CN113683403A - Alumina slurry for nitrogen-oxygen sensor and preparation method thereof - Google Patents
Alumina slurry for nitrogen-oxygen sensor and preparation method thereof Download PDFInfo
- Publication number
- CN113683403A CN113683403A CN202110950599.5A CN202110950599A CN113683403A CN 113683403 A CN113683403 A CN 113683403A CN 202110950599 A CN202110950599 A CN 202110950599A CN 113683403 A CN113683403 A CN 113683403A
- Authority
- CN
- China
- Prior art keywords
- alumina
- slurry
- solvent
- preparation
- alumina powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention discloses alumina slurry for a nitrogen-oxygen sensor and a preparation method thereof. The obtained slurry has good fineness, cannot be scribed by particles in an F.O.G scraper fineness meter, can adapt to 325-mesh screen printing, effectively reduces the powder removal phenomenon, is simple to operate and is easy for mass production.
Description
Technical Field
The invention relates to an alumina slurry for a nitrogen-oxygen sensor and a preparation method thereof, belonging to the field of alumina slurry.
Background
With the continuous development of information technology, the electronic technology is continuously updated, and the research and development of corresponding electronic materials are rapidly developed. Alumina slurry has attracted attention as an important material for a nitrogen oxygen sensor because of its excellent insulating properties and thermal conductivity.
At present, alumina slurry applied in more quantity in the market is still monopolized by foreign manufacturers, and the alumina slurry produced in China generally has the defects of poor dispersibility, poor printing, poor drying state and the like, and is not enough to meet the performance requirements of the alumina slurry.
The invention provides an alumina slurry and a preparation method thereof, and is particularly suitable for the field of nitrogen-oxygen sensors, aiming at the technical problems that in the existing alumina slurry, the alumina powder is poor in dispersion (the fineness is more than 13 in the slurry), screen printing cannot be carried out, the printing thickness is insufficient and the like.
Disclosure of Invention
The invention aims to provide alumina slurry for a nitrogen-oxygen sensor and a preparation method thereof, and solves the technical problems that the existing alumina slurry is poor in split dispersibility, cannot be subjected to screen printing and the like.
A preparation method of alumina slurry for a nitrogen-oxygen sensor is characterized in that wet ball milling technology is adopted to prepare alumina powder, and an organic carrier is combined to obtain silk-screen alumina slurry.
The preparation method specifically comprises the following steps:
(1) mixing the alumina powder, the dispersant and the solvent, and adding the zirconium balls to obtain the mixed material.
The dispersing agent is one or more of polyethylene wax, polyvinyl alcohol, organic silicon, urea, TDO, NANOCHE ED120 and BYK-410 (all of which are commercially available), and the polyethylene wax is preferred.
The alumina powder D50 is 0.1-0.7 μm.
The solvent is selected from one or more of volatile alcohols (such as ethanol and propanol), ketones and ethers, preferably alcohols.
In the mixed material, the adding amount of the alumina powder is 60-70 parts by weight, the adding amount of the dispersant is 1-5 parts by weight, and the adding amount of the solvent is 100-150 parts by weight.
The diameter of the zirconium ball is 0.5-1.5 mm.
The mass of the zirconium balls is 60-85 wt% of the mixed material.
The polyethylene wax has better compatibility with the alumina powder, has a certain lubricating function, and has fewer precipitates.
Preferably, the amount of dispersant added is M (dispersant): m (alumina) ═ 84, more preferably (2-4): 84.
too much dispersant will cause the subsequent alumina to agglomerate easily, and conversely too little dispersant will cause the alumina powder not to maintain a stable suspension system, so the dispersant dosage needs to be strictly controlled.
(2) And ball-milling the obtained mixed material, and then filtering, drying and sieving to obtain the alumina powder.
The ball milling revolution is 200 and 500R/min, and the ball milling time is 1-5 hours.
The filter was into a stainless steel vessel.
And the drying is to preserve heat for 3-5h at the temperature of 60-90 ℃ in an oven and dry the filtered sample.
The sieve is 50-200 meshes.
(3) Preparing an organic carrier: mixing solvent and resin, and water bath at 60-70 deg.C for 1-2 hr to obtain organic carrier with concentration of 15-25 wt%.
The solvent is selected from alcohol ester dodeca, terpineol or a eutectic solvent, and is preferably a eutectic solvent.
The eutectic solvent is choline chloride or the mixture of betaine and urea according to the molar ratio of 1: 2. The choline chloride or the betaine is used as a hydrogen bond receptor, the urea is used as a hydrogen bond donor, and the organic resin is pretreated by virtue of the action of the hydrogen bond, so that the uniformity of initial slurry is facilitated, the strength and the performance of a carrier are improved, and the silk-screen effect is improved.
The resin is polyvinyl butyral (PVB) and/or cellulose resin, such as ethyl cellulose and cellulose acetate butyrate;
preferably polyvinyl butyral, in combination with a cellulosic resin, wherein PVB: the mass ratio of the cellulose resin is (2-4): 1, the powder removal phenomenon of the slurry can be further reduced.
(4) And mixing the prepared organic carrier, the alumina powder and the organic solvent, and stirring to obtain initial slurry.
Wherein, based on 100 percent of the initial slurry, the content of the organic carrier accounts for 10 to 20 weight percent, the content of the alumina powder accounts for 60 to 70 weight percent, and the balance is organic solvent.
The organic solvent is alcohol ester dodeca, terpineol or ethylene glycol monobutyl ether acetate.
The stirring refers to manual stirring or stirring by adopting a homogenizer.
(5) Rolling: and (4) rolling the initial slurry obtained in the step (4) for 5-8 times by using a rolling mill, so that the slurry is dispersed more uniformly.
The rolling mill is a zirconia three-high rolling mill.
The invention also provides alumina slurry obtained by the preparation method.
Further, the present invention also provides a nitrogen oxygen sensor using the alumina slurry obtained by the above preparation method, which has good fineness and no grain line visible in an f.o.g. blade fineness gauge.
The invention has the beneficial effects that:
1. according to the invention, through controlling the types and the adding amount of the polyethylene wax serving as a dispersant and the grinding solvent, the particle size of the alumina powder and other parameters, the dispersibility of the alumina powder is improved in the ball milling process; the fineness was good in the slurry, and no particle streaks were visible in the f.o.g. blade fineness gauge.
2. The invention optimizes the ball milling process and improves the ball milling efficiency by controlling the diameter and the mass ratio of the zirconium balls.
3. By using the appropriate organic resin, the invention can obtain the 325-mesh screen printing alumina slurry, and effectively reduce the powder removal phenomenon.
4. The method for treating the alumina powder has simple operation and is easy for mass production.
5. The alumina slurry prepared by the invention has good dispersity, does not agglomerate after being dried, has good screen printing effect and uniform thickness, and can meet the use requirement.
6. The invention improves the dispersion performance of the slurry by solvation of the organic carrier, and is beneficial to improving the silk-screen effect.
Drawings
The accompanying drawings, which are included to provide a further understanding of the application and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the application and together with the description serve to explain the principles of the application.
Fig. 1 is a drawing of an f.o.g. screed of a slurry prepared in example 1 of the present invention.
Fig. 2 is a drawing of an f.o.g. screed of a slurry prepared according to example 2 of the present invention.
Detailed Description
The present invention will be further described with reference to the following examples, but the present invention is not limited to the following examples.
The experimental methods described in the following examples are all conventional methods unless otherwise specified; the reagents and materials are commercially available, unless otherwise specified.
Example 1
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 4g of polyethylene wax, 110g of ethanol (99%) and 500g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
(2) separating the ball-milled material from the zirconium balls, placing the ball-milled material in a stainless steel box, keeping the temperature in an oven at 80 ℃ for 3h, drying, and then passing the dried alumina powder through a 50-mesh stainless steel screen;
(3) preparing an organic carrier: betaine/urea (1: 2 molar ratio) was mixed with PVB resin and water bath was carried out at 70 ℃ for 1 hour to prepare an organic vehicle with a concentration of 18.8 wt%.
(4) Fully mixing 12.8g of powder obtained by sieving, 2.98g of PVB carrier and 3.82g of terpineol to obtain initial slurry;
(5) and rolling the initial slurry for 8 times by using a zirconia three-high mill to obtain the required alumina slurry.
Example 2
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 2g of polyethylene wax, 110g of ethanol (99%) and 600g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
(2) separating the ball-milled material from the zirconium balls, placing the ball-milled material in a stainless steel box, keeping the temperature in an oven at 80 ℃ for 3h, drying, and then passing the dried alumina powder through a 50-mesh stainless steel screen;
(3) preparing an organic carrier: betaine/urea (1: 2 molar ratio) was mixed with PVB resin and water bath was carried out at 70 ℃ for 1 hour to prepare an organic vehicle with a concentration of 18.8 wt%.
(4) Fully mixing 12.8g of powder obtained by sieving, 2.92g of PVB carrier and 3.88g of terpineol to obtain initial slurry;
(5) and rolling the initial slurry for 8 times by using a zirconia three-high mill to obtain the required alumina slurry.
Example 3
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 6.6g of polyethylene wax, 110g of ethanol (99%) and 600g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
the other steps were the same as in example 1 to obtain the desired alumina slurry.
Example 4
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 1.3g of polyethylene wax, 110g of ethanol (99%) and 600g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
the other steps were the same as in example 1 to obtain the desired alumina slurry.
Example 5
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
the other steps are the same as example 1, except that: (4) and fully mixing 12.8g of powder obtained by sieving, 2g of PVB carrier and 4g of terpineol to obtain initial slurry.
Finally obtaining the required alumina slurry.
Example 6
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
the other steps are the same as example 1, except that: (4) 12.8g of powder obtained by sieving, 4g of PVB carrier and 4g of terpineol are fully mixed to obtain initial slurry.
Finally obtaining the required alumina slurry.
Example 7
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 4g of polyethylene wax, 130g of alcohol (99%), and 550g of 1mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 500R/min;
(2) separating the ball-milled material from the zirconium balls, placing the ball-milled material in a stainless steel box, keeping the temperature in an oven at 100 ℃ for 3h, drying, and then passing the dried alumina powder through a 60-mesh stainless steel screen;
(3) preparing an organic carrier: betaine/urea (1: 2 molar ratio) was mixed with PVB resin and water bath was carried out at 70 ℃ for 1 hour to prepare an organic vehicle with a concentration of 18.8 wt%.
(4) Fully mixing 12.8g of powder obtained by sieving, 2.98g of PVB carrier and 3.82g of terpineol to obtain initial slurry;
(5) and (4) rolling the initial slurry for 6 times by using a zirconia three-high mill to obtain the required alumina slurry.
Example 8
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
the other steps are the same as example 1, except that: (3) preparing an organic carrier: betaine/urea (molar ratio 1: 2) was mixed with 20 parts by weight of PVB and 10 parts by weight of ethylcellulose fibers, such that the mass ratio of PVB to ethylcellulose fibers was 2: 1, in a water bath at 70 ℃ for 1 hour, an organic vehicle was prepared at a concentration of 18.8% by weight.
Finally obtaining the required alumina slurry.
Example 9
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
the other steps are the same as example 1, except that: (3) preparing an organic carrier: mixing betaine/urea (molar ratio is 1: 2) with 40 parts of PVB and 10 parts of ethyl cellulose fiber in a ratio of (by mass) PVB to ethyl cellulose fiber of 4: 1, in a water bath at 70 ℃ for 1 hour, an organic vehicle was prepared at a concentration of 18.8% by weight.
Finally obtaining the required alumina slurry.
Example 10
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 4g of polyethylene wax, 110g of ethanol (99%) and 500g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
(2) separating the ball-milled material from the zirconium balls, placing the ball-milled material in a stainless steel box, keeping the temperature in an oven at 80 ℃ for 3h, drying, and then passing the dried alumina powder through a 50-mesh stainless steel screen;
(3) preparing an organic carrier: choline chloride/urea (1: 2 molar ratio) was mixed with PVB resin and incubated in a water bath at 70 ℃ for 1 hour to prepare an organic vehicle having a concentration of 22 wt%.
(4) Fully mixing 12g of powder obtained by sieving, 2.5g of PVB carrier and 4g of terpineol to obtain initial slurry;
(5) and (4) rolling the initial slurry for 6 times by using a zirconia three-high mill to obtain the required alumina slurry.
Example 11
A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the following steps:
(1) placing 84g of alumina, 4g of polyethylene wax, 110g of ethanol (99%) and 500g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
(2) separating the ball-milled material from the zirconium balls, placing the ball-milled material in a stainless steel box, keeping the temperature in an oven at 80 ℃ for 3h, drying, and then passing the dried alumina powder through a 50-mesh stainless steel screen;
(3) preparing an organic carrier: the alcohol ester twelve and PVB resin were mixed and water-bathed at 70 ℃ for 1 hour to prepare an organic vehicle having a concentration of 18.8 wt%.
(4) Fully mixing 12.8g of powder obtained by sieving, 2.98g of PVB carrier and 3.82g of terpineol to obtain initial slurry;
(5) and rolling the initial slurry for 8 times by using a zirconia three-high mill to obtain the required alumina slurry.
Comparative example 1
A preparation method of alumina slurry comprises the following steps:
(1) putting 84g of alumina and 500g of 0.8mm zirconium balls into a polyurethane container, and ball-milling for 2 hours at the speed of 300R/min;
the other steps were the same as in example 1 to obtain an alumina slurry.
Comparative example 2
A preparation method of alumina slurry comprises the following steps:
(1) placing 84g of alumina, 4g of polyethylene wax, 110g of alcohol (99%) and 500g of 0.8mm zirconium balls in a polyurethane container, and performing ball milling for 2 hours at the speed of 300R/min;
(2) separating the ball-milled material from the zirconium balls, placing the ball-milled material in a stainless steel box, keeping the temperature in an oven at 80 ℃ for 3h, drying, and then passing the dried alumina powder through a 50-mesh stainless steel screen;
(3) fully mixing 12.8g of powder obtained by sieving and 3.82g of terpineol to obtain initial slurry;
(4) and rolling the initial slurry for 8 times by using a zirconia three-high mill to obtain the required alumina slurry.
And (3) performance testing:
in the invention, the viscosity test method comprises the following steps: BROOKFIELD DV-II + Pro/CP52 rotor (10RPM, 25 ℃).
The slurry fineness was measured by an f.o.g. blade fineness gauge (15 μm).
Powder removal rate: the measurement was carried out using a reciprocating abrasion tester (TRIBOGEAR TYPE: 30). For weight W1(g) A substrate (2) having a load of 100g/m2(contact area 16 mm. phi.) was pressed against a white cloth, and the cloth was reciprocated 100 times in a width of 5cm, to measure the weight W of the substrate2(g) To obtain the powder removal amount (g/m)2)。
Powder removal rate (%) -. powder removal amount (g/m)2) Weight per unit area (g/m)2)×100。
And (3) testing the body resistivity: printing a square block with the area of 10mm x 10mm on the outer surface of zirconia by using alumina slurry in a screen printing mode, drying, sintering in a muffle furnace, cooling to normal temperature, testing the sheet resistance by using four probes, testing the thickness of an alumina layer by using a step instrument, and obtaining the volume resistivity by calculation.
The results of the slurry effect test prepared in each example and comparative example are shown in table 1.
Table 1 test of alumina slurry properties
It can be seen from the data of the examples and the comparative examples that the alumina slurry prepared by the invention adopts polyethylene wax as a dispersing agent for ball milling, and combines with an organic carrier, and through carrier modification, the screen printing alumina slurry suitable for 325 meshes can be obtained, the fineness of the slurry is good, and no particle scribing can be seen on an F.O.G scraper fineness meter (as shown in figures 1-2).
The invention controls the adding amount M of the dispersant (dispersant): m (alumina) ═ 84 (1-7), especially in (2-4): 84, the effective dispersion of the alumina powder can be kept, and the strength, the particle size and the like of a wet ball milling and subsequent process control system are facilitated;
meanwhile, the modification of the organic carrier, the compounding of the organic carrier and the control of the addition amount can effectively improve the printing stability and uniformity of the slurry, ensure the printing thickness and the printing uniformity and have less powder removal. The eutectic solvent is adopted, so that the eutectic solvent is green, non-toxic and easy to separate, the carrier performance is improved, and the screen printing effect is optimized.
In the description herein, reference to the description of the terms "one embodiment/mode," "some embodiments/modes," "example," "specific example," or "some examples," etc., means that a particular feature, structure, material, or characteristic described in connection with the embodiment/mode or example is included in at least one embodiment/mode or example of the application. In this specification, the schematic representations of the terms used above are not necessarily intended to be the same embodiment/mode or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments/modes or examples. Furthermore, the various embodiments/aspects or examples and features of the various embodiments/aspects or examples described in this specification can be combined and combined by one skilled in the art without conflicting therewith.
Furthermore, the terms "first", "second" and "first" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as "first" or "second" may explicitly or implicitly include at least one such feature. In the description of the present application, "plurality" means at least two, e.g., two, three, etc., unless specifically limited otherwise.
It should be understood by those skilled in the art that the above embodiments are only for clarity of explanation and are not intended to limit the scope of the present application. Other variations or modifications will occur to those skilled in the art based on the foregoing disclosure and are still within the scope of the present application.
Claims (10)
1. A preparation method of alumina slurry for a nitrogen-oxygen sensor comprises the steps of mixing alumina powder, a dispersing agent and a solvent by adopting a wet ball milling process, adding zirconium balls for ball milling, filtering, drying, sieving, mixing the obtained alumina powder with an organic carrier, and rolling to obtain the alumina slurry.
2. The preparation method according to claim 1, comprising the following steps:
(1) mixing alumina powder, a dispersant and a solvent, and adding zirconium balls to obtain a mixed material;
(2) ball-milling the obtained mixed material, and then filtering, drying and sieving to obtain alumina powder;
(3) preparing an organic carrier: preparing an organic carrier with a concentration of 15-25 wt%;
(4) mixing the prepared organic carrier, alumina powder and an organic solvent, and stirring to obtain initial slurry;
(5) rolling: and (4) rolling the initial slurry obtained in the step (4).
3. The preparation method according to claim 2, wherein the dispersant in the step (1) is one or more of polyethylene wax, polyvinyl alcohol, TDO, NANOCHEMICAL ED120, BYK-410; the alumina powder D50 is 0.1-0.7 μm; the solvent is selected from one or more of alcohols, ketones and ethers.
4. The preparation method according to claim 2 or 3, wherein the amount of the alumina powder added to the mixed material in the step (1) is 60 to 70 parts by weight, the amount of the dispersant added is 1 to 5 parts by weight, and the amount of the solvent added is 100 to 150 parts by weight.
5. The production method according to claim 4, wherein the dispersant is added in an amount of M (dispersant): m (alumina) ═ 84, preferably (2-4): 84.
6. the method of claim 2, wherein the step (3) is a step of mixing the solvent and the resin, and preparing the organic vehicle in a water bath at 60-70 ℃ for 1-2 hours;
the solvent is selected from alcohol ester dodeca, terpineol or a eutectic solvent, preferably a eutectic solvent;
the resin is polyvinyl butyral (PVB) and/or cellulose resin, and the fiber resin is selected from ethyl cellulose and cellulose acetate butyrate.
7. The preparation method according to claim 6, wherein the eutectic solvent is choline chloride or betaine and urea in a molar ratio of 1: 2;
the resin is polyvinyl butyral (PVB) and cellulose resin; wherein PVB: the mass ratio of the cellulose resin is (2-4): 1.
8. the preparation method according to claim 2, wherein the ball milling rotation number in step (2) is 200-; the drying is that the temperature is kept for 3 to 5 hours at 60 to 90 ℃ in an oven;
in the step (4), based on 100 percent of the initial slurry, the content of the organic carrier accounts for 10 to 20 weight percent, the content of the alumina powder accounts for 60 to 70 weight percent, and the balance is organic solvent;
the organic solvent is alcohol ester dodeca, terpineol or ethylene glycol monobutyl ether acetate;
the stirring is manual stirring or stirring by adopting a homogenizer;
and (5) rolling for 5-8 times by using a rolling mill, wherein the rolling mill is a zirconia three-high rolling mill.
9. An alumina slurry obtained by the production method according to any one of claims 1 to 8.
10. A nitrogen-oxygen sensor, characterized in that the nitrogen-oxygen sensor uses the alumina slurry obtained by the preparation method of any one of claims 1 to 8 or the alumina slurry of claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110950599.5A CN113683403B (en) | 2021-08-18 | 2021-08-18 | Alumina slurry for nitrogen-oxygen sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110950599.5A CN113683403B (en) | 2021-08-18 | 2021-08-18 | Alumina slurry for nitrogen-oxygen sensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113683403A true CN113683403A (en) | 2021-11-23 |
CN113683403B CN113683403B (en) | 2022-12-23 |
Family
ID=78580521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110950599.5A Active CN113683403B (en) | 2021-08-18 | 2021-08-18 | Alumina slurry for nitrogen-oxygen sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113683403B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115849951A (en) * | 2022-12-22 | 2023-03-28 | 湖北丹瑞新材料科技有限公司 | Preparation method and application of nitrogen-oxygen sensor porous material and sensitive element |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995426A (en) * | 2009-08-14 | 2011-03-30 | 比亚迪股份有限公司 | Chip type oxygen sensor and preparation method thereof |
CN104880500A (en) * | 2014-07-08 | 2015-09-02 | 广东风华高新科技股份有限公司 | Flake-type oxygen sensor and preparation method thereof |
CN105448383A (en) * | 2015-11-12 | 2016-03-30 | 广东风华高新科技股份有限公司 | Alumina insulation slurry and preparing method thereof, and alumina insulation layer preparing method |
CN105803450A (en) * | 2014-12-29 | 2016-07-27 | 中国科学院上海硅酸盐研究所 | Porous alumina membrane for nitrogen-oxygen sensor and preparation method thereof |
CN106782753A (en) * | 2016-12-13 | 2017-05-31 | 广东爱康太阳能科技有限公司 | A kind of crystal silicon solar energy battery printing silver paste and preparation method thereof |
CN107235714A (en) * | 2017-08-01 | 2017-10-10 | 郑州联冠科技有限公司 | Electronic ceramics casting slurry configuration technique |
CN110838383A (en) * | 2019-10-29 | 2020-02-25 | 深圳顺络电子股份有限公司 | Flexible outer electrode of chip component and manufacturing method thereof |
-
2021
- 2021-08-18 CN CN202110950599.5A patent/CN113683403B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995426A (en) * | 2009-08-14 | 2011-03-30 | 比亚迪股份有限公司 | Chip type oxygen sensor and preparation method thereof |
CN104880500A (en) * | 2014-07-08 | 2015-09-02 | 广东风华高新科技股份有限公司 | Flake-type oxygen sensor and preparation method thereof |
CN105803450A (en) * | 2014-12-29 | 2016-07-27 | 中国科学院上海硅酸盐研究所 | Porous alumina membrane for nitrogen-oxygen sensor and preparation method thereof |
CN105448383A (en) * | 2015-11-12 | 2016-03-30 | 广东风华高新科技股份有限公司 | Alumina insulation slurry and preparing method thereof, and alumina insulation layer preparing method |
CN106782753A (en) * | 2016-12-13 | 2017-05-31 | 广东爱康太阳能科技有限公司 | A kind of crystal silicon solar energy battery printing silver paste and preparation method thereof |
CN107235714A (en) * | 2017-08-01 | 2017-10-10 | 郑州联冠科技有限公司 | Electronic ceramics casting slurry configuration technique |
CN110838383A (en) * | 2019-10-29 | 2020-02-25 | 深圳顺络电子股份有限公司 | Flexible outer electrode of chip component and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
王锡娇著: "《涂料与颜料标准应用手册 上》", 30 April 2005, 军事谊文出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115849951A (en) * | 2022-12-22 | 2023-03-28 | 湖北丹瑞新材料科技有限公司 | Preparation method and application of nitrogen-oxygen sensor porous material and sensitive element |
Also Published As
Publication number | Publication date |
---|---|
CN113683403B (en) | 2022-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105810294B (en) | A kind of waterborne conductive silver paste and preparation method thereof | |
CN113683403B (en) | Alumina slurry for nitrogen-oxygen sensor and preparation method thereof | |
CN102531009B (en) | Nanoscale high-purity aluminum oxide preparation method | |
CN105236941A (en) | Aluminum oxide anti-static ceramic material and preparation method thereof | |
CN101172856B (en) | Method for producing zirconium oxide fibre and the produced zirconium oxide fibre | |
CN114538929A (en) | Preparation method of high-density boron carbide ceramic | |
CN106966732B (en) | Fine powder silicon carbide ceramic and preparation method thereof | |
CN113277859B (en) | Nano-coated alumina particles and high-purity thermal shock resistant alumina ceramic material prepared from same | |
CN108546110A (en) | A kind of method that ultralow temperature prepares High conductivity zinc oxide ceramic | |
CN104464882B (en) | A kind of photovoltaic cell silver slurry and sintering method thereof | |
CN107393629A (en) | A kind of conductive silver paste and its preparation method and application | |
CN114188066A (en) | High-crystallization silver powder and low-cost heterojunction silver paste as well as preparation method and application thereof | |
CN117602909B (en) | Floor heating special cement mortar based on tungsten tailings and preparation method thereof | |
CN113648940B (en) | Ultra-light high-elasticity anti-radiation nanofiber aerogel material and preparation method thereof | |
CN114685149A (en) | Functionalized alumina ceramic fiber and preparation method thereof | |
CN114242302A (en) | Environment-friendly conductive silver paste for lead-free piezoelectric ceramic filter and preparation method thereof | |
CN102109485B (en) | Oxygen sensor electrode slurry and oxygen sensor sensing layer and preparation methods thereof | |
CN111899912B (en) | Preparation method of front silver paste for ultrahigh-speed fine line printing | |
CN116715528B (en) | Preparation method of high-toughness ceramic grinding medium | |
CN102543257B (en) | Modified silver thick film sizing agent for crystalline silicon solar cell and preparation method thereof | |
CN115939389B (en) | Conductive material composition, conductive paste, and preparation method and application thereof | |
CN115560887A (en) | Flexible piezoresistive sensor based on TPU/PAN (thermoplastic polyurethane/polyacrylonitrile) blended conductive composite fiber membrane and preparation method thereof | |
CN106065148A (en) | Graphene polyvinyl alcohol hybrid material and the method preparing polyurethane resin based composites | |
CN113547116B (en) | Rod-shaped silver powder and preparation method thereof | |
CN114799181A (en) | Preparation method of flaky silver powder and application of flaky silver powder in field of conductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |