CN113672508B - Simulink testing method based on risk strategy and diversity strategy - Google Patents
Simulink testing method based on risk strategy and diversity strategy Download PDFInfo
- Publication number
- CN113672508B CN113672508B CN202110944362.6A CN202110944362A CN113672508B CN 113672508 B CN113672508 B CN 113672508B CN 202110944362 A CN202110944362 A CN 202110944362A CN 113672508 B CN113672508 B CN 113672508B
- Authority
- CN
- China
- Prior art keywords
- risk
- simulink
- keyword
- test cases
- strategy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 113
- 239000013598 vector Substances 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 230000035772 mutation Effects 0.000 description 5
- 238000007689 inspection Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3668—Testing of software
- G06F11/3672—Test management
- G06F11/3684—Test management for test design, e.g. generating new test cases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3668—Testing of software
- G06F11/3672—Test management
- G06F11/3688—Test management for test execution, e.g. scheduling of test suites
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
技术领域Technical field
本发明涉及测试用例的选择与排序领域,尤其涉及一种基于风险策略和多样性策略的Simulink测试方法。The invention relates to the field of test case selection and sorting, and in particular to a Simulink testing method based on risk strategy and diversity strategy.
背景技术Background technique
芯片被称为“工业粮食”,是制造业的核心技术。随着国家对于芯片产业的不断重视,芯片设计产业正处于蓬勃发展之中。EDA是芯片设计必需、也是最重要的软件工具,因此如何实现高效稳定的EDA至关重要。Simulink作为一款使用广泛的电路设计EDA,人们对其能正常执行并达到预期效果的需求日益迫切。Chips are called "industrial food" and are the core technology of the manufacturing industry. As the country continues to attach importance to the chip industry, the chip design industry is booming. EDA is a necessary and most important software tool for chip design, so how to achieve efficient and stable EDA is crucial. Simulink is a widely used circuit design EDA, and people have an increasingly urgent need for it to execute normally and achieve expected results.
近年来,已经提出了一些方法来促进自动化Simulink测试。这些技术依赖于一些测试用例生成工具(如SLforge)来生成大量的测试程序,通过运行这些生成的测试程序来检测Simulink差错。常见的方法有,通过LSTM学习SLforge基于规则生成的测试用例,批量生成新的测试用例,这些基于学习生成的测试用例比基于规则生成的测试用例更具随机性,更有可能查找到Simulink差错。还有一些研究,对已有的Simulink模型执行SLEMI变异,通过对测试用例中的僵尸块进行处理生成新的测试用例。具体的做法是首先通过预处理得到每个块的覆盖信息,识别嵌套的动态僵尸块。之后针对不同的情况有以下三种处理方式:(1)对于嵌套的僵尸块,删掉该块再将块前和块后连接。(2)对顶级僵尸块采取替换的方式,并确保替换的块有相同的采样时间。(3)否则,对活动层次执行变异。最后再通过对变异前的测试用例和新生成的测试用例进行差分测试来检测Simulink差错。该Simulink测试技术存在严重的效率问题,因为它们通常需要生成大量的Simulink模型并不断的对其进行测试,故需要很长的时间才能发现Simulink差错。虽然其只需要通过对已有测试用例执行EMI变异来查找Simulink差错,但是变异的手法较为单一,无法发现更为多样的差错类型。In recent years, several methods have been proposed to facilitate automated Simulink testing. These techniques rely on some test case generation tools (such as SLforge) to generate a large number of test programs, and detect Simulink errors by running these generated test programs. Common methods include using LSTM to learn test cases generated by SLforge based on rules, and generating new test cases in batches. These test cases generated based on learning are more random than test cases generated based on rules, and are more likely to find Simulink errors. There are also some studies that perform SLEMI mutation on existing Simulink models and generate new test cases by processing zombie blocks in test cases. The specific approach is to first obtain the coverage information of each block through preprocessing and identify nested dynamic zombie blocks. There are three ways to deal with different situations: (1) For nested zombie blocks, delete the block and connect the front and back of the block. (2) Replace the top zombie blocks and ensure that the replaced blocks have the same sampling time. (3) Otherwise, perform mutation on the activity level. Finally, Simulink errors are detected by differential testing on the test cases before mutation and the newly generated test cases. This Simulink testing technology has serious efficiency problems, because they usually need to generate a large number of Simulink models and test them continuously, so it takes a long time to find Simulink errors. Although it only needs to perform EMI mutation on existing test cases to find Simulink errors, the mutation method is relatively simple and cannot find more diverse error types.
发明内容Contents of the invention
根据现有技术存在的问题,本发明公开了一种基于风险策略和多样性策略的Simulink测试方法,具体包括如下步骤:According to the problems existing in the existing technology, the present invention discloses a Simulink testing method based on risk strategy and diversity strategy, which specifically includes the following steps:
收集测试用例,采用Simulink程序随机生成工具Slforge从而生成测试用例,通过差错检测程序判断是否造成Simulink崩溃,若发现Simulink差错则将其标记为fault;Collect test cases, use the Simulink program random generation tool Slforge to generate test cases, and use the error detection program to determine whether Simulink crashes. If a Simulink error is found, it will be marked as fault;
对生成的测试用例进行处理:统计每个测试用例中出现的Simulink模块名以及出现的次数;Process the generated test cases: count the Simulink module names that appear in each test case and the number of times they appear;
对关键词向量进行建模:将所有测试用例中出现的Simulink模块名构成一个关键词词典,并记录每个关键词出现的次数,将出现次数低于设定阈值的关键词删除;Model keyword vectors: Construct a keyword dictionary of Simulink module names that appear in all test cases, record the number of occurrences of each keyword, and delete keywords whose occurrences are lower than the set threshold;
构建关键词矩阵KV、风险向量RV以及距离矩阵DM;Construct keyword matrix KV, risk vector RV and distance matrix DM;
对测试用例进行优先化处理:使用基于风险向量RV的风险策略Dan、基于距离矩阵DM的多样性策略Var、以及结合了上述两种策略的多样性风险混合策略VarDan对Simulink测试用例进行优先化排序。Prioritize test cases: Use risk strategy Dan based on risk vector RV, diversity strategy Var based on distance matrix DM, and diversity risk hybrid strategy VarDan that combines the above two strategies to prioritize Simulink test cases .
所述构建关键词矩阵KV时:When constructing the keyword matrix KV as described:
为每个测试用例构建一个关键词向量tri=(ei,1,ei,2,...,ei,m),其中m为关键词词典中的关键词的个数;如果第i个测试用例在关键词词典中包含第j个关键词,则ei,j=1,否则ei,j=0,KV是一个n×m矩阵,n表示有n个测试用例,m表示关键词词典中有m个关键词。Construct a keyword vector tr i =(e i,1 ,e i,2 ,...,e i,m ) for each test case, where m is the number of keywords in the keyword dictionary; if If the i test case contains the jth keyword in the keyword dictionary, then e i,j =1, otherwise e i,j =0, KV is an n×m matrix, n means there are n test cases, m means There are m keywords in the keyword dictionary.
所述构建风险向量RV时:统计关键词向量tri中1的个数,并将其作为测试用例中的风险值,用表示,通过计算出每个测试用例的风险值,从而构建出由n个错误报告形成的风险向量RV。When constructing the risk vector RV as described above: count the number of 1's in the keyword vector tr i , and use it as the risk value in the test case, using Indicates that by calculating the risk value of each test case, a risk vector RV formed by n error reports is constructed.
所述构建距离矩阵DM时:基于关键词矩阵KV计算每对测试用例的距离,对于两个关键词向量tri和trk,将对应位置j中ei,j和ek,j不同值的个数计为距离D(tri,trk),通过计算出每对测试用例的距离从而构建出距离矩阵DM。When constructing the distance matrix DM: Calculate the distance of each pair of test cases based on the keyword matrix KV. For the two keyword vectors tr i and tr k , the corresponding values of e i, j and e k, j in the corresponding position j are The number is counted as distance D(tr i , tr k ), and the distance matrix DM is constructed by calculating the distance of each pair of test cases.
采用风险策略Dan对Simulink测试用例进行优先化排序时:选择风险值RV(i)最高的测试用例tri,将其放入有序队列QTR中,并将该测试用例从tr中删除,再从tr剩下的测试用例中选择风险值RV(i)最高的测试用例tri,重复上述操作,直到tr长度为0时为止。When using the risk strategy Dan to prioritize Simulink test cases: select the test case tr i with the highest risk value RV(i), put it into the ordered queue QTR, delete the test case from tr, and then delete it from tr Select the test case tr i with the highest risk value RV(i) among the remaining test cases in tr, and repeat the above operation until the length of tr is 0.
采用多样性策略Var对Simulink测试用例进行优先化排序时:选择风险值最高的测试用例tri放入QTR中,并将其从tr中删除,再从tr中选择距离QTR最远,即D(tr,QTR)最大的测试用例trj放入QTR中,同样将其从tr中删除,重复上述操作,直到TR长度为0时停止。When using the diversity strategy Var to prioritize Simulink test cases: select the test case tr i with the highest risk value and put it into QTR, delete it from tr, and then select the test case tr i that is the furthest from tr from QTR, that is, D( tr, QTR) The largest test case tr j is put into QTR, and it is also deleted from tr. Repeat the above operation until the TR length reaches 0.
采用多样性风险混合策略VarDan对Simulink测试用例进行优先化排序时:选择风险值最大的测试用例进行检查,将其放入QTR中并从tr中删除,通过选择tr和QTR中D(tr,QTR)最大的前nc个未测试用例来构建候选集合CTR,选择CTR中风险最大的测试用例trj进行检查,将其添加到QTR队列中,并从tr中删除,如果该测试用例被标记为fault,且δ>0,关键词向量KV将更新,风险值RV也将更新,之后重复上述操作,直到tr长度为0时停止。When using the diversity risk mixture strategy VarDan to prioritize Simulink test cases: select the test case with the largest risk value for inspection, put it into QTR and delete it from tr, by selecting D(tr, QTR in tr and QTR ) the largest n c untested cases to build the candidate set CTR, select the test case tr j with the highest risk in CTR for inspection, add it to the QTR queue, and delete it from tr if the test case is marked as fault, and δ>0, the keyword vector KV will be updated, the risk value RV will also be updated, and then the above operation will be repeated until the length of tr is 0.
由于采用了上述技术方案,本发明提供的一种基于风险策略和多样性策略的Simulink测试方法,该方法利用了两个关键策略:多样性策略Var来帮助检查各种各样的测试用例,避免测试重复的错误分类上;风险策略Dan帮助识别更有可能揭示错误的测试用例。通过将两种策略结合,从而尽可能早,并且尽可能多的发现错误。Due to the adoption of the above technical solution, the present invention provides a Simulink testing method based on risk strategy and diversity strategy. This method utilizes two key strategies: diversity strategy Var to help check various test cases and avoid Test duplication error classification; risk strategy Dan helps identify test cases that are more likely to reveal errors. By combining both strategies, you can catch as many errors as possible as early as possible.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present application or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments recorded in this application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明中方法的流程图Figure 1 is a flow chart of the method in the present invention
图2为本发明中Simulink模型文件示意图Figure 2 is a schematic diagram of the Simulink model file in the present invention
图3为本发明中Simulink模型示意图Figure 3 is a schematic diagram of the Simulink model in the present invention
图4为本发明中Simulink常见模块示意图Figure 4 is a schematic diagram of common Simulink modules in the present invention.
图5为本发明中示例的关键词字典示意图Figure 5 is a schematic diagram of an example keyword dictionary in the present invention.
图6为本发明中示例的关键词矩阵示意图Figure 6 is a schematic diagram of an example keyword matrix in the present invention.
图7为本发明中示例的距离矩阵示意图Figure 7 is a schematic diagram of a distance matrix in an example of the present invention.
具体实施方式Detailed ways
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:In order to make the technical solutions and advantages of the present invention clearer, the technical solutions in the embodiments of the present invention are clearly and completely described below in conjunction with the drawings in the embodiments of the present invention:
如图1所示的一种基于风险策略和多样性策略的Simulink测试方法,具体包括如下步骤:As shown in Figure 1, a Simulink testing method based on risk strategy and diversity strategy specifically includes the following steps:
收集测试用例,采用Simulink程序随机生成工具Slforge从而生成测试用例,图2为生成的Simulink模型文件,图3为对应的Simulink模型。通过差错检测程序判断是否造成Simulink崩溃,若发现Simulink差错则将其标记为“fault”;Collect test cases and use the Simulink program random generation tool Slforge to generate test cases. Figure 2 shows the generated Simulink model file, and Figure 3 shows the corresponding Simulink model. Use the error detection program to determine whether Simulink crashes. If a Simulink error is found, it will be marked as "fault";
对生成的测试用例进行处理:Simulink测试用例记录了对应的Simulink模型中出现的模块以及模块与模块之间的连线关系,统计每个测试用例中出现的Simulink模块名以及出现的次数;如图4所示,为常见的Simulink模块。Process the generated test cases: Simulink test cases record the modules that appear in the corresponding Simulink model and the connection relationships between modules, and count the Simulink module names that appear in each test case and the number of times they appear; as shown in the figure Shown in 4 is a common Simulink module.
对关键词向量进行建模:将所有测试用例中出现的Simulink模块名构成一个关键词词典,并记录每个关键词出现的次数,通过设置阈值ε去除一些出现的次数低于阈值ε的关键词,如图5所示;Model keyword vectors: Construct a keyword dictionary of Simulink module names that appear in all test cases, record the number of occurrences of each keyword, and remove some keywords whose occurrences are lower than the threshold ε by setting a threshold ε , as shown in Figure 5;
构建关键词矩阵KV:为每个测试用例构建一个关键词向量tri=(ei,1,ei,2,...,ei,m),其中m是关键词词典中的关键词的个数。如果第i个测试用例在关键词词典中包含第j个关键词,则ei,j=1,否则ei,j=0;KV是一个n×m矩阵,n表示有n个测试用例,m表示关键词词典中有m个关键词,如图6所示;Construct keyword matrix KV: Construct a keyword vector tr i = (e i,1 , e i,2 ,..., e i,m ) for each test case, where m is the keyword in the keyword dictionary number. If the i-th test case contains the j-th keyword in the keyword dictionary, then e i,j = 1, otherwise e i,j = 0; KV is an n×m matrix, n means there are n test cases, m indicates that there are m keywords in the keyword dictionary, as shown in Figure 6;
构建风险向量RV:统计关键词向量tri中“1”的个数,并将其作为测试用例中的风险值,用表示,通过计算出每个测试用例的风险值,从而构建出由n个错误报告形成的风险向量RV;Construct the risk vector RV: count the number of "1" in the keyword vector tr i , and use it as the risk value in the test case, using Indicates that by calculating the risk value of each test case, a risk vector RV formed by n error reports is constructed;
构建距离矩阵DM:基于关键词矩阵KV计算每对测试用例的距离,对于两个关键词向量tri和trk,将对应位置j中ei,j和ek,j不同值的个数计为距离D(tri,trk)。通过计算出每对测试用例的距离,从而构建出距离矩阵DM,如图7所示;Construct the distance matrix DM: Calculate the distance of each pair of test cases based on the keyword matrix KV. For the two keyword vectors tr i and tr k , count the number of different values of e i,j and e k,j in the corresponding position j is the distance D(tr i ,tr k ). By calculating the distance of each pair of test cases, the distance matrix DM is constructed, as shown in Figure 7;
对测试用例进行优先化处理:使用基于风险向量RV的风险策略Dan、基于距离矩阵DM的多样性策略Var、以及结合了上述两种策略的多样性风险混合策略VarDan对Simulink测试用例进行优先化排序。Prioritize test cases: Use risk strategy Dan based on risk vector RV, diversity strategy Var based on distance matrix DM, and diversity risk hybrid strategy VarDan that combines the above two strategies to prioritize Simulink test cases .
进一步的,风险策略Dan方式为:每一次都会选择风险值RV(i)最高的测试用例tri,将其放入有序队列QTR中,并将该测试用例从tr中删除。之后再从tr剩下的测试用例中选择风险值RV(i)最高的测试用例tri,重复上述操作,直到tr长度为0时为止;Further, the risk strategy Dan method is: each time, the test case tr i with the highest risk value RV(i) will be selected, put into the ordered queue QTR, and the test case will be deleted from tr. Then select the test case tr i with the highest risk value RV(i) from the remaining test cases in tr, and repeat the above operation until the length of tr is 0;
根据风险向量RV和检查结果采取动态的优先化策略。即如果测试用例trk被确定为发现差错,那么KV中trk的所有关键词的权重都增加δ,风险向量RV也就会随之发生变化;Adopt dynamic prioritization strategies based on risk vector RV and inspection results. That is, if the test case tr k is determined to be an error, then the weights of all keywords of tr k in KV will increase by δ, and the risk vector RV will also change accordingly;
多样性策略Var方式为:首先选择风险值最高的测试用例tri放入QTR中,并将其从tr中删除,再从tr中选择距离QTR最远,即D(tr,QTR)最大的测试用例trj放入QTR中,同样将其从tr中删除,重复上述操作,直到TR长度为0时停止;The diversity strategy Var method is: first select the test case tr i with the highest risk value and put it into QTR, delete it from tr, and then select the test from tr that is farthest from QTR, that is, the test with the largest D(tr, QTR) Put the use case tr j into QTR, delete it from tr, and repeat the above operation until the TR length reaches 0;
进一步的,多样性风险混合策略VarDan方式为:将风险策略和多样性策略结合成一个混合策略。选择风险值最大的测试用例进行检查,将其放入QTR中并从tr中删除,通过选择tr和QTR中D(tr,QTR)最大的前nc个未测试用例来构建候选集合CTR,选择CTR中风险最大的测试用例trj进行检查,将其添加到QTR队列中,并从tr中删除,如果该测试用例被标记为“fault”,且δ>0,关键词向量KV将更新,风险值RV也将更新,之后重复上述操作,直到tr长度为0时停止;Further, the diversity risk mixed strategy VarDan method is to combine the risk strategy and the diversity strategy into a mixed strategy. Select the test case with the largest risk value for inspection, put it into QTR and delete it from tr, build the candidate set CTR by selecting the top n c untested cases with the largest D(tr, QTR) in tr and QTR, select The test case tr j with the highest risk in CTR is checked, added to the QTR queue, and deleted from tr. If the test case is marked as "fault" and δ>0, the keyword vector KV will be updated, and the risk The value RV will also be updated, and then the above operation will be repeated until the length of tr is 0;
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above are only preferred specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can, within the technical scope disclosed in the present invention, implement the technical solutions of the present invention. Equivalent substitutions or changes of the inventive concept thereof shall be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110944362.6A CN113672508B (en) | 2021-08-17 | 2021-08-17 | Simulink testing method based on risk strategy and diversity strategy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110944362.6A CN113672508B (en) | 2021-08-17 | 2021-08-17 | Simulink testing method based on risk strategy and diversity strategy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113672508A CN113672508A (en) | 2021-11-19 |
CN113672508B true CN113672508B (en) | 2023-09-22 |
Family
ID=78543477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110944362.6A Active CN113672508B (en) | 2021-08-17 | 2021-08-17 | Simulink testing method based on risk strategy and diversity strategy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113672508B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114896144B (en) * | 2022-04-26 | 2024-06-14 | 大连海事大学 | A knowledge base-based CPS model equivalent module input mutation testing method |
CN115098358B (en) * | 2022-05-19 | 2024-10-01 | 大连海事大学 | A test case prioritization method for Simulink testing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7506312B1 (en) * | 2008-01-31 | 2009-03-17 | International Business Machines Corporation | Method and system for automatically determining risk areas to retest |
JP2009294846A (en) * | 2008-06-04 | 2009-12-17 | Denso Corp | Test case generator, and test case generation program and method |
US8849626B1 (en) * | 2010-06-23 | 2014-09-30 | Iowa State University Research Foundation, Inc. | Semantic translation of stateflow diagrams into input/output extended finite automata and automated test generation for simulink/stateflow diagrams |
CN104536881A (en) * | 2014-11-28 | 2015-04-22 | 南京慕测信息科技有限公司 | Public testing error report priority sorting method based on natural language analysis |
CN111651722A (en) * | 2020-04-08 | 2020-09-11 | 西窗科技(苏州)有限公司 | Risk assessment method and platform for advertisement putting effect of advertiser |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7197427B2 (en) * | 2004-03-31 | 2007-03-27 | Genworth Financial Inc. | Method for risk based testing |
-
2021
- 2021-08-17 CN CN202110944362.6A patent/CN113672508B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7506312B1 (en) * | 2008-01-31 | 2009-03-17 | International Business Machines Corporation | Method and system for automatically determining risk areas to retest |
JP2009294846A (en) * | 2008-06-04 | 2009-12-17 | Denso Corp | Test case generator, and test case generation program and method |
US8849626B1 (en) * | 2010-06-23 | 2014-09-30 | Iowa State University Research Foundation, Inc. | Semantic translation of stateflow diagrams into input/output extended finite automata and automated test generation for simulink/stateflow diagrams |
CN104536881A (en) * | 2014-11-28 | 2015-04-22 | 南京慕测信息科技有限公司 | Public testing error report priority sorting method based on natural language analysis |
CN111651722A (en) * | 2020-04-08 | 2020-09-11 | 西窗科技(苏州)有限公司 | Risk assessment method and platform for advertisement putting effect of advertiser |
Non-Patent Citations (1)
Title |
---|
划分测试用例选择的风险决策方法;张德平;查日军;;计算机应用研究(第12期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113672508A (en) | 2021-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113672508B (en) | Simulink testing method based on risk strategy and diversity strategy | |
CN108470022B (en) | Intelligent work order quality inspection method based on operation and maintenance management | |
CN107632590B (en) | A Priority-Based Bottom Event Sorting Method | |
EP4075281A1 (en) | Ann-based program test method and test system, and application | |
CN104281525B (en) | A kind of defect data analysis method and the method utilizing its reduction Software Testing Project | |
CN116737510B (en) | Data analysis-based intelligent keyboard monitoring method and system | |
CN107168995A (en) | A kind of data processing method and server | |
CN114266289A (en) | Complex equipment health state assessment method | |
CN118297444A (en) | Artificial intelligence-oriented data set quality general assessment method | |
CN115879748A (en) | Enterprise informatization management integration platform based on big data | |
CN116755753A (en) | Automatic program defect repairing method and system based on code language model | |
CN115935061A (en) | Patent evaluation system and evaluation method based on big data analysis | |
CN107703884B (en) | A method and device for improving the usability of a CNC machine tool | |
CN113901667A (en) | Method for evaluating building collapse risk in fire | |
JP3703064B2 (en) | Software quality evaluation apparatus and quality evaluation method | |
CN112199295A (en) | Deep neural network defect positioning method and system based on frequency spectrum | |
CN114665986B (en) | Bluetooth key testing system and method | |
CN116776134A (en) | A photovoltaic output prediction method based on PCA-SFFS-BiGRU | |
CN104360948A (en) | IEC 61850 configuration file engineering consistency test method based on fuzzy algorithm | |
CN111654853B (en) | Data analysis method based on user information | |
KR20240065183A (en) | Methods for predicting memory errors, electronic devices and computer-readable storage media | |
CN115658515A (en) | Deep learning metamorphic test case sequencing method and computer readable medium | |
CN107103134A (en) | Low-speed wireless sensor network testability analysis method based on Bayesian network | |
CN118509340B (en) | Network communication anomaly identification method, system and medium based on deep learning | |
CN115098358B (en) | A test case prioritization method for Simulink testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |