Fluid-tight 'horseshoe' comb tooth of rotating part |
CN109505665B (en) * | 2018-12-26 | 2020-11-10 | 北京航空航天大学 | A sealing device based on negative feedback control of aero-engine sealing disc axial force |
US11047249B2 (en) * | 2019-05-01 | 2021-06-29 | Raytheon Technologies Corporation | Labyrinth seal with passive check valve |
-
2021
- 2021-08-31 CN CN202111013691.5A patent/CN113685234B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3572728A (en) * | 1968-06-17 | 1971-03-30 | Gen Eelctric Co | Rotary seal |
US6139019A (en) * | 1999-03-24 | 2000-10-31 | General Electric Company | Seal assembly and rotary machine containing such seal |
US7445213B1 (en) * | 2006-06-14 | 2008-11-04 | Florida Turbine Technologies, Inc. | Stepped labyrinth seal |
CN203669938U (en) * | 2014-01-16 | 2014-06-25 | 华北电力大学 | Tilting labyrinth vapor seal steam turbine |
CN106761956A (en) * | 2017-02-21 | 2017-05-31 | 北京航空航天大学 | It is a kind of to turn quiet system's encapsulating method using the aero-engine being axially combined with radial direction comb tooth |
CN110529194A (en) * | 2019-08-13 | 2019-12-03 | 北京航空航天大学 | A kind of guide structure reducing rotation bolt windage |
CN112012801A (en) * | 2020-09-18 | 2020-12-01 | 中国航发四川燃气涡轮研究院 | Tooth point hook type labyrinth seal structure |
Non-Patent Citations (2)
Title |
---|
台阶式篦齿封严特性试验与数值研究;郭佳男等;《航空科学技术》;20190131;第30卷(第1期);全文 * |
篦齿封严结构对带冠涡轮叶顶流动影响及作用机理;李伟航;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20200215;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113685234A (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105134306B (en) | Radial rim sealing structure with damping holes and flow guide blades | |
CN111720175B (en) | Impeller machinery movable vane top seal structure | |
JP2009062979A (en) | Labyrinth compression seal and turbine incorporating the same | |
CN110805476B (en) | Turbine disc with cavity structure of obturaging | |
CN107965353A (en) | A Jet Slot Cooling Structure with Improving Cooling Efficiency of the End Wall Near the Front Edge of the Vane | |
CN113685234B (en) | Labyrinth sealing device based on hedging principle | |
CN109653808B (en) | Radial rim sealing structure with internal tooth grooves | |
CN205422834U (en) | Turbine that includes multiple rim seal structure of self -adaptation fumarole | |
CN212671868U (en) | A kind of impeller machinery moving blade tip seal structure | |
CN108533757A (en) | A kind of labyrinth seal structure that can increase chamber dissipation | |
CN111441827B (en) | A Closed Centripetal Turbine Cover-Case Cavity Structure for Suppressing Leakage Loss | |
CN112112976A (en) | A new type of tooth sealing structure that can enhance sealing performance | |
US6632069B1 (en) | Step of pressure of the steam and gas turbine with universal belt | |
CN103470774A (en) | Stepped comb tooth seal | |
CN107314114A (en) | A kind of comb tooth sealing structure | |
CN216922228U (en) | Stepped grate seal structure with axial side teeth on rotor and stator | |
CN106089323B (en) | It is a kind of to use the aero-engine labyrinth gas seals structure for being bent acute angle type tooth windward | |
CN109611160B (en) | Fluid-tight 'horseshoe' comb tooth of rotating part | |
CN106761956B (en) | It is a kind of to turn quiet system sealing device using the axial aero-engine being combined with radial comb tooth | |
CN115596520A (en) | Negative feedback labyrinth sealing device based on wind resistance thermal deformation | |
CN114738119A (en) | Labyrinth sealing structure | |
CN206738198U (en) | A kind of axial flow blower | |
CN108266236B (en) | A circumferential variable section grate seal structure | |
CN112360983B (en) | Elastic contact type dynamic sealing structure for high-temperature and high-pressure gas or liquid | |
RU195437U1 (en) | TURBINE WORKING SHOVEL WITH ASYMMETRIC INTERNAL AND EXTERNAL SURFACES OF BANDAGE SHELF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |