CN113671152B - A kind of deep sliding body multi-field information monitoring device and layout method - Google Patents
A kind of deep sliding body multi-field information monitoring device and layout method Download PDFInfo
- Publication number
- CN113671152B CN113671152B CN202110865363.1A CN202110865363A CN113671152B CN 113671152 B CN113671152 B CN 113671152B CN 202110865363 A CN202110865363 A CN 202110865363A CN 113671152 B CN113671152 B CN 113671152B
- Authority
- CN
- China
- Prior art keywords
- field information
- sliding body
- protrusion
- probe
- information monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012806 monitoring device Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims abstract description 89
- 238000012544 monitoring process Methods 0.000 claims abstract description 56
- 239000000523 sample Substances 0.000 claims abstract description 37
- 230000005484 gravity Effects 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims description 17
- 230000003014 reinforcing effect Effects 0.000 claims description 16
- 239000002689 soil Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000005553 drilling Methods 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241001631457 Cannula Species 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V7/00—Measuring gravitational fields or waves; Gravimetric prospecting or detecting
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Food Science & Technology (AREA)
- Geophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Pathology (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
Abstract
本发明提供一种深部滑体多场信息监测装置及布设方法,相邻两个套管之间通过多个连杆机构连接,多个连杆机构在套管周向上间隔设置;两个顶伸架铰接形成铰接部,连杆机构内侧设有凸起,连杆机构与相邻两个套管通过第二销轴铰接,连杆机构上固定有传感器;重力式布设探头与凸起相对的位置设有推动部,推动部与凸起在上下向相干涉,推动部推动凸起以使铰接部由初始状态顶入至顶伸状态;下压器械用于对位于最顶部的套管顶端施加向下的压力,使铰接部顶入钻孔侧壁内。本发明提出的技术方案的有益效果是:通过套管结构的创新式改变,将布设机械转移到地面钻孔以外的位置,增加布设机构选择的可能性,从而增加钻孔外多多场信息监测传感器布设的成功率。
The invention provides a multi-field information monitoring device and an arrangement method for a deep sliding body. Two adjacent casings are connected by a plurality of link mechanisms, and the plurality of link mechanisms are arranged at intervals in the circumferential direction of the casing; The frame is hinged to form a hinged part, the inner side of the link mechanism is provided with a protrusion, the link mechanism is hinged with the adjacent two sleeves through the second pin shaft, and a sensor is fixed on the link mechanism; the position of the probe and the protrusion is arranged by gravity. There is a push part, the push part interferes with the protrusion in the up and down direction, and the push part pushes the protrusion to push the hinge part from the initial state to the top extension state; the pressing device is used to apply direction to the top of the sleeve at the top. Press down to push the hinge into the sidewall of the drilled hole. The beneficial effects of the technical solution proposed by the present invention are: through the innovative change of the casing structure, the layout machinery is transferred to a position other than the ground borehole, the possibility of selecting the layout mechanism is increased, and the multi-field information monitoring sensors outside the borehole are increased. Deployment success rate.
Description
技术领域technical field
本发明涉及滑坡地质灾害监测与防治技术领域,尤其涉及一种深部滑体多场信息监测装置及布设方法。The invention relates to the technical field of landslide geological disaster monitoring and prevention, in particular to a deep sliding body multi-field information monitoring device and an arrangement method.
背景技术Background technique
滑坡地质灾害是工程建设中较为常见的地质灾害,大型水利工程修筑、山区道路路基工程、石油管道铺设等人类工程活动常常会直接或间接诱发滑坡启滑,造成严重的人、财损失。因此,通过监测滑坡了解滑坡变形演化规律、判识其演化阶段对滑坡预警及防治、保障工程建设和人民安全具有重要意义。Landslide geological disasters are relatively common geological disasters in engineering construction. Human engineering activities such as large-scale water conservancy project construction, mountain road subgrade engineering, and oil pipeline laying often directly or indirectly induce landslides to start and slide, resulting in serious human and financial losses. Therefore, it is of great significance to understand the evolution law of landslide deformation and identify its evolution stage by monitoring landslides for early warning and prevention of landslides, ensuring engineering construction and people's safety.
滑坡深部包含了多场地质信息,按大类可分为基本场、作用场和耦合场,具体而言又包括了结构场、附加应力场、重力场、渗流场、温度场、化学场和变形场等。运用综合技术手段对滑坡中的位移场、应力场、温度场、渗流场和化学场等及影响滑坡发展的环境因素(降雨、库水位等)进行的实时观察和测量是重要的“场”信息监测。但由于监测技术的限制,对于滑坡“场”的监测,目前主要重视的是位移场,其它“场”往往用作位移场的辅助参数,并未充分重视。同时,由于地下监测环境在钻孔扰动中已非原状样,现有的监测中的“场”只是“近似场”,如何以钻孔为基础,向外探伸到一定距离以外实现非扰动地下环境中的监测成为滑坡多场信息监测的一大重要需求。同时,现有的滑坡深部监测技术包含的传感器类型与类型分散,监测所得数据信息利用率低、精度低、关联度差,往往滑坡变形演化规律研究中被单独应用,如何解决多场监测信息中效率低、费用高、关联差的问题,是滑坡多场信息监测的另一大重要需求。“一孔多测”是指在单个钻孔里安装多种或具有多功能的监测仪器设备,达到单线控制、集成获取多信息参数的目的,可以有效的解决上述问题。但是在细小的钻孔中向侧壁布设多集成传感器具有一定的难度。The deep part of the landslide contains multiple fields of geological information, which can be divided into basic fields, action fields and coupled fields according to categories. Specifically, it includes structural fields, additional stress fields, gravity fields, seepage fields, temperature fields, chemical fields and deformation fields. field etc. The real-time observation and measurement of the displacement field, stress field, temperature field, seepage field and chemical field in the landslide and the environmental factors (rainfall, reservoir water level, etc.) monitor. However, due to the limitation of monitoring technology, for the monitoring of landslide "field", the main emphasis is on the displacement field at present, and other "fields" are often used as auxiliary parameters of the displacement field, and have not been paid enough attention. At the same time, since the underground monitoring environment has been undisturbed in the borehole disturbance, the "field" in the existing monitoring is only an "approximate field". Monitoring in the environment has become an important requirement for landslide multi-field information monitoring. At the same time, the types and types of sensors included in the existing deep landslide monitoring technology are scattered, and the data and information obtained from monitoring have low utilization rate, low precision, and poor correlation. They are often used alone in the study of the evolution law of landslide deformation. The problems of low efficiency, high cost, and poor correlation are another important requirement for landslide multi-field information monitoring. "Multi-measurement in one hole" refers to the installation of multiple or multi-functional monitoring instruments and equipment in a single hole to achieve the purpose of single-line control and integrated acquisition of multi-information parameters, which can effectively solve the above problems. However, it is difficult to deploy multiple integrated sensors to the side wall in a small hole.
因此,针对上述问题,设计一套技术成熟、高效可靠的滑坡深部“一孔多测”的多地质信息监测的装置具有重要意义。Therefore, in view of the above problems, it is of great significance to design a set of technically mature, efficient and reliable multi-geological information monitoring device for deep landslides.
发明内容SUMMARY OF THE INVENTION
有鉴于此,为解决上述问题,本发明的实施例提供了一种深部滑体多场信息监测装置及布设方法。In view of this, in order to solve the above problems, embodiments of the present invention provide a deep sliding body multi-field information monitoring device and an arrangement method.
本发明的实施例提供一种深部滑体多场信息监测装置及布设方法,包括:Embodiments of the present invention provide a deep sliding body multi-field information monitoring device and an arrangement method, including:
监测模块,用于下放至钻孔中,包括多个套管、多个连杆机构和传感器,所述套管沿上下向延伸,多个所述套管在上下向间隔设置,相邻两个所述套管之间通过多个所述连杆机构连接,多个所述连杆机构在所述套管周向上间隔设置;所述连杆机构包括两个顶伸架,两个所述顶伸架通过第一销轴铰接形成铰接部,所述连杆机构内侧设有凸起,所述连杆机构上下两端分别与相邻两个所述套管通过第二销轴铰接,所述连杆机构上固定有所述传感器,所述连杆机构具有沿竖向延伸的初始状态、和所述铰接部向外顶伸位于所述套管外侧的顶伸状态;The monitoring module is used for lowering into the borehole, and includes a plurality of casings, a plurality of link mechanisms and sensors, the casings extend in an up-down direction, and a plurality of the casings are arranged at intervals in the up-down direction, and two adjacent ones The sleeves are connected by a plurality of the connecting rod mechanisms, and the plurality of the connecting rod mechanisms are arranged at intervals in the circumferential direction of the sleeves; The extension frame is hinged through the first pin shaft to form a hinge part, the inner side of the link mechanism is provided with a protrusion, and the upper and lower ends of the link mechanism are respectively hinged with the two adjacent sleeves through the second pin shaft. The sensor is fixed on the linkage mechanism, and the linkage mechanism has an initial state extending vertically and a protruding state in which the hinge portion protrudes outward and is located outside the sleeve;
监测模块辅助布设系统,包括重力式布设探头,所述重力式布设探头用于下放至套管内与所述连杆机构相对的位置,所述重力式布设探头与所述凸起相对的位置设有推动部,所述推动部与所述凸起在上下向相干涉,所述推动部推动所述凸起以使所述铰接部由初始状态顶入至顶伸状态;The monitoring module auxiliary layout system includes a gravity type layout probe, the gravity type layout probe is used to be lowered to a position opposite to the linkage mechanism in the casing, and the gravity type layout probe is provided at a position opposite to the protrusion. a pushing part, the pushing part interferes with the protrusion in an up-down direction, and the pushing part pushes the protrusion to push the hinge part from an initial state to a protruding state;
下压器械,用于对位于最顶部的所述套管顶端施加向下的压力,以减小相邻所述套管之间的距离,使所述铰接部顶入钻孔侧壁内。The pressing device is used for applying downward pressure to the top of the cannula at the top, so as to reduce the distance between the adjacent cannulas, so that the hinge part is pushed into the side wall of the borehole.
进一步地,还包括锁定机构和解锁机构,所述锁定机构设于所述监测模块上,用于将所述连杆机构锁定于初始状态,所述解锁机构用于与所述锁定机构配合,将所述连杆机构解锁处于可活动状态。Further, it also includes a locking mechanism and an unlocking mechanism, the locking mechanism is provided on the monitoring module and is used to lock the link mechanism in an initial state, and the unlocking mechanism is used to cooperate with the locking mechanism to lock the The linkage mechanism is unlocked in a movable state.
进一步地,所述锁定机构包括多个抵挡块和拉绳;Further, the locking mechanism includes a plurality of blocking blocks and a pull cord;
所述套管端部固定有多个所述抵挡块,所述抵挡块与所述顶伸架一一对应,且位于所述顶伸架内侧,以抵挡所述铰接部向内顶入,多个所述连杆机构之间通过拉绳连接。The end of the sleeve is fixed with a plurality of the resisting blocks, the resisting blocks correspond to the top extension frame one-to-one, and are located on the inner side of the top extension frame to resist the inward pushing of the hinge portion. The link mechanisms are connected by a pull rope.
进一步地,所述解锁机构为无刷角磨机,所述无刷角磨机安装于所述重力式布设探头底部,所述无刷角磨机的砂轮与所述拉绳相对,所述无刷角磨机的砂轮旋转磨断所述拉绳。Further, the unlocking mechanism is a brushless angle grinder, the brushless angle grinder is installed on the bottom of the gravity-type arrangement probe, the grinding wheel of the brushless angle grinder is opposite to the pull rope, and the The grinding wheel of the brush angle grinder is rotated to break the pull cord.
进一步地,所述重力式布设探头底部设有环形壳体,所述环形壳体底部呈斜角锯齿状,与所述拉绳相对,且位于所述砂轮外围,所述环形壳体底部使所述拉绳聚拢引导至与所述砂轮接触。Further, the bottom of the gravity-type arrangement probe is provided with an annular casing, the bottom of the annular casing is oblique serrated, is opposite to the pull rope, and is located at the periphery of the grinding wheel, and the bottom of the annular casing makes all the The pull ropes are brought together and guided to contact the grinding wheel.
进一步地,所述套管两端内侧分别固定有环形加强圈。Further, annular reinforcing rings are respectively fixed on the inner sides of both ends of the sleeve.
进一步地,所述环形加强圈端部凸出所述套管端部设置,所述连杆机构位于所述环形加强圈外侧,所述环形加强圈形成所述抵挡块。Further, the end portion of the annular reinforcing ring is disposed protruding from the end portion of the sleeve, the link mechanism is located outside the annular reinforcing ring, and the annular reinforcing ring forms the blocking block.
进一步地,所述重力式布设探头内设有配重体。Further, a counterweight is provided in the gravity-type arrangement probe.
进一步地,还包括监测系统,所述监测系统包括混凝土墩、通讯装置和太阳能供电模块,所述混凝土墩建造于钻孔旁的稳定地面,所述通讯装置和太阳能供电模块固定于所述混凝土墩上,所述通讯装置与所述传感器电连接,实现监测数据的收集、预处理与传输,所述太阳能供电模块与所述通讯装置、所述传感器电连接,实现监测过程中的持续性电力供应。Further, it also includes a monitoring system, the monitoring system includes a concrete pier, a communication device and a solar power supply module, the concrete pier is built on a stable ground beside the borehole, and the communication device and the solar power supply module are fixed on the concrete pier Above, the communication device and the sensor are electrically connected to realize the collection, preprocessing and transmission of monitoring data, and the solar power supply module is electrically connected to the communication device and the sensor to realize continuous power supply during the monitoring process. .
本发明的实施例还提供一种布设方法,基于上述深部滑体多场信息监测装置,包括以下步骤:An embodiment of the present invention also provides a method for laying, based on the above-mentioned deep sliding body multi-field information monitoring device, comprising the following steps:
S1在滑体表面勘测后确定监测位置,于预定位置施工钻孔,将监测模块下放到钻孔中,连杆机构位于初始状态;S1 determines the monitoring position after the surface survey of the sliding body, constructs the drilling hole at the predetermined position, lowers the monitoring module into the drilling hole, and the linkage mechanism is in the initial state;
S2将重力式布设探头下放至与连杆机构相对的位置,推动部推动凸起使铰接部由初始状态顶伸至顶伸状态,使铰接部位于套管外;S2, lower the gravity-type arrangement probe to the position opposite to the link mechanism, and push the protrusion to push the hinged part from the initial state to the top-extended state, so that the hinged part is located outside the casing;
S3通过下压器械对位于最顶部的套管顶端施加向下的压力,连杆机构的铰接部继续向外顶伸,直至相邻两个套管相互靠近、连接;此时,固定在顶伸架侧壁内的多种集成传感器被静力挤压嵌入到孔周岩土体中。S3 exerts downward pressure on the top of the casing at the top by pressing down the device, and the hinge part of the link mechanism continues to extend outward until the two adjacent casings are close to and connected to each other; Various integrated sensors in the side wall of the frame are statically squeezed into the rock and soil around the hole.
本发明的实施例提供的技术方案带来的有益效果是:通过套管结构的创新式改变,将布设机械转移到地面钻孔以外的位置,增加了布设机构选择的可能性,从而增加了钻孔外多多场信息监测传感器布设的成功率。操作简单,可靠性高,操作人员不需要复杂的培训就可以操作,降低了学习成本。地下监测装置与地表信息处理装置的通信、供电、控制连接通过排线埋入式布设,更为安全可靠。The beneficial effects brought by the technical solutions provided by the embodiments of the present invention are: through the innovative change of the casing structure, the laying machine is transferred to a position other than the ground drilling, which increases the possibility of selecting the laying mechanism, thereby increasing the drilling Multi-field information outside the hole monitors the success rate of sensor placement. The operation is simple and the reliability is high, and the operator can operate without complicated training, which reduces the learning cost. The communication, power supply and control connection between the underground monitoring device and the surface information processing device are arranged through the buried cable, which is safer and more reliable.
附图说明Description of drawings
图1是本发明提供的深部滑体多场信息监测装置一实施例的结构示意图;1 is a schematic structural diagram of an embodiment of a deep sliding body multi-field information monitoring device provided by the present invention;
图2是图1中监测模块的结构示意图;Fig. 2 is the structural representation of the monitoring module in Fig. 1;
图3是图1中监测模块的剖面图;Fig. 3 is a sectional view of the monitoring module in Fig. 1;
图4是图1中重力式布设探头的结构示意图;Fig. 4 is the structural representation of the gravitational arrangement probe in Fig. 1;
图5是图1中重力式布设探头的剖面图;Fig. 5 is the sectional view of the gravitational arrangement probe in Fig. 1;
图6是本发明提供的布设方法一实施例的流程示意图。FIG. 6 is a schematic flowchart of an embodiment of a layout method provided by the present invention.
图中:监测模块100、监测模块辅助布设系统200、下压器械300、钻孔400、套管1、导槽1a、排线1b、连杆机构2、顶伸架2a、第一销轴2b、铰接部2c、第二销轴2d、传感器3、凸起4、重力式布设探头5、推动部5a、拉环6、牵引绳7、配重体8、电动卷扬机9、控制装置10、第一电源11、锁定机构12、无刷角磨机13、砂轮13a、第二电源13b、环形加强圈14、铆钉14a、基座15、环形壳体16、封盖17、混凝土墩18、通讯装置19、太阳能供电模块20。In the figure:
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described below with reference to the accompanying drawings.
请参见图1至图6,本发明的实施例提供一种深部滑体多场信息监测装置,包括监测模块100、监测模块辅助布设系统200和下压器械300。Referring to FIGS. 1 to 6 , an embodiment of the present invention provides a deep sliding body multi-field information monitoring device, including a
请参见图1至图3,监测模块100用于下放至钻孔400中,包括多个套管1、多个连杆机构2和传感器3,所述套管1沿上下向延伸,多个所述套管1在上下向间隔设置,相邻两个所述套管1之间通过多个所述连杆机构2连接,多个所述连杆机构2在所述套管1周向上间隔设置。所述连杆机构2包括两个顶伸架2a,两个所述顶伸架2a通过第一销轴2b铰接形成铰接部2c,所述连杆机构2内侧设有凸起4,凸起4靠近铰接部2c,所述连杆机构2上下两端分别与相邻两个所述套管1通过第二销轴2d铰接,所述连杆机构2上固定有所述传感器3,所述连杆机构2具有沿竖向延伸的初始状态、和所述铰接部2c向外顶伸位于所述套管1外侧的顶伸状态。Referring to FIGS. 1 to 3 , the
两个顶伸架2a呈薄片状,为金属材质,便于挤压锲入钻孔400侧壁岩土体,顶伸架2a的长度依据监测需要而定,为钻孔400扰动范围以外。顶伸架2a侧壁开有传感器埋孔,所述传感器埋孔内部依据监测需要固定有多种集成传感器3,集成传感器3可包含渗流传感器、土压力计、水压计等,且依据监测目的与监测对象不同分为多个种类并包含任意组合方式。The two
套管1外侧壁设有沿上下向延伸的导槽1a,导槽1a上端贯穿套管1上端,导槽1a内埋设有排线1b,并封胶密封处理,排线1b与传感器埋孔内的集成传感器3电连接,从而可以借此实现通电、控制、信号传输等功能。The outer side wall of the
监测模块辅助布设系统200包括牵引机构和重力式布设探头5,请参见图1,牵引机构包括电动卷扬机9、控制装置10和第一电源11,电动卷扬机9通过牵引绳7与重力式布设探头5的拉环6连接,用于布设阶段重力式布设探头5的下放与上拉。第一电源11与控制装置10、下压器械300电连接,主要用于各设备的供电。所述控制装置10控制电动卷扬机9的工作速度、频率等。The monitoring module
所述重力式布设探头5用于下放至套管1内与所述连杆机构2相对的位置,所述重力式布设探头5与所述凸起4相对的位置设有推动部5a,所述推动部5a与所述凸起4在上下向相干涉,所述推动部5a推动所述凸起4以使所述铰接部2c由初始状态顶入至顶伸状态。推动部5a呈环形凸台设置,保证推动部5a可与凸起4相抵。凸起4外表面在竖剖面上呈弧形设置,本实施例中,呈半圆形设置。The gravity-
为了保证套管1之间的相对稳定性,监测模块100还包括锁定机构12和解锁机构,所述锁定机构12设于所述监测模块100上,用于将所述连杆机构2锁定于初始状态,所述解锁机构用于与所述锁定机构12配合,将所述连杆机构2解锁处于可活动状态。In order to ensure the relative stability between the
其他实施例中,锁定机构12可以为两个连接杆,两个连接杆分别与相对的连杆机构2铰接,两个连接杆靠近的一端分别设有磁吸部,两个磁吸部磁性相吸,可保证连杆机构2处于沿竖向延伸的初始状态。解锁机构为推杆,推杆向下推动两个磁吸部,使两个磁吸部分离,即可使连杆机构2处于可活动状态。顶伸架2a与连接杆相对的位置设有容纳槽,连接杆位于容纳槽内,可避免对相邻两个套管1相抵造成影响。In other embodiments, the
本实施例中,所述锁定机构12包括多个抵挡块和拉绳,所述套管1端部固定有多个所述抵挡块,所述抵挡块与所述顶伸架2a一一对应,且位于所述顶伸架2a内侧,以抵挡所述铰接部2c向内顶入,多个所述连杆机构2之间通过拉绳连接。通过抵挡块与拉绳相配合,可将连杆机构2定位于初始状态,保证多个套管1之间的相对稳定性。In this embodiment, the
所述解锁机构为无刷角磨机13,所述无刷角磨机13安装于所述重力式布设探头5底部,所述无刷角磨机13的砂轮13a朝下,与所述拉绳相对,所述无刷角磨机13的砂轮13a旋转磨断所述拉绳,拉绳具体为棉线,容易被砂轮13a磨断。重力式布设探头5内设有与无刷角磨机13电连接的第二电源13b,为无刷角磨机13供电。The unlocking mechanism is a
具体地,所述套管1两端内侧分别固定有环形加强圈14,所述环形加强圈14端部凸出所述套管1端部设置,所述连杆机构2位于所述环形加强圈14外侧,所述环形加强圈14形成所述抵挡块,可加强套管1的强度,同时对顶伸架2a起到限位作用,防止铰接部2c向内侧顶伸,相邻两个套管1相向移动至两个环形加强圈14相抵,可保证相邻两个套管1之间的密封性。套管1两端内侧开设有环形槽,环形加强圈14通过铆钉14a固定于环形槽内,套管1端部固定有基座15,顶伸架2a与基座15通过第二销轴2d铰接,基座15位于环形加强圈14外侧。本实施例中,套管1端部的基座15和连杆机构2分别设有四个,在套管1周向上均匀分布设置。Specifically, annular reinforcing
进一步地,所述重力式布设探头5底部设有环形壳体16,所述环形壳体16底部呈斜角锯齿状,与所述拉绳相对,且位于所述砂轮13a外围,所述环形壳体16底部使所述拉绳聚拢引导至与所述砂轮13a接触,从而保证砂轮13a可将拉绳磨断,将连杆机构2解锁。Further, an
请参见图4和图5,重力式布设探头5顶部焊接有拉环6,拉环6上系有牵引绳7,牵引绳7用于拉动重力式布设探头5在套管1内上下移动,牵引绳7具体为钢缆。所述重力式布设探头5内设有配重体8,配重体8为不锈钢或其他防锈蚀处理金属材质,布设于重力式布设探头5上部,用于增加重力式布设探头5的重力以克服下坠时拉绳的阻力和套管1侧壁的摩擦力。套管1顶部设有封盖17,用于套管1布设好之后封盖17套管1顶部,以防止异物跌入,破坏钻孔400内监测环境。Please refer to FIG. 4 and FIG. 5 , a
下压器械300用于对位于最顶部的所述套管1顶端施加向下的压力,以减小相邻所述套管1之间的距离,使所述铰接部2c顶入钻孔400侧壁内。本实施例中,下压器械300为静力压桩机。The
为实现孔外多地质信息监测,本发明还包括监测系统,所述监测系统包括混凝土墩18、通讯装置19和太阳能供电模块20,所述混凝土墩18建造于钻孔400旁的稳定地面,主要用于相关监测设备的固定。所述通讯装置19和太阳能供电模块20固定于所述混凝土墩18上,所述通讯装置19通过所述排线1b与钻孔400内布设的多种集成传感器3电连接,所述通讯装置19可以通过GPRS发送至移动监测终端或者网络以方便监测人员随时监控,从而实现监测数据的收集、预处理与传输。所述太阳能供电模块20与所述通讯装置19、所述传感器3电连接,实现监测过程中的持续性电力供应。In order to realize the monitoring of multiple geological information outside the hole, the present invention also includes a monitoring system, the monitoring system includes a
请参见图6,基于上述深部滑体多场信息监测装置,在滑体表面勘测后确定监测位置,于预定位置施工钻孔400,将监测模块100下放到钻孔400中,连杆机构2位于初始状态。具体的,通过电动卷扬机9的牵引绳7牵引,将套管1下放到钻孔400中,完成监测模块100的下放工作。Referring to FIG. 6 , based on the above-mentioned deep sliding body multi-field information monitoring device, the monitoring position is determined after the surface survey of the sliding body, the
将重力式布设探头5下放至与连杆机构2相对的位置,推动部5a推动凸起4使铰接部2c由初始状态顶伸至顶伸状态,使铰接部2c位于套管1外。The gravity-
具体的,控制电动卷扬机9快速下放重力式布设探头5,此时,重力式布设探头5下坠的过程中,重力式布设探头5底部斜角锯齿状的环形壳体16将拉绳聚拢引导至与砂轮13a接触后磨断,使连杆机构2处于可活动状态;推动部5a通过推动凸起4将连杆机构2的顶伸架2a向外转动,使铰接部2c向外顶伸位于顶伸状态。Specifically, the electric hoist 9 is controlled to quickly lower the gravity-
待重力式布设探头5下坠到钻孔400底部,布设探头将所有连杆机构2的铰接部2c顶出后,通过下压器械300对位于最顶部的套管1顶端施加向下的压力,连杆机构2的铰接部2c继续向外顶伸,直至相邻两个套管1相互靠近、连接;此时,固定在顶伸架2a侧壁内的多种集成传感器3被静力挤压嵌入到孔周岩土体中。After the
将导槽1a内的排线1b与通讯装置19、太阳能供电模块20电连接,将盖板封盖17与套管1顶部,实现对滑体深部的监测。The
本发没发提供的技术方案,通过套管1结构的创新式改变,将布设机械转移到地面钻孔400以外的位置,增加了布设机构选择的可能性,从而增加了钻孔400外多多场信息监测传感器3布设的成功率。操作简单,可靠性高,操作人员不需要复杂的培训就可以操作,降低了学习成本。地下监测装置与地表信息处理装置的通信、供电、控制连接通过排线1b埋入式布设,更为安全可靠。The technical solution provided by the present invention, through the innovative change of the structure of the
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。In this document, the related terms such as front, rear, upper and lower are defined by the positions of the components in the drawings and the positions between the components, which are only for the clarity and convenience of expressing the technical solution. It should be understood that the use of the locative words should not limit the scope of protection claimed in this application.
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。The above-described embodiments and features of the embodiments herein may be combined with each other without conflict.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110865363.1A CN113671152B (en) | 2021-07-29 | 2021-07-29 | A kind of deep sliding body multi-field information monitoring device and layout method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110865363.1A CN113671152B (en) | 2021-07-29 | 2021-07-29 | A kind of deep sliding body multi-field information monitoring device and layout method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113671152A CN113671152A (en) | 2021-11-19 |
CN113671152B true CN113671152B (en) | 2022-06-24 |
Family
ID=78540749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110865363.1A Active CN113671152B (en) | 2021-07-29 | 2021-07-29 | A kind of deep sliding body multi-field information monitoring device and layout method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113671152B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106546366B (en) * | 2016-10-09 | 2019-02-19 | 安徽理工大学 | An umbrella-shaped deep hole three-dimensional stress and displacement comprehensive testing device |
CN110567519B (en) * | 2019-08-30 | 2024-04-09 | 中国地质大学(武汉) | Measuring unit for monitoring pressure and water content of deep hole soil body of landslide body |
CN110736422B (en) * | 2019-09-12 | 2020-09-29 | 中国地质大学(武汉) | A prefabricated magnetic field layout system and deformation state response method |
CN110736498B (en) * | 2019-09-12 | 2020-09-29 | 中国地质大学(武汉) | System and method for monitoring multiple parameters outside deep hole of sliding body |
CN211305892U (en) * | 2019-11-06 | 2020-08-21 | 广州市诚投网络科技有限公司 | Computer hardware research and development processing platform based on gear transmission principle |
CN212621576U (en) * | 2020-06-23 | 2021-02-26 | 中冶地集团西北岩土工程有限公司 | Geological exploration sampling device |
CN113137985B (en) * | 2021-05-14 | 2022-02-18 | 中国地质大学(武汉) | Equipment and method for laying multi-integrated sensors in deep part of landslide |
-
2021
- 2021-07-29 CN CN202110865363.1A patent/CN113671152B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113671152A (en) | 2021-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113566881B (en) | Device and method for arranging multiple sensors outside slide body drill hole | |
CN103603342A (en) | Construction method of ultra-long bored concrete pile with large-diameter casing combination | |
WO2022236893A1 (en) | Device and method for arranging multi integrated sensors for deep-seated landslide | |
CN106940453B (en) | A kind of pair there are the method and devices that shallow-layer integrated exploration is carried out at underground utilities | |
US11572781B2 (en) | Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method | |
CN106840070A (en) | Mining overburden inside rock movement monitoring system and detection method | |
CN102691520A (en) | Monitoring system for heading face | |
CN206668328U (en) | A kind of hole drilling type rock stratum sedimentation monitoring system | |
CN103335631B (en) | A kind of rock movement on-Line Monitor Device and monitoring method thereof | |
CN108560525B (en) | Side slope protection monitoring devices's benchmark detects structure | |
CN113671152B (en) | A kind of deep sliding body multi-field information monitoring device and layout method | |
CN207609374U (en) | Lifting self-propelled full casing full rotary drilling rig | |
CN202866716U (en) | Movable drill clinometer probe catcher | |
CN103806834B (en) | Casing pressure pulls out rig | |
CN205977150U (en) | Punching cable logging carries technology tubular column in horizontal well coiled tubing | |
CN107543568A (en) | A kind of distributed sensing optical cable with boring distribution method and device | |
CN103673982B (en) | A kind of shallow coal scam overlying strata movement on-Line Monitor Device and method | |
CN206905955U (en) | Dry hole relief valve and hydrofracturing detecting earth stress device | |
CN202946144U (en) | Hole depth measuring device for drilling machine | |
KR100526015B1 (en) | Pledge monitor for cone penetration test | |
CN216515778U (en) | Foundation pile detection device | |
CN207248183U (en) | A kind of lifting gear of multipoint mode inclinometer and a kind of multipoint mode inclinometer system | |
CN111638085A (en) | Exploratory well soil body sampler | |
CN203846475U (en) | Feeler inspection type underground pipeline probe shovel | |
CN202485845U (en) | Device for monitoring lateral bearing pressure of stoping tunnel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |