CN113673775A - 基于cnn-lstm及深度学习的时空组合预测方法 - Google Patents
基于cnn-lstm及深度学习的时空组合预测方法 Download PDFInfo
- Publication number
- CN113673775A CN113673775A CN202110981226.4A CN202110981226A CN113673775A CN 113673775 A CN113673775 A CN 113673775A CN 202110981226 A CN202110981226 A CN 202110981226A CN 113673775 A CN113673775 A CN 113673775A
- Authority
- CN
- China
- Prior art keywords
- lstm
- cnn
- layer
- data
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000013135 deep learning Methods 0.000 title claims abstract description 13
- 238000012549 training Methods 0.000 claims abstract description 17
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 33
- 230000006870 function Effects 0.000 claims description 25
- 239000011159 matrix material Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 claims description 11
- 238000011156 evaluation Methods 0.000 claims description 10
- 230000007246 mechanism Effects 0.000 claims description 10
- 238000011176 pooling Methods 0.000 claims description 6
- 101100272279 Beauveria bassiana Beas gene Proteins 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 238000013527 convolutional neural network Methods 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 10
- 238000013528 artificial neural network Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000005457 optimization Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 6
- 238000010219 correlation analysis Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012706 support-vector machine Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010238 partial least squares regression Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 241000277269 Oncorhynchus masou Species 0.000 description 1
- 241000245165 Rhododendron ponticum Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000010152 pollination Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Economics (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Power Engineering (AREA)
- Water Supply & Treatment (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110981226.4A CN113673775B (zh) | 2021-08-25 | 2021-08-25 | 基于cnn-lstm及深度学习的时空组合预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110981226.4A CN113673775B (zh) | 2021-08-25 | 2021-08-25 | 基于cnn-lstm及深度学习的时空组合预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113673775A true CN113673775A (zh) | 2021-11-19 |
CN113673775B CN113673775B (zh) | 2024-10-25 |
Family
ID=78546098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110981226.4A Active CN113673775B (zh) | 2021-08-25 | 2021-08-25 | 基于cnn-lstm及深度学习的时空组合预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113673775B (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114648170A (zh) * | 2022-04-08 | 2022-06-21 | 福建中锐网络股份有限公司 | 基于混合深度学习模型的水库水位预测预警方法及系统 |
CN114913296A (zh) * | 2022-05-07 | 2022-08-16 | 中国石油大学(华东) | 一种modis地表温度数据产品重建方法 |
CN114936669A (zh) * | 2022-04-06 | 2022-08-23 | 武汉大学 | 一种基于数据融合的混合船舶横摇预测方法 |
CN114997543A (zh) * | 2022-08-03 | 2022-09-02 | 通号通信信息集团有限公司 | 人流量预测方法、模型训练方法、电子设备、可读介质 |
CN115062542A (zh) * | 2022-06-15 | 2022-09-16 | 浙江工业大学 | 基于二维稳健lstm的聚合反应过程质量预测方法 |
CN115099497A (zh) * | 2022-06-28 | 2022-09-23 | 中国水利水电科学研究院 | 一种基于cnn-lstm的实时洪水预报智能方法 |
CN115587617A (zh) * | 2022-10-17 | 2023-01-10 | 国网黑龙江省电力有限公司 | 长时间序列的序列信息捕捉方法及装置、短期用电量预测方法及装置 |
CN116087042A (zh) * | 2023-02-16 | 2023-05-09 | 中国矿业大学 | 一种粉尘沉积量空间分布实时监测系统及方法 |
CN116110234A (zh) * | 2023-04-11 | 2023-05-12 | 城云科技(中国)有限公司 | 基于人工智能的车流量预测方法、装置及其应用 |
CN116861467A (zh) * | 2023-08-31 | 2023-10-10 | 中国科学院软件研究所 | 一种基于上下文特征的数据库异常查询访问控制方法 |
CN117034784A (zh) * | 2023-09-21 | 2023-11-10 | 河北工程大学 | 一种非稳态轧制下热轧变形区动态力学参数的建模方法 |
CN117674098A (zh) * | 2023-11-29 | 2024-03-08 | 国网浙江省电力有限公司丽水供电公司 | 面向不同渗透率的多元负荷时空概率分布预测方法及系统 |
CN117851922A (zh) * | 2024-03-08 | 2024-04-09 | 山东新泽仪器有限公司 | 一种空气浓度监测仪器运行监测方法 |
CN118036789A (zh) * | 2023-06-21 | 2024-05-14 | 中国科学院广州能源研究所 | 一种混合电动汽车负荷分类预测方法及相关设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110443725A (zh) * | 2019-08-14 | 2019-11-12 | 国网甘肃省电力公司信息通信公司 | 基于cnn+lstm的风电功率预测模型 |
CN110991700A (zh) * | 2019-11-08 | 2020-04-10 | 北京博望华科科技有限公司 | 基于深度学习改进的天气与用电相关性预测方法及装置 |
CN112598180A (zh) * | 2020-12-21 | 2021-04-02 | 北京华能新锐控制技术有限公司 | 一种分布式区域风电功率预测方法 |
CN112686464A (zh) * | 2021-01-07 | 2021-04-20 | 云南电力技术有限责任公司 | 短期风电功率预测方法及装置 |
-
2021
- 2021-08-25 CN CN202110981226.4A patent/CN113673775B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110443725A (zh) * | 2019-08-14 | 2019-11-12 | 国网甘肃省电力公司信息通信公司 | 基于cnn+lstm的风电功率预测模型 |
CN110991700A (zh) * | 2019-11-08 | 2020-04-10 | 北京博望华科科技有限公司 | 基于深度学习改进的天气与用电相关性预测方法及装置 |
CN112598180A (zh) * | 2020-12-21 | 2021-04-02 | 北京华能新锐控制技术有限公司 | 一种分布式区域风电功率预测方法 |
CN112686464A (zh) * | 2021-01-07 | 2021-04-20 | 云南电力技术有限责任公司 | 短期风电功率预测方法及装置 |
Non-Patent Citations (1)
Title |
---|
周恒俊 ET AL.: "基于MIPCA与GRU网络的光伏出力短期预测方法", 电力系统及其自动化学报, vol. 32, no. 9, pages 55 - 62 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114936669A (zh) * | 2022-04-06 | 2022-08-23 | 武汉大学 | 一种基于数据融合的混合船舶横摇预测方法 |
CN114936669B (zh) * | 2022-04-06 | 2024-05-17 | 武汉大学 | 一种基于数据融合的混合船舶横摇预测方法 |
CN114648170A (zh) * | 2022-04-08 | 2022-06-21 | 福建中锐网络股份有限公司 | 基于混合深度学习模型的水库水位预测预警方法及系统 |
CN114913296A (zh) * | 2022-05-07 | 2022-08-16 | 中国石油大学(华东) | 一种modis地表温度数据产品重建方法 |
CN114913296B (zh) * | 2022-05-07 | 2023-08-11 | 中国石油大学(华东) | 一种modis地表温度数据产品重建方法 |
CN115062542A (zh) * | 2022-06-15 | 2022-09-16 | 浙江工业大学 | 基于二维稳健lstm的聚合反应过程质量预测方法 |
CN115099497A (zh) * | 2022-06-28 | 2022-09-23 | 中国水利水电科学研究院 | 一种基于cnn-lstm的实时洪水预报智能方法 |
CN115099497B (zh) * | 2022-06-28 | 2023-02-17 | 中国水利水电科学研究院 | 一种基于cnn-lstm的实时洪水预报智能方法 |
CN114997543A (zh) * | 2022-08-03 | 2022-09-02 | 通号通信信息集团有限公司 | 人流量预测方法、模型训练方法、电子设备、可读介质 |
CN114997543B (zh) * | 2022-08-03 | 2023-01-13 | 通号通信信息集团有限公司 | 人流量预测方法、电子设备、可读介质 |
CN115587617A (zh) * | 2022-10-17 | 2023-01-10 | 国网黑龙江省电力有限公司 | 长时间序列的序列信息捕捉方法及装置、短期用电量预测方法及装置 |
CN116087042A (zh) * | 2023-02-16 | 2023-05-09 | 中国矿业大学 | 一种粉尘沉积量空间分布实时监测系统及方法 |
CN116087042B (zh) * | 2023-02-16 | 2023-09-08 | 中国矿业大学 | 一种粉尘沉积量空间分布实时监测系统及方法 |
CN116110234A (zh) * | 2023-04-11 | 2023-05-12 | 城云科技(中国)有限公司 | 基于人工智能的车流量预测方法、装置及其应用 |
CN118036789A (zh) * | 2023-06-21 | 2024-05-14 | 中国科学院广州能源研究所 | 一种混合电动汽车负荷分类预测方法及相关设备 |
CN116861467B (zh) * | 2023-08-31 | 2023-12-26 | 中国科学院软件研究所 | 一种基于上下文特征的数据库异常查询访问控制方法 |
CN116861467A (zh) * | 2023-08-31 | 2023-10-10 | 中国科学院软件研究所 | 一种基于上下文特征的数据库异常查询访问控制方法 |
CN117034784A (zh) * | 2023-09-21 | 2023-11-10 | 河北工程大学 | 一种非稳态轧制下热轧变形区动态力学参数的建模方法 |
CN117674098A (zh) * | 2023-11-29 | 2024-03-08 | 国网浙江省电力有限公司丽水供电公司 | 面向不同渗透率的多元负荷时空概率分布预测方法及系统 |
CN117674098B (zh) * | 2023-11-29 | 2024-06-07 | 国网浙江省电力有限公司丽水供电公司 | 面向不同渗透率的多元负荷时空概率分布预测方法及系统 |
CN117851922A (zh) * | 2024-03-08 | 2024-04-09 | 山东新泽仪器有限公司 | 一种空气浓度监测仪器运行监测方法 |
CN117851922B (zh) * | 2024-03-08 | 2024-06-07 | 山东新泽仪器有限公司 | 一种空气浓度监测仪器运行监测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113673775B (zh) | 2024-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113673775B (zh) | 基于cnn-lstm及深度学习的时空组合预测方法 | |
Ma et al. | A hybrid attention-based deep learning approach for wind power prediction | |
CN111476219B (zh) | 智能家居环境中图像目标检测方法 | |
Zang et al. | Hybrid method for short‐term photovoltaic power forecasting based on deep convolutional neural network | |
Lipu et al. | Artificial intelligence based hybrid forecasting approaches for wind power generation: Progress, challenges and prospects | |
Zhang et al. | Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting | |
Liang et al. | Clusterfomer: clustering as a universal visual learner | |
CN117117859B (zh) | 基于神经网络的光伏发电功率预测方法及系统 | |
Li et al. | A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks | |
Shang et al. | Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism | |
CN114693064B (zh) | 一种建筑群方案生成性能评价方法 | |
CN113837434A (zh) | 太阳能光伏发电预测方法、装置、电子设备和存储介质 | |
CN114792158A (zh) | 基于时空融合图神经网络的多风电场短期功率预测方法 | |
CN111222689A (zh) | 基于多尺度时间特征的lstm负荷预测方法、介质及电子装置 | |
Phiri et al. | Deep learning techniques for solar tracking systems: A systematic literature review, research challenges, and open research directions | |
CN116894524A (zh) | 一种基于组合网络模型的大气温度预测方法 | |
CN117034055A (zh) | 一种基于L-Transformer短期光伏发电功率预测的方法 | |
CN117388953B (zh) | 一种基于大数据框架的SADBO改进MIM-rwkv的气象预报方法 | |
Dong et al. | Tropical cyclone track prediction with an encoding-to-forecasting deep learning model | |
CN113935458A (zh) | 基于卷积自编码深度学习的空气污染多站点联合预测方法 | |
CN117194926A (zh) | 陆上风电基地吊装窗口期预测方法及系统 | |
CN117407704A (zh) | 可再生能源发电功率预测方法及其计算机设备、储存介质 | |
CN115577564A (zh) | 一种多约束自适应图学习的鲁棒非负矩阵分解方法及系统 | |
Li et al. | Short-term Power Load Forecasting based on Feature Fusion of Parallel LSTM-CNN | |
Zhang et al. | Spectral normalization generative adversarial networks for photovoltaic power scenario generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240613 Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Applicant after: Shenzhen Wanzhida Enterprise Management Co.,Ltd. Country or region after: China Address before: 430081 No. 947 Heping Avenue, Qingshan District, Hubei, Wuhan Applicant before: WUHAN University OF SCIENCE AND TECHNOLOGY Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240912 Address after: 102200 5th and 6th floors, building a, 18 Binhe Avenue, future science and Technology City, Changping District, Beijing Applicant after: STATE GRID ECONOMIC AND TECHNOLOGICAL RESEARCH INSTITUTE Co.,Ltd. Country or region after: China Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Applicant before: Shenzhen Wanzhida Enterprise Management Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant |