CN113667689A - Vector capable of carrying out efficient gene editing in tobacco and application thereof - Google Patents

Vector capable of carrying out efficient gene editing in tobacco and application thereof Download PDF

Info

Publication number
CN113667689A
CN113667689A CN202110786304.5A CN202110786304A CN113667689A CN 113667689 A CN113667689 A CN 113667689A CN 202110786304 A CN202110786304 A CN 202110786304A CN 113667689 A CN113667689 A CN 113667689A
Authority
CN
China
Prior art keywords
seq
vector
nucleotide sequence
grna
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110786304.5A
Other languages
Chinese (zh)
Other versions
CN113667689B (en
Inventor
代常波
吕婧
孙玉合
李冰洁
王李先秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingzhou Tobacco Research Institute of China National Tobacco Corp of Institute of Tobacco Research of CAAS
Original Assignee
Qingzhou Tobacco Research Institute of China National Tobacco Corp of Institute of Tobacco Research of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingzhou Tobacco Research Institute of China National Tobacco Corp of Institute of Tobacco Research of CAAS filed Critical Qingzhou Tobacco Research Institute of China National Tobacco Corp of Institute of Tobacco Research of CAAS
Priority to CN202110786304.5A priority Critical patent/CN113667689B/en
Publication of CN113667689A publication Critical patent/CN113667689A/en
Application granted granted Critical
Publication of CN113667689B publication Critical patent/CN113667689B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present disclosure relates to a vector capable of performing efficient gene editing in tobacco, in which a 35Spro promoter, a gRNA insertion region, an eu terminator, a calreticulin promoter element, a spCas9 protein expression element, a ubp terminator and a hygromycin selection marker are sequentially inserted. The vector is a pDC45 vector system, can obviously improve the gene editing efficiency of tobacco, can greatly improve the editing efficiency of multiple target spots, homozygosis/biallelism, and lays a foundation for creating plant whole genome editing strains in high flux.

Description

Vector capable of carrying out efficient gene editing in tobacco and application thereof
Technical Field
The disclosure relates to the field of genetic engineering, in particular to a vector capable of performing efficient gene editing in tobacco and application thereof.
Background
The genome editing technology is a modern biotechnology for directionally changing species genomes, and has the characteristics of high modification efficiency, strong specificity, no species limitation and the like, so that the genome editing technology is widely concerned and applied. The gene editing technology developed and utilized at the earliest is Zinc Finger Nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), which can realize genome modification of different species, but have the disadvantages of complex design, large workload, low efficiency, high cost and the like. The CRISPR-Cas technology is the latest 3-generation gene editing technology, is composed of clustered and regularly spaced palindromic repeats and a CRISPR nuclease protein Cas, and is an acquired autoimmune defense system formed by archaea in evolution (Ishino Y, 1987). The CRISPR-Cas system is widely applied to gene function analysis, new germplasm creation and genetic improvement of animals, plants and microorganisms due to the advantages of simple and convenient design and operation, high editing efficiency, accuracy, no species specificity and the like.
In recent years, genome-directed editing has been achieved in plants such as rice, maize, arabidopsis thaliana, tomato and the like, using the type II CRISPR-Cas9 system. Although scientists have also achieved gene editing in polyploid plants such as wheat and tobacco, since polyploid plants must knock out multiple copies of 1 gene at the same time to achieve the effect of the gene in a specific development process, for example, knock out the MLO genes of wheat A, B and D genome at the same time to obtain powdery mildew resistance of wheat (Wang el al, 2014, Nature biotech). Tobacco is an important model plant for polyploid research, and has important functions in the aspects of metabolism, antibody production, foreign protein expression and the like. In 2015, Gao et al first achieved gene editing in tobacco cultivars, 77.8%, 81.8%, and 87.5% mutation efficiencies were achieved in NtCCD8, NtPDS, and NtPDR6 genes, with biallelic mutation efficiencies of 16.7%, 36.4%, and 6.25%, respectively (Gao, et al, 2015,2018). In the aspect of tobacco polygene editing, Jansing et al (Jansing et al, 2018) target 4 nicotiana benthamiana a-1, 3-fuse genes to obtain editing efficiency of 10% -14%, and target beta-1, 2-xylose to obtain editing efficiency of 62% -67%. Xixiaoeng et al (2019) use 5u 6-26 promoters to serially knock out 5 genes simultaneously, the single gene cutting efficiency is 76.9-92.3%, and the simultaneous editing efficiency is only 53.8%, but the homozygous/biallelic editing efficiency is not detected.
The traditional gene editing vector realizes about 10-85% of haploid gene editing efficiency, but homozygous or biallelic editing is only 6.3-36.4%. Meanwhile, due to the redundancy of gene functions, for polyploid plants, it is often necessary to edit a homologous gene and a gene family simultaneously to obtain a desired developmental phenotype, so that there is a defect of low editing efficiency of polyploid plants.
Disclosure of Invention
It is an object of the present disclosure to improve polyploid plant editing efficiency.
The inventors of the present invention have unexpectedly found that: in the same vector, the 35Spro promoter is used for driving gRNA, and the calreticulin promoter element is used for driving spCas9 protein, so that the editing efficiency of polyploid plants can be greatly improved, and the invention is obtained.
Therefore, in order to achieve the above objects, the present disclosure provides in a first aspect a vector capable of performing highly efficient gene editing in tobacco, the vector having inserted therein, in order, a 35Spro promoter, a gRNA insertion region, an eu terminator, a calreticulin promoter element, a spCas9 protein expression element, a ubp terminator, and a hygromycin selection marker, the calreticulin promoter element having a nucleotide sequence of SEQ ID No. 1.
Preferably, the nucleotide sequence of the 35Spro promoter is SEQ ID NO. 10; the nucleotide sequence of the gRNA insertion region is SEQ ID NO. 11; the nucleotide sequence of the eu terminator is SEQ ID NO. 12; the nucleotide sequence of the spCas9 protein expression element is SEQ ID NO. 13; the nucleotide sequence of the ubp terminator is SEQ ID NO. 14; the nucleotide sequence of the hygromycin screening marker is SEQ ID NO. 15.
Preferably, at least 2 tRNA cleavage sequences are inserted into the gRNA insertion region; the nucleotide sequence of the tRNA cutting sequence is SEQ ID NO. 8; the spCas9 protein expression element has an NLS element and a PA50 element.
Preferably, the nucleotide sequence of the vector is SEQ ID NO. 9.
In a second aspect, the present disclosure provides a method for efficient gene editing in tobacco, the method comprising the steps of:
(1) inserting gRNA of a target gene to be edited into a gRNA insertion region of the vector to obtain a gene editing vector;
(2) transforming agrobacterium with the gene editing vector to obtain a transformant;
(3) infecting the pre-cultured tobacco leaves with the transformant to obtain infected tobacco leaves;
(4) and culturing the infected tobacco leaves in a culture medium containing hygromycin.
Preferably, the nucleotide sequence of the gRNA targeting the gene to be edited is SEQ ID No.4, 5, 6 or 7.
Preferably, the nucleotide sequence of the gene editing vector is obtained by replacing positions 9754-9769 of SEQ ID NO.9 with SEQ ID NO.2, or is obtained by replacing positions 9754-9769 of SEQ ID NO.9 with SEQ ID NO. 3.
In a third aspect of the present disclosure, there is provided a calreticulin promoter element having the nucleotide sequence of SEQ ID No. 1.
The fourth aspect of the present disclosure provides a use of a calreticulin promoter element in constructing a gene editing vector, wherein a nucleotide sequence of the calreticulin promoter element is SEQ ID No. 1.
A fifth aspect of the present disclosure provides a gRNA targeting a gene to be edited, the nucleotide sequence of the gRNA targeting the gene to be edited being SEQ ID No.4, 5, 6, or 7.
By the technical scheme, the gene editing efficiency can be remarkably improved, the overall editing efficiency of the MAX4 gene can reach 100%, the homozygous/biallelic ratio reaches 85.7%, and the efficiency is improved by 22.2% and 69% respectively compared with the efficiency reported in the literature.
Additional features and advantages of the disclosure will be set forth in the detailed description which follows.
Drawings
The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and together with the description serve to explain the disclosure without limiting the disclosure. In the drawings:
FIG. 1 shows the tobacco PDS gene editing vector and transformation regeneration.
A is a vector skeleton schematic diagram of pDC45 and pDC45_ PDSsg; b is a schematic diagram of the locus of the NtPDS gene; c is albinism of 18-day and 30-day regenerated plantlets.
FIG. 2 is a tobacco multi-site editing and transformation regeneration phenotype analysis.
A and B are schematic diagrams of NtBARC 1 and NtMAX4 genes and gRNA sites; c, comparing the plant types of the edited seedling stage and the non-edited seedling stage; d, removing the regenerated seedlings of the leaves.
Sequence Listing information
SEQ ID NO. 1: nucleotide sequence of calreticulin promoter PCE8pro968 element.
SEQ ID NO.2 or 3: the nucleotide sequence of the gene editing vector is obtained by replacing 9754 th to 9769 th positions of SEQ ID NO.9 with SEQ ID NO.2, or is obtained by replacing 9754 th to 9769 th positions of SEQ ID NO.9 with SEQ ID NO. 3.
SEQ ID No.4, 5, 6 or 7: the nucleotide sequence of the gRNA that targets the gene to be edited.
SEQ ID NO. 8: the tRNA cleaves the nucleotide sequence of the sequence.
SEQ ID NO. 9: nucleotide sequence of the vector without inserted gRNA coding sequence.
SEQ ID NO. 10: 35Spro promoter.
SEQ ID NO. 11: nucleotide sequence of gRNA insertion region.
SEQ ID NO. 12: nucleotide sequence of eu terminator.
SEQ ID NO. 13: nucleotide sequence of spCas9 protein expression element.
SEQ ID No. 14: ubp nucleotide sequence of terminator.
SEQ ID NO. 15: hygromycin selection marker nucleotide sequence.
SEQ ID No. 16: NLS element nucleotide sequence.
SEQ ID NO. 17: PA50 element nucleotide sequence.
Detailed Description
The following detailed description of specific embodiments of the present disclosure is provided in connection with the accompanying drawings. It should be understood that the detailed description and specific examples, while indicating the present disclosure, are given by way of illustration and explanation only, not limitation.
The first aspect of the disclosure provides a vector capable of performing efficient gene editing in tobacco, wherein a 35Spro promoter, a gRNA insertion region, an eu terminator, a calreticulin promoter element, a spCas9 protein expression element, a ubp terminator and a hygromycin screening marker are sequentially inserted into the vector, and the nucleotide sequence of the calreticulin promoter element is SEQ ID No. 1.
In the invention, the calreticulin promoter element shown in SEQ ID No.1 is from the genome of Nicotiana tabacum, and the specific source is an Nsyl _ KD957634.1 segment.
Wherein the 35Spro promoter functions to initiate transcription of the gRNA coding sequence inserted downstream thereof, preferably having the nucleotide sequence of SEQ ID No. 10. Wherein, the gRNA insertion region is used for inserting a gRNA coding sequence which contains an enzyme cutting site sequence, and preferably, the nucleotide sequence of the gRNA insertion region is SEQ ID NO. 11. The eu terminator is used to terminate transcription of the gRNA coding sequence, preferably, its nucleotide sequence is SEQ ID No. 12. The spCas9 protein expression element is used to encode a spCas9 protein, preferably, the nucleotide sequence of which is SEQ ID No. 13. The ubp terminator is used to terminate transcription of the coding sequence of spCas9 protein, preferably, its nucleotide sequence is SEQ ID No. 14. The hygromycin screening marker is used for screening transformants and invaders, and preferably, the nucleotide sequence of the hygromycin screening marker is SEQ ID NO. 15.
According to the present disclosure, preferably, at least 2 tRNA cleavage sequences are inserted into the gRNA insertion region, for example, 1 tRNA cleavage sequence at each end of the gRNA insertion region, so that the transcribed RNA molecule containing the gRNA can be cleaved from the gRNA by a nuclease in a cell; the nucleotide sequence of the tRNA cutting sequence is SEQ ID NO. 8; the spCas9 protein expression element is provided with an NLS element and a PA50 element, the NLS element has the function of interacting with an introduced vector and has the sequence of SEQ ID NO.16, and the PA50 element has the function of enhancing the stability of Cas9 in plants and has the sequence of SEQ ID NO. 17.
According to the present disclosure, it is particularly preferred that the nucleotide sequence of the vector is SEQ ID No. 9. The vector shown in SEQ ID NO.9, named pDC45 vector, after being cut by SpeI-HF and SbfI-HF enzymes, can be ligated with gRNA coding sequence cut by SpeI-HF and SbfI-HF enzymes to form a vector capable of efficient gene editing in tobacco, i.e., binary vector pDC-2x35S-PTG-EU-NtPCE8pro: Cas 9-A50.
In a second aspect, the present disclosure provides a method for efficient gene editing in tobacco, the method comprising the steps of: (1) inserting a gRNA coding sequence of a targeted gene to be edited into a gRNA insertion region of the vector to obtain a gene editing vector; (2) transforming agrobacterium with the gene editing vector to obtain a transformant; (3) infecting the pre-cultured tobacco leaves with the transformant to obtain infected tobacco leaves; (4) and culturing the infected tobacco leaves in a culture medium containing hygromycin.
According to the disclosure, the nucleotide sequence of the gRNA targeting the gene to be edited is SEQ ID No.4, 5, 6 or 7. The gRNA shown in SEQ ID No.4 is the gRNA of the PDS gene of the targeted forest tobacco. The gRNA shown in SEQ ID No.5 is a gRNA of a PDS gene of targeted villous tobacco. The gRNA shown in SEQ ID No.6 is a gRNA of the NtMAX4 gene of the targeted forest tobacco. The gRNA shown in SEQ ID No.7 is a gRNA targeting the NtBARC 1 gene of villous tobacco.
According to the disclosure, the nucleotide sequence of the gene editing vector is obtained by replacing positions 9754-9769 of SEQ ID NO.9 with SEQ ID NO.2, or is obtained by replacing positions 9754-9769 of SEQ ID NO.9 with SEQ ID NO. 3.
In a third aspect of the present disclosure, there is provided a calreticulin promoter element having the nucleotide sequence of SEQ ID No. 1.
The fourth aspect of the present disclosure provides a use of a calreticulin promoter element in constructing a gene editing vector, wherein a nucleotide sequence of the calreticulin promoter element is SEQ ID No. 1.
A fifth aspect of the present disclosure provides a gRNA targeting a gene to be edited, the nucleotide sequence of the gRNA targeting the gene to be edited being SEQ ID No.4, 5, 6, or 7.
Example 1
This example illustrates the construction of the Gene editing vector backbone pDC01
The pDC01 binary expression vector was constructed with pCAMBIA1300 with BsaI and NheI sites removed as a backbone vector, and contained U6-sgRNA, Arabidopsis UBQ promoter, hspCas9, UBQ terminator (Zhang et. al,2016) and PolyA tail (50 bp).
The original pCAMBIA1300 vector (purchased from vast Ling plasmid platform, cat # P0439) was subjected to site-directed mutagenesis to remove BsaI site (GGCTCC changed to GGCTCg) and NheI site (GCTAGC-GCaAGC) from the vector backbone, wherein the obtained plasmid P1300 was double-digested with the restriction enzymes HindIII-HF and EcoRI-HF of NEB, the product after double-digestion and U6-sNA insert were recovered according to the standard procedure of gel recovery Kit (all-type gold), the recovered fragments were ligated with homologous recombination Kit (ClonEx II One Step Cloning Kit, Norzaar, C112-01), and the correctly sequenced plasmid, designated P1300-U6_ sg, was stored at-20 ℃ for subsequent experiments.
In order to increase the stability of Cas9 in plants, 18T-U6-sg-Cas9 vector in the article "A multiplex CRISPR/Cas9 platform for fast and effective identification of multiple genes in Arabidopsis" published in zhang et al,2016 is used as a template to amplify a Cas9-PA50 fragment, a forward primer Cas9-Nco-F sequence and a reverse primer Cas9-PA50-R sequence.
The 2ug 18T-U6-sg-Cas9 vector was digested simultaneously with restriction enzymes NcoI-HF and BamHI-HF, the product after digestion and the Cas9-PA50 fragment were recovered according to the standard procedures of gel recovery kit (all-purpose gold), the product after recovery was ligated with NEB T4 ligase (M0202S), and the ligation product was transformed into DH5 a. Positive clones were sequenced using M13R and the plasmid containing the intact polyA was selected and named 18T-U6-sg-Cas9-PA50 and stored at-20 ℃ for further experiments.
The method comprises the following steps of carrying out double enzyme digestion on 2ug p1300-U6-sg and 2ug 18T-U6-sg-Cas9-PA50 by XmaI and EcoRI-HF respectively, digging gel to recover an upper band, carrying out connection by using T4 ligase, carrying out transformation, and carrying out clone identification, wherein the specific operation is as above. The final sequencing identified plasmid was the pDC01 vector as a subsequent backbone vector.
Example 2
This example demonstrates the construction of a NtPCE8 promoter-driven Gene editing vector
And carrying out XmaI and NcoI-HF double enzyme digestion and gel digging recovery on the pDC01 vector to obtain a linear framework.
Designing NtPCE8 promoter derived from Nsyl _ KD957634.1 segment of forest tobacco genome and amplification primer (the primer direction is 5 ' -3 ') of CDS near 5 ' end sequence, using NtPCE8 promoter forward primer as NtPCE8pro-F and NtPCE8pro-R, making amplicon undergo the process of agarose electrophoresis detection, connecting PCR purified product and connecting them
Figure BDA0003159306950000081
A Blunt Zero Cloning Kit vector (gold full, CB501), the ligation product is transformed into Escherichia coli DH5a, and Cloning is picked and plasmid sequencing is carried out to obtain an NtPCE8 sequence with the length of 1046bp, wherein the promoter is a promoter sequence with the length of 968bp (PCE8pro968, SEQ ID NO. 1).
A promoter PCE8pro968(SEQ ID NO.1) is connected with a linearized pDC01 vector by using a homologous recombination Kit (Cloneexpress II One Step Cloning Kit, Novozan), and the pDC-NtPCE8pro:: Cas9-A50 is finally obtained through sequencing and identification.
Example 3
This example demonstrates the use of calreticulin promoter-driven gene editing vectors in plants
In order to test the editing activity of the editing vector constructed above in plants, heterotetraploid common tobacco was selected as an editing receptor, and phytoene dehydrogenase gene (NtPDS) was selected as a target gene.
1. Target gene gRNA design
Design 20bp gRNA sequence PDS-sg 5: GAGGCAAGAGATGTCCTAGG (SEQ ID NO.5), can simultaneously target 2 copies of PDS from both Lin tobacco and Villus tobacco.
2. Editing vector construction of target PDS gene
In order to obtain the gRNA sequence of the double-stranded PDS, 5ul 10uM PDS-sg5 forward primer PDS-sg 5-sense and reverse primer PDS-sg5-R-anti were added with TE buffer, mixed well and placed in a PCR instrument, heated at 98 ℃ for 4min, and then the PCR tube was directly taken out and cooled to room temperature to obtain the double-stranded DNA of the target site of the sticky end.
pDC-NtPCE8pro was linearized with BsaI Cas9-A50 vector, the linearized vector was T4 ligated to a double-stranded PDS-gRNA (PDS-sg5), the ligation product was transformed into DH5a and screened on LB plates supplemented with kanamycin. Performing colony PCR identification by using a primer 1300-gRNA-F2 and pds-sg5-R-anti, extracting plasmid DNA by positive cloning, transforming agrobacterium tumefaciens EH105 by a binary vector with correct sequencing, and storing at-80 ℃ for later use; placing the pre-cultured leaf disc into an agrobacterium infection solution for infection, wherein the infection time is 5min, and intermittently and gently shaking; culturing the infected tobacco leaves in a hygromycin-containing culture medium for 3 generations to obtain robust seedlings; removing the bottom expanded part and the lower yellow leaves of the robust plantlets, inoculating the robust plantlets into an MS culture medium containing 250mg/L of thienamomycin, and culturing for 1-2 weeks by light to promote the plantlets to root as soon as possible; when the plantlets are rooted for 5-10 and grow for 2-3cm, the cover of the culture bottle is opened, and the plantlets are hardened for 3 days. Transplanting the seedlings into a nutrition pot filled with sterile soil. After being moisturized for 2 days by a plastic film, the plastic film is placed in a greenhouse, and after about one week, the preservative film can be removed according to the growth condition of the seedlings, so that the seedlings can grow under the natural condition.
3. Editing detection analysis of plants
The leaves developed from rooted shoots were taken, genomic DNA of the edited plants was extracted with a genome extraction kit (all-plant gold, EE111-12), and the editing of both PDS gene copies was examined using the editing detection primers PDS-g5-seq-F and PDS-g 5-seq-R. PCR product purification and connection after different T0 generation regeneration plants are amplified
Figure BDA0003159306950000091
Blunt Zero Cloning Kit Blunt-ended vector, after transformation of E.coli, 12 clones were picked each for sanger sequencing. The sequencing result is aligned to the reference sequence. The specific results are as follows:
TABLE 1 NtPCE8pro Cas9-A50 vector T0 generation transgenic tobacco mutation efficiency analysis
Figure BDA0003159306950000092
Figure BDA0003159306950000101
The result shows that the editing efficiency of the NtPCE8 promoter is 88.9%, and the mutation frequency of the NtPCE8 promoter reaches 37.5% in the aspect of producing homozygous or double-allelic plants. Thus, the NtPCE8pro:: Cas9-A50 vector was used as a binary vector for further experimental analysis.
Example 4
This example demonstrates the use of the construction of an efficient multigene editing vector
1. gRNA framework driven by II type promoter and binary vector construction
In order to construct the gRNA sequence driven by pol II type promoter, 2X35S promoter fragment was amplified by using pCHF3 plasmid as a template, 35Spro-SpeI-F and 35Spro-SalI-R as a template, and EU-F and EU-R as primers to obtain EU terminator (Rosenthal et al, 2018Plant Molecular Biology), and meanwhile, tRNA-BsaI-sg _ scanfold-tRNA sequence was synthesized by Huada and amplified 2X35Spro and EU sequence were used to construct pMV-2X35S-PTG-EU intermediate vector. The intermediate vector is used as a template, a forward primer 35S-CE-F and a reverse primer EU-CE-R are used for amplifying a 2x35S-PTG-EU sequence as an insert fragment, and a SpeI-HF and an SbfI-HF double enzyme digestion is carried out on a 2ug pDC-NtPCE8pro vector to obtain a linearized vector; 60ng of linearized vector and 50ng of 2X35S-PTG-EU insert were subjected to homologous recombination ligation and transformation. And finally sequencing the correct binary vector pDC-2x35S-PTG-EU-NtPCE8pro, wherein Cas9-A50 is named as pDC45, and the sequence is SEQ ID NO. 9.
2. Construction of Multi-target binary vector
To test the editing efficiency of the pDC45 vector at multiple sites, 2 grnas were tested targeting 2 genes (table 2, pDC45_ PDSsg) and 2 grnas targeting 4 genes (table 2, pDC45_ MAX4_ BRC1sg), and the corresponding binary vectors were constructed to transform nicotiana tabacum. The target information and corresponding primer information are as follows:
TABLE 2 Multi-target binary vector targets and primer information
Figure BDA0003159306950000111
The 2x35S-PTG-EU fragment is used as a template, and forward and reverse primers of a multi-target sequence are used for amplification to obtain PDS _ g4g5 and MAX4_ BRC1_ sg fragments.
After purification of the PCR product, a gold gate ligation was performed to obtain a ligation product. The ligation product was transformed into E.coli. Colony PCR was performed using 35S-PCR-F and EU-50R. Selecting bacterial colony with band about 570bp for sanger sequencing, converting agrobacterium EH105 after the result is compared correctly, and then introducing the vector into common tobacco Honghua Dajinyuan through agrobacterium-mediated genetic transformation to obtain stable transgenic plant.
In order to visually display the editing efficiency of a vector system, a gRNA capable of simultaneously targeting two copies of PDS is designed to construct a pDC45_ PDSsg editing vector, and albino seedlings generated by infecting explants with the pDC45_ PDSsg vector at 18 days and 30 days are recorded. At 18 days 2-6 fully albino shoots were obtained per explant, after 30 days 1-4 albino regenerated shoots were produced per explant. Finally, 32 completely albino plants, 3 spotted albino (mosaic) plants and 2 wild type (green) plants are obtained. Sequencing of these regenerated plants revealed an NtPDS gene editing efficiency of 94.6% (35/37), with a homozygous/biallelic editing efficiency of 86.5% (32/37).
To further test the editing efficiency of this system, 2 targets were designed, targeting 4 genes of tobacco simultaneously (table 3). Randomly selecting 14T 0 generation regenerated seedlings on a rooting culture medium, extracting genome DNA, and utilizing high-throughput sequencing primers MAX4-hitom-F6 and MAX 4-hitom-R6; primers BRC1-hitom-F4 and BRC1-hitom-R4 analyze gene editing conditions of NtMAX4 and NtBARC 1 in regenerated seedlings of different strains through a hi-tom method. The results show that: the efficiency of simultaneous editing of four genes in the tested strain was 100%, wherein the percentage of NtMAX4-S and NtMAX4-T homozygous or biallelic was 92.9% and 85.7%, and the percentage of NtBARC 1-S and NtBARC 1-T homozygous or biallelic was 78.6% and 42.9%. The percentage of simultaneous editing of NtMAX4-S and-T reaches 85.7%. The number of plants producing both homozygous and biallelic editing for the four genes was 3, with a percentage of 21.4%.
TABLE 3 high throughput sequencing analysis of the editing efficiency of NtMAX4 and NtBARC 1 sites
Figure BDA0003159306950000121
Analysis of the NtBARC 1-T chimeric line revealed that all chimeric plants also exhibited edits, 3-6 edit types appeared in the chimeric line, and no unedited wild type was found. Phenotypic analysis of knockout lines showed that homozygous editing produced a multi-branched phenotype compared to non-edited regenerated shoots.
The results show that the pDC45 vector system can significantly improve the gene editing efficiency of tobacco, greatly improve the editing efficiency of multi-target, homozygous/biallelic genes, and lay a foundation for creating plant whole genome editing strains in high throughput.
The preferred embodiments of the present disclosure are described in detail with reference to the accompanying drawings, however, the present disclosure is not limited to the specific details of the above embodiments, and various simple modifications may be made to the technical solution of the present disclosure within the technical idea of the present disclosure, and these simple modifications all belong to the protection scope of the present disclosure.
It should be noted that, in the foregoing embodiments, various features described in the above embodiments may be combined in any suitable manner, and in order to avoid unnecessary repetition, various combinations that are possible in the present disclosure are not described again.
In addition, any combination of various embodiments of the present disclosure may be made, and the same should be considered as the disclosure of the present disclosure, as long as it does not depart from the spirit of the present disclosure.
Sequence listing
<110> tobacco institute of Chinese academy of agricultural sciences
<120> a vector capable of efficient gene editing in tobacco and use thereof
<130> 20820CAAS-TRI-DCB
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 968
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
gcaattgatg ttggcaaaga gagtcttcac tgttaaaaat ataaagattc cttttctttg 60
attagctact ttagtctgaa ttcatcggat caattgattt tatggctctt tacaaactta 120
gttttaattt tatgatccta ttttttttta tacatgaaaa atttattttt acacatatta 180
aatctgtgtt ttacacataa aatatgtaaa aaagatcgtt ttcttaaatt ataaattgta 240
aaggcacatg atgaataaat agcaggaact catccatcta caaatttttg caatttccac 300
aaaaaacaat gtgaaaaagt aattaacttt ggggttcttc taaaggatct ttacgcaaat 360
aaccgaatag attcattgtt tacttttatt atgtatacac tatataatta ttatacatgt 420
actatactta ttttatacct ccaaaagtta tttttaattg aagaggttgg gttgacaact 480
atttaggtta attgactttt taggaattca ccctttttta gcttcaatct caaaaggtaa 540
atagaaaaac agaaagaata aaatcatttt gattgtacaa gtgctaatta ttcttttagt 600
aaacaataaa ttctaagatt aatagaatcg ttatatgcac gccattgtat gcgaaattca 660
tgtgaaagaa aaaagagagc aaaaaaccaa tggctaaatt cgttattttg aaaaaaccat 720
cgcacaagtg ccaacttaat tgtggtcact ttcaactcgt ggagataccc aacaagcttc 780
agccacgtca agtcaatgac actctaatta caaatgcctc tttttaattc gtccacgtca 840
tcgaacgtag acacgtcgga ctaagaccaa acgctgccct acgtatctac caaaatcctc 900
tcgccagtat aaaagagcat tcatcagaga tcttttagag tcagtatttc gatctcacaa 960
cagtggcc 968
<210> 2
<211> 193
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gctgcatgga aagatgatga gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgcaaca aagcaccagt ggtctagtgg 120
tagaatagta ccctgccacg gtacagaccc gggttcgatt cccggctggt gcagaggcaa 180
gagatgtcct agg 193
<210> 3
<211> 193
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
gttcgccaag aaagatggga gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgcaaca aagcaccagt ggtctagtgg 120
tagaatagta ccctgccacg gtacagaccc gggttcgatt cccggctggt gcaagacatg 180
ttggggttcg ata 193
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
gctgcatgga aagatgatga 20
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gaggcaagag atgtcctagg 20
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gttcgccaag aaagatggga 20
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
agacatgttg gggttcgata 20
<210> 8
<211> 77
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
aacaaagcac cagtggtcta gtggtagaat agtaccctgc cacggtacag acccgggttc 60
gattcccggc tggtgca 77
<210> 9
<211> 15584
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gtaatcatgt catagctgtt tcctgtgtga aattgttatc cgctcacaat tccacacaac 60
atacgagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca 120
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat 180
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttggctagag cagcttgcca 240
acatggtgga gcacgacact ctcgtctact ccaagaatat caaagataca gtctcagaag 300
accaaagggc tattgagact tttcaacaaa gggtaatatc gggaaacctc ctcggattcc 360
attgcccagc tatctgtcac ttcatcaaaa ggacagtaga aaaggaaggt ggcacctaca 420
aatgccatca ttgcgataaa ggaaaggcta tcgttcaaga tgcctctgcc gacagtggtc 480
ccaaagatgg acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt 540
cttcaaagca agtggattga tgtgataaca tggtggagca cgacactctc gtctactcca 600
agaatatcaa agatacagtc tcagaagacc aaagggctat tgagactttt caacaaaggg 660
taatatcggg aaacctcctc ggattccatt gcccagctat ctgtcacttc atcaaaagga 720
cagtagaaaa ggaaggtggc acctacaaat gccatcattg cgataaagga aaggctatcg 780
ttcaagatgc ctctgccgac agtggtccca aagatggacc cccacccacg aggagcatcg 840
tggaaaaaga agacgttcca accacgtctt caaagcaagt ggattgatgt gatatctcca 900
ctgacgtaag ggatgacgca caatcccact atccttcgca agaccttcct ctatataagg 960
aagttcattt catttggaga ggacacgctg aaatcaccag tctctctcta caaatctatc 1020
tctctcgagc tttcgcagat cccggagggc aatgagatat gaaaaagcct gaactcaccg 1080
cgacgtctgt cgagaagttt ctgatcgaaa agttcgacag cgtctccgac ctgatgcagc 1140
tctcggaggg cgaagaatct cgtgctttca gcttcgatgt aggagggcgt ggatatgtcc 1200
tgcgggtaaa tagctgcgcc gatggtttct acaaagatcg ttatgtttat cggcactttg 1260
catcggccgc gctcccgatt ccggaagtgc ttgacattgg ggagtttagc gagagcctga 1320
cctattgcat ctcccgccgt gcacagggtg tcacgttgca agacctgcct gaaaccgaac 1380
tgcccgctgt tctacaaccg gtcgcggagg ctatggatgc gatcgctgcg gccgatctta 1440
gccagacgag cgggttcggc ccattcggac cgcaaggaat cggtcaatac actacatggc 1500
gtgatttcat atgcgcgatt gctgatcccc atgtgtatca ctggcaaact gtgatggacg 1560
acaccgtcag tgcgtccgtc gcgcaggctc tcgatgagct gatgctttgg gccgaggact 1620
gccccgaagt ccggcacctc gtgcacgcgg atttcggctc caacaatgtc ctgacggaca 1680
atggccgcat aacagcggtc attgactgga gcgaggcgat gttcggggat tcccaatacg 1740
aggtcgccaa catcttcttc tggaggccgt ggttggcttg tatggagcag cagacgcgct 1800
acttcgagcg gaggcatccg gagcttgcag gatcgccacg actccgggcg tatatgctcc 1860
gcattggtct tgaccaactc tatcagagct tggttgacgg caatttcgat gatgcagctt 1920
gggcgcaggg tcgatgcgac gcaatcgtcc gatccggagc cgggactgtc gggcgtacac 1980
aaatcgcccg cagaagcgcg gccgtctgga ccgatggctg tgtagaagta ctcgccgata 2040
gtggaaaccg acgccccagc actcgtccga gggcaaagaa atagagtaga tgccgaccgg 2100
atctgtcgat cgacaagctc gagtttctcc ataataatgt gtgagtagtt cccagataag 2160
ggaattaggg ttcctatagg gtttcgctca tgtgttgagc atataagaaa cccttagtat 2220
gtatttgtat ttgtaaaata cttctatcaa taaaatttct aattcctaaa accaaaatcc 2280
agtactaaaa tccagatccc ccgaattaat tcggcgttaa ttcagtacat taaaaacgtc 2340
cgcaatgtgt tattaagttg tctaagcgtc aatttgttta caccacaata tatcctgcca 2400
ccagccagcc aacagctccc cgaccggcag ctcggcacaa aatcaccact cgatacaggc 2460
agcccatcag tccgggacgg cgtcagcggg agagccgttg taaggcggca gactttgctc 2520
atgttaccga tgctattcgg aagaacggca actaagctgc cgggtttgaa acacggatga 2580
tctcgcggag ggtagcatgt tgattgtaac gatgacagag cgttgctgcc tgtgatcacc 2640
gcggtttcaa aatcggctcc gtcgatacta tgttatacgc caactttgaa aacaactttg 2700
aaaaagctgt tttctggtat ttaaggtttt agaatgcaag gaacagtgaa ttggagttcg 2760
tcttgttata attagcttct tggggtatct ttaaatactg tagaaaagag gaaggaaata 2820
ataaatggct aaaatgagaa tatcaccgga attgaaaaaa ctgatcgaaa aataccgctg 2880
cgtaaaagat acggaaggaa tgtctcctgc taaggtatat aagctggtgg gagaaaatga 2940
aaacctatat ttaaaaatga cggacagccg gtataaaggg accacctatg atgtggaacg 3000
ggaaaaggac atgatgctat ggctggaagg aaagctgcct gttccaaagg tcctgcactt 3060
tgaacggcat gatggctgga gcaatctgct catgagtgag gccgatggcg tcctttgctc 3120
ggaagagtat gaagatgaac aaagccctga aaagattatc gagctgtatg cggagtgcat 3180
caggctcttt cactccatcg acatatcgga ttgtccctat acgaatagct tagacagccg 3240
cttagccgaa ttggattact tactgaataa cgatctggcc gatgtggatt gcgaaaactg 3300
ggaagaagac actccattta aagatccgcg cgagctgtat gattttttaa agacggaaaa 3360
gcccgaagag gaacttgtct tttcccacgg cgacctggga gacagcaaca tctttgtgaa 3420
agatggcaaa gtaagtggct ttattgatct tgggagaagc ggcagggcgg acaagtggta 3480
tgacattgcc ttctgcgtcc ggtcgatcag ggaggatatc ggggaagaac agtatgtcga 3540
gctatttttt gacttactgg ggatcaagcc tgattgggag aaaataaaat attatatttt 3600
actggatgaa ttgttttagt acctagaatg catgaccaaa atcccttaac gtgagttttc 3660
gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt 3720
tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt 3780
gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat 3840
accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga actctgtagc 3900
accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa 3960
gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg 4020
ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag 4080
atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag 4140
gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa 4200
cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt 4260
gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg 4320
gttcctggcc ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc 4380
tgtggataac cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac 4440
cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc ctgatgcggt attttctcct 4500
tacgcatctg tgcggtattt cacaccgcat atggtgcact ctcagtacaa tctgctctga 4560
tgccgcatag ttaagccagt atacactccg ctatcgctac gtgactgggt catggctgcg 4620
ccccgacacc cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc 4680
gcttacagac aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca 4740
tcaccgaaac gcgcgaggca gggtgccttg atgtgggcgc cggcggtcga gtggcgacgg 4800
cgcggcttgt ccgcgccctg gtagattgcc tggccgtagg ccagccattt ttgagcggcc 4860
agcggccgcg ataggccgac gcgaagcggc ggggcgtagg gagcgcagcg accgaagggt 4920
aggcgctttt tgcagctctt cggctgtgcg ctggccagac agttatgcac aggccaggcg 4980
ggttttaaga gttttaataa gttttaaaga gttttaggcg gaaaaatcgc cttttttctc 5040
ttttatatca gtcacttaca tgtgtgaccg gttcccaatg tacggctttg ggttcccaat 5100
gtacgggttc cggttcccaa tgtacggctt tgggttccca atgtacgtgc tatccacagg 5160
aaacagacct tttcgacctt tttcccctgc tagggcaatt tgccctagca tctgctccgt 5220
acattaggaa ccggcggatg cttcgccctc gatcaggttg cggtagcgca tgactaggat 5280
cgggccagcc tgccccgcct cctccttcaa atcgtactcc ggcaggtcat ttgacccgat 5340
cagcttgcgc acggtgaaac agaacttctt gaactctccg gcgctgccac tgcgttcgta 5400
gatcgtcttg aacaaccatc tggcttctgc cttgcctgcg gcgcggcgtg ccaggcggta 5460
gagaaaacgg ccgatgccgg gatcgatcaa aaagtaatcg gggtgaaccg tcagcacgtc 5520
cgggttcttg ccttctgtga tctcgcggta catccaatca gcaagctcga tctcgatgta 5580
ctccggccgc ccggtttcgc tctttacgat cttgtagcgg ctaatcaagg cttcaccctc 5640
ggataccgtc accaggcggc cgttcttggc cttcttcgta cgctgcatgg caacgtgcgt 5700
ggtgtttaac cgaatgcagg tttctaccag gtcgtctttc tgctttccgc catcggctcg 5760
ccggcagaac ttgagtacgt ccgcaacgtg tggacggaac acgcggccgg gcttgtctcc 5820
cttcccttcc cggtatcggt tcatggattc ggttagatgg gaaaccgcca tcagtaccag 5880
gtcgtaatcc cacacactgg ccatgccggc cggccctgcg gaaacctcta cgtgcccgtc 5940
tggaagctcg tagcggatca cctcgccagc tcgtcggtca cgcttcgaca gacggaaaac 6000
ggccacgtcc atgatgctgc gactatcgcg ggtgcccacg tcatagagca tcggaacgaa 6060
aaaatctggt tgctcgtcgc ccttgggcgg cttcctaatc gacggcgcac cggctgccgg 6120
cggttgccgg gattctttgc ggattcgatc agcggccgct tgccacgatt caccggggcg 6180
tgcttctgcc tcgatgcgtt gccgctgggc ggcctgcgcg gccttcaact tctccaccag 6240
gtcatcaccc agcgccgcgc cgatttgtac cgggccggat ggtttgcgac cgctcacgcc 6300
gattcctcgg gcttgggggt tccagtgcca ttgcagggcc ggcagacaac ccagccgctt 6360
acgcctggcc aaccgcccgt tcctccacac atggggcatt ccacggcgtc ggtgcctggt 6420
tgttcttgat tttccatgcc gcctccttta gccgctaaaa ttcatctact catttattca 6480
tttgctcatt tactctggta gctgcgcgat gtattcagat agcagctcgg taatggtctt 6540
gccttggcgt accgcgtaca tcttcagctt ggtgtgatcc tccgccggca actgaaagtt 6600
gacccgcttc atggctggcg tgtctgccag gctggccaac gttgcagcct tgctgctgcg 6660
tgcgctcgga cggccggcac ttagcgtgtt tgtgcttttg ctcattttct ctttacctca 6720
ttaactcaaa tgagttttga tttaatttca gcggccagcg cctggacctc gcgggcagcg 6780
tcgccctcgg gttctgattc aagaacggtt gtgccggcgg cggcagtgcc tgggtagctc 6840
acgcgctgcg tgatacggga ctcaagaatg ggcagctcgt acccggccag cgcctcggca 6900
acctcaccgc cgatgcgcgt gcctttgatc gcccgcgaca cgacaaaggc cgcttgtagc 6960
cttccatccg tgacctcaat gcgctgctta accagctcca ccaggtcggc ggtggcccat 7020
atgtcgtaag ggcttggctg caccggaatc agcacgaagt cggctgcctt gatcgcggac 7080
acagccaagt ccgccgcctg gggcgctccg tcgatcacta cgaagtcgcg ccggccgatg 7140
gccttcacgt cgcggtcaat cgtcgggcgg tcgatgccga caacggttag cggttgatct 7200
tcccgcacgg ccgcccaatc gcgggcactg ccctggggat cggaatcgac taacagaaca 7260
tcggccccgg cgagttgcag ggcgcgggct agatgggttg cgatggtcgt cttgcctgac 7320
ccgcctttct ggttaagtac agcgataacc ttcatgcgtt ccccttgcgt atttgtttat 7380
ttactcatcg catcatatac gcagcgaccg catgacgcaa gctgttttac tcaaatacac 7440
atcacctttt tagacggcgg cgctcggttt cttcagcggc caagctggcc ggccaggccg 7500
ccagcttggc atcagacaaa ccggccagga tttcatgcag ccgcacggtt gagacgtgcg 7560
cgggcggctc gaacacgtac ccggccgcga tcatctccgc ctcgatctct tcggtaatga 7620
aaaacggttc gtcctggccg tcctggtgcg gtttcatgct tgttcctctt ggcgttcatt 7680
ctcggcggcc gccagggcgt cggcctcggt caatgcgtcc tcacggaagg caccgcgccg 7740
cctggcctcg gtgggcgtca cttcctcgct gcgctcaagt gcgcggtaca gggtcgagcg 7800
atgcacgcca agcagtgcag ccgcctcttt cacggtgcgg ccttcctggt cgatcagctc 7860
gcgggcgtgc gcgatctgtg ccggggtgag ggtagggcgg gggccaaact tcacgcctcg 7920
ggccttggcg gcctcgcgcc cgctccgggt gcggtcgatg attagggaac gctcgaactc 7980
ggcaatgccg gcgaacacgg tcaacaccat gcggccggcc ggcgtggtgg tgtcggccca 8040
cggctctgcc aggctacgca ggcccgcgcc ggcctcctgg atgcgctcgg caatgtccag 8100
taggtcgcgg gtgctgcggg ccaggcggtc tagcctggtc actgtcacaa cgtcgccagg 8160
gcgtaggtgg tcaagcatcc tggccagctc cgggcggtcg cgcctggtgc cggtgatctt 8220
ctcggaaaac agcttggtgc agccggccgc gtgcagttcg gcccgttggt tggtcaagtc 8280
ctggtcgtcg gtgctgacgc gggcatagcc cagcaggcca gcggcggcgc tcttgttcat 8340
ggcgtaatgt ctccggttct agtcgcaagt attctacttt atgcgactaa aacacgcgac 8400
aagaaaacgc caggaaaagg gcagggcggc agcctgtcgc gtaacttagg acttgtgcga 8460
catgtcgttt tcagaagacg gctgcactga acgtcagaag ccgactgcac tatagcagcg 8520
gaggggttgg atcaaagtac tttgatcccg aggggaaccc tgtggttggc atgcacatac 8580
aaatggacga acggataaac cttttcacgc ccttttaaat atccgttatt ctaataaacg 8640
ctcttttctc ttaggtttac ccgccaatat atcctgtcaa acactgatag tttaaactga 8700
aggcgggaaa cgacaatctg atccaagctc aagctgctct agcattcgcc attcaggctg 8760
cgcaactgtt gggaagggcg atcggtgcgg gcctcttcgc tattacgcca gctggcgaaa 8820
gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca gtcacgacgt 8880
tgtaaaacga cggccagtgc caagcttact agttacggag gtcaaacatg gtggagcacg 8940
acacacttgt ctactccaaa aatatcaaag atacagtctc agaagaccaa agggcaattg 9000
agacttttca acaaagggta atatccggaa acctcctcgg attccattgc ccagctatct 9060
gtcactttat tgtgaagata gtggaaaagg aaggtggctc ctacaaatgc catcattgcg 9120
ataaaggaaa ggccatcgtt gaagatgcct ctgccgacag tggtcccaaa gatggacccc 9180
cacccacgag gagcatcgtg gaaaaagaag acgttccaac cacgtcttca aagcaagtgg 9240
attgatgtga taacatggtg gagcacgaca cacttgtcta ctccaaaaat atcaaagata 9300
cagtctcaga agaccaaagg gcaattgaga cttttcaaca aagggtaata tccggaaacc 9360
tcctcggatt ccattgccca gctatctgtc actttattgt gaagatagtg gaaaaggaag 9420
gtggctccta caaatgccat cattgcgata aaggaaaggc catcgttgaa gatgcctctg 9480
ccgacagtgg tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg 9540
ttccaaccac gtcttcaaag caagtggatt gatgtgatat ctccactgac gtaagggatg 9600
acgcacaatc ccactatcct tcgcaagacc cttcctctat ataaggaagt tcatttcatt 9660
tggagaggac gtcgacaaca aagcaccagt ggtctagtgg tagaatagta ccctgccacg 9720
gtacagaccc gggttcgatt cccggctggt gcaagagacc gaggtctcgg ttttagagct 9780
agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc 9840
ggtgcaacaa agcaccagtg gtctagtggt agaatagtac cctgccacgg tacagacccg 9900
ggttcgattc ccggctggtg cagtcgacaa agcagaatgc tgagctaaaa gaaaggcttt 9960
ttccattttc gagagacaat gagaaaagaa gaagaagaag aagaagaaga agaagaagaa 10020
aagagtaaat aataaagccc cacaggaggc gaagttcttg tagctccatg ttatctaagt 10080
tattgatatt gtttgcccta tattttattt ctgtcattgt gtatgttttg ttcagtttcg 10140
atctccttgc aaaatgcaga gattatgaga tgaataaact aagttatatt attatacgtg 10200
ttaatattct cctcctctct ctagctagcc ttttgttttc tctttttctt atttgatttt 10260
ctttaaatca atccatttta ggagagggcc agggagtgat ccagcaaaac atgaagatta 10320
gaagaaactt ccctcttttt tttcctgaaa acaatttaac gtcgagattt atctcttttt 10380
gtaatggaat catttctaca gttatgaccc tgcaggcccg ggaatagatt cattgtttac 10440
ttttattatg tatacactat ataattatta tacatgtact atacttattt tatacctcca 10500
aaagttattt ttaattgaag aggttgggtt gacaactatt taggttaatt gactttttag 10560
gaattcaccc ttttttagct tcaatctcaa aaggtaaata gaaaaacaga aagaataaaa 10620
tcattttgat tgtacaagtg ctaattattc ttttagtaaa caataaattc taagattaat 10680
agaatcgtta tatgcacgcc attgtatgcg aaattcatgt gaaagaaaaa agagagcaaa 10740
aaaccaatgg ctaaattcgt tattttgaaa aaaccatcgc acaagtgcca acttaattgt 10800
ggtcactttc aactcgtgga gatacccaac aagcttcagc cacgtcaagt caatgacact 10860
ctaattacaa atgcctcttt ttaattcgtc cacgtcatcg aacgtagaca cgtcggacta 10920
agaccaaacg ctgccctacg tatctaccaa aatcctctcg ccagtataaa agagcattca 10980
tcagagatct tttagagtca gtatttcgat ctcacaacag tggccatgga ctataaggac 11040
cacgacggag actacaagga tcatgatatt gattacaaag acgatgacga taagatggcc 11100
ccaaagaaga agcggaaggt cggtatccac ggagtcccag cagccgacaa gaagtacagc 11160
atcggcctgg acatcggcac caactctgtg ggctgggccg tgatcaccga cgagtacaag 11220
gtgcccagca agaaattcaa ggtgctgggc aacaccgacc ggcacagcat caagaagaac 11280
ctgatcggag ccctgctgtt cgacagcggc gaaacagccg aggccacccg gctgaagaga 11340
accgccagaa gaagatacac cagacggaag aaccggatct gctatctgca agagatcttc 11400
agcaacgaga tggccaaggt ggacgacagc ttcttccaca gactggaaga gtccttcctg 11460
gtggaagagg ataagaagca cgagcggcac cccatcttcg gcaacatcgt ggacgaggtg 11520
gcctaccacg agaagtaccc caccatctac cacctgagaa agaaactggt ggacagcacc 11580
gacaaggccg acctgcggct gatctatctg gccctggccc acatgatcaa gttccggggc 11640
cacttcctga tcgagggcga cctgaacccc gacaacagcg acgtggacaa gctgttcatc 11700
cagctggtgc agacctacaa ccagctgttc gaggaaaacc ccatcaacgc cagcggcgtg 11760
gacgccaagg ccatcctgtc tgccagactg agcaagagca gacggctgga aaatctgatc 11820
gcccagctgc ccggcgagaa gaagaatggc ctgttcggca acctgattgc cctgagcctg 11880
ggcctgaccc ccaacttcaa gagcaacttc gacctggccg aggatgccaa actgcagctg 11940
agcaaggaca cctacgacga cgacctggac aacctgctgg cccagatcgg cgaccagtac 12000
gccgacctgt ttctggccgc caagaacctg tccgacgcca tcctgctgag cgacatcctg 12060
agagtgaaca ccgagatcac caaggccccc ctgagcgcct ctatgatcaa gagatacgac 12120
gagcaccacc aggacctgac cctgctgaaa gctctcgtgc ggcagcagct gcctgagaag 12180
tacaaagaga ttttcttcga ccagagcaag aacggctacg ccggctacat tgacggcgga 12240
gccagccagg aagagttcta caagttcatc aagcccatcc tggaaaagat ggacggcacc 12300
gaggaactgc tcgtgaagct gaacagagag gacctgctgc ggaagcagcg gaccttcgac 12360
aacggcagca tcccccacca gatccacctg ggagagctgc acgccattct gcggcggcag 12420
gaagattttt acccattcct gaaggacaac cgggaaaaga tcgagaagat cctgaccttc 12480
cgcatcccct actacgtggg ccctctggcc aggggaaaca gcagattcgc ctggatgacc 12540
agaaagagcg aggaaaccat caccccctgg aacttcgagg aagtggtgga caagggcgct 12600
tccgcccaga gcttcatcga gcggatgacc aacttcgata agaacctgcc caacgagaag 12660
gtgctgccca agcacagcct gctgtacgag tacttcaccg tgtataacga gctgaccaaa 12720
gtgaaatacg tgaccgaggg aatgagaaag cccgccttcc tgagcggcga gcagaaaaag 12780
gccatcgtgg acctgctgtt caagaccaac cggaaagtga ccgtgaagca gctgaaagag 12840
gactacttca agaaaatcga gtgcttcgac tccgtggaaa tctccggcgt ggaagatcgg 12900
ttcaacgcct ccctgggcac ataccacgat ctgctgaaaa ttatcaagga caaggacttc 12960
ctggacaatg aggaaaacga ggacattctg gaagatatcg tgctgaccct gacactgttt 13020
gaggacagag agatgatcga ggaacggctg aaaacctatg cccacctgtt cgacgacaaa 13080
gtgatgaagc agctgaagcg gcggagatac accggctggg gcaggctgag ccggaagctg 13140
atcaacggca tccgggacaa gcagtccggc aagacaatcc tggatttcct gaagtccgac 13200
ggcttcgcca acagaaactt catgcagctg atccacgacg acagcctgac ctttaaagag 13260
gacatccaga aagcccaggt gtccggccag ggcgatagcc tgcacgagca cattgccaat 13320
ctggccggca gccccgccat taagaagggc atcctgcaga cagtgaaggt ggtggacgag 13380
ctcgtgaaag tgatgggccg gcacaagccc gagaacatcg tgatcgaaat ggccagagag 13440
aaccagacca cccagaaggg acagaagaac agccgcgaga gaatgaagcg gatcgaagag 13500
ggcatcaaag agctgggcag ccagatcctg aaagaacacc ccgtggaaaa cacccagctg 13560
cagaacgaga agctgtacct gtactacctg cagaatgggc gggatatgta cgtggaccag 13620
gaactggaca tcaaccggct gtccgactac gatgtggacc atatcgtgcc tcagagcttt 13680
ctgaaggacg actccatcga caacaaggtg ctgaccagaa gcgacaagaa ccggggcaag 13740
agcgacaacg tgccctccga agaggtcgtg aagaagatga agaactactg gcggcagctg 13800
ctgaacgcca agctgattac ccagagaaag ttcgacaatc tgaccaaggc cgagagaggc 13860
ggcctgagcg aactggataa ggccggcttc atcaagagac agctggtgga aacccggcag 13920
atcacaaagc acgtggcaca gatcctggac tcccggatga acactaagta cgacgagaat 13980
gacaagctga tccgggaagt gaaagtgatc accctgaagt ccaagctggt gtccgatttc 14040
cggaaggatt tccagtttta caaagtgcgc gagatcaaca actaccacca cgcccacgac 14100
gcctacctga acgccgtcgt gggaaccgcc ctgatcaaaa agtaccctaa gctggaaagc 14160
gagttcgtgt acggcgacta caaggtgtac gacgtgcgga agatgatcgc caagagcgag 14220
caggaaatcg gcaaggctac cgccaagtac ttcttctaca gcaacatcat gaactttttc 14280
aagaccgaga ttaccctggc caacggcgag atccggaagc ggcctctgat cgagacaaac 14340
ggcgaaaccg gggagatcgt gtgggataag ggccgggatt ttgccaccgt gcggaaagtg 14400
ctgagcatgc cccaagtgaa tatcgtgaaa aagaccgagg tgcagacagg cggcttcagc 14460
aaagagtcta tcctgcccaa gaggaacagc gataagctga tcgccagaaa gaaggactgg 14520
gaccctaaga agtacggcgg cttcgacagc cccaccgtgg cctattctgt gctggtggtg 14580
gccaaagtgg aaaagggcaa gtccaagaaa ctgaagagtg tgaaagagct gctggggatc 14640
accatcatgg aaagaagcag cttcgagaag aatcccatcg actttctgga agccaagggc 14700
tacaaagaag tgaaaaagga cctgatcatc aagctgccta agtactccct gttcgagctg 14760
gaaaacggcc ggaagagaat gctggcctct gccggcgaac tgcagaaggg aaacgaactg 14820
gccctgccct ccaaatatgt gaacttcctg tacctggcca gccactatga gaagctgaag 14880
ggctcccccg aggataatga gcagaaacag ctgtttgtgg aacagcacaa gcactacctg 14940
gacgagatca tcgagcagat cagcgagttc tccaagagag tgatcctggc cgacgctaat 15000
ctggacaaag tgctgtccgc ctacaacaag caccgggata agcccatcag agagcaggcc 15060
gagaatatca tccacctgtt taccctgacc aatctgggag cccctgccgc cttcaagtac 15120
tttgacacca ccatcgaccg gaagaggtac accagcacca aagaggtgct ggacgccacc 15180
ctgatccacc agagcatcac cggcctgtac gagacacgga tcgacctgtc tcagctggga 15240
ggcgacaaaa ggccggcggc cacgaaaaag gccggccagg caaaaaagaa aaagtaagga 15300
tcaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaggatccag 15360
agactcttat caagaatccc atctcttgct tgcttttttt tgttgcttcc ctttgatagg 15420
gtttgttttt cttgtttcag tgactttcta tgttaaaaga taatgtcagt aaaaggattt 15480
ggttttctat tattctgaat cgattacgga agattcttgc ttaattccaa tctatacaag 15540
tatcgtgaaa taatgaccgt ttatgtggta ccgagctcga attc 15584
<210> 10
<211> 757
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
tacggaggtc aaacatggtg gagcacgaca cacttgtcta ctccaaaaat atcaaagata 60
cagtctcaga agaccaaagg gcaattgaga cttttcaaca aagggtaata tccggaaacc 120
tcctcggatt ccattgccca gctatctgtc actttattgt gaagatagtg gaaaaggaag 180
gtggctccta caaatgccat cattgcgata aaggaaaggc catcgttgaa gatgcctctg 240
ccgacagtgg tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg 300
ttccaaccac gtcttcaaag caagtggatt gatgtgataa catggtggag cacgacacac 360
ttgtctactc caaaaatatc aaagatacag tctcagaaga ccaaagggca attgagactt 420
ttcaacaaag ggtaatatcc ggaaacctcc tcggattcca ttgcccagct atctgtcact 480
ttattgtgaa gatagtggaa aaggaaggtg gctcctacaa atgccatcat tgcgataaag 540
gaaaggccat cgttgaagat gcctctgccg acagtggtcc caaagatgga cccccaccca 600
cgaggagcat cgtggaaaaa gaagacgttc caaccacgtc ttcaaagcaa gtggattgat 660
gtgatatctc cactgacgta agggatgacg cacaatccca ctatccttcg caagaccctt 720
cctctatata aggaagttca tttcatttgg agaggac 757
<210> 11
<211> 98
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
ggtgcaagag accgaggtct cggttttaga gctagaaata gcaagttaaa ataaggctag 60
tccgttatca acttgaaaaa gtggcaccga gtcggtgc 98
<210> 12
<211> 479
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
aagcagaatg ctgagctaaa agaaaggctt tttccatttt cgagagacaa tgagaaaaga 60
agaagaagaa gaagaagaag aagaagaaga aaagagtaaa taataaagcc ccacaggagg 120
cgaagttctt gtagctccat gttatctaag ttattgatat tgtttgccct atattttatt 180
tctgtcattg tgtatgtttt gttcagtttc gatctccttg caaaatgcag agattatgag 240
atgaataaac taagttatat tattatacgt gttaatattc tcctcctctc tctagctagc 300
cttttgtttt ctctttttct tatttgattt tctttaaatc aatccatttt aggagagggc 360
cagggagtga tccagcaaaa catgaagatt agaagaaact tccctctttt ttttcctgaa 420
aacaatttaa cgtcgagatt tatctctttt tgtaatggaa tcatttctac agttatgac 479
<210> 13
<211> 4101
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
gacaagaagt acagcatcgg cctggacatc ggcaccaact ctgtgggctg ggccgtgatc 60
accgacgagt acaaggtgcc cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac 120
agcatcaaga agaacctgat cggagccctg ctgttcgaca gcggcgaaac agccgaggcc 180
acccggctga agagaaccgc cagaagaaga tacaccagac ggaagaaccg gatctgctat 240
ctgcaagaga tcttcagcaa cgagatggcc aaggtggacg acagcttctt ccacagactg 300
gaagagtcct tcctggtgga agaggataag aagcacgagc ggcaccccat cttcggcaac 360
atcgtggacg aggtggccta ccacgagaag taccccacca tctaccacct gagaaagaaa 420
ctggtggaca gcaccgacaa ggccgacctg cggctgatct atctggccct ggcccacatg 480
atcaagttcc ggggccactt cctgatcgag ggcgacctga accccgacaa cagcgacgtg 540
gacaagctgt tcatccagct ggtgcagacc tacaaccagc tgttcgagga aaaccccatc 600
aacgccagcg gcgtggacgc caaggccatc ctgtctgcca gactgagcaa gagcagacgg 660
ctggaaaatc tgatcgccca gctgcccggc gagaagaaga atggcctgtt cggcaacctg 720
attgccctga gcctgggcct gacccccaac ttcaagagca acttcgacct ggccgaggat 780
gccaaactgc agctgagcaa ggacacctac gacgacgacc tggacaacct gctggcccag 840
atcggcgacc agtacgccga cctgtttctg gccgccaaga acctgtccga cgccatcctg 900
ctgagcgaca tcctgagagt gaacaccgag atcaccaagg cccccctgag cgcctctatg 960
atcaagagat acgacgagca ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag 1020
cagctgcctg agaagtacaa agagattttc ttcgaccaga gcaagaacgg ctacgccggc 1080
tacattgacg gcggagccag ccaggaagag ttctacaagt tcatcaagcc catcctggaa 1140
aagatggacg gcaccgagga actgctcgtg aagctgaaca gagaggacct gctgcggaag 1200
cagcggacct tcgacaacgg cagcatcccc caccagatcc acctgggaga gctgcacgcc 1260
attctgcggc ggcaggaaga tttttaccca ttcctgaagg acaaccggga aaagatcgag 1320
aagatcctga ccttccgcat cccctactac gtgggccctc tggccagggg aaacagcaga 1380
ttcgcctgga tgaccagaaa gagcgaggaa accatcaccc cctggaactt cgaggaagtg 1440
gtggacaagg gcgcttccgc ccagagcttc atcgagcgga tgaccaactt cgataagaac 1500
ctgcccaacg agaaggtgct gcccaagcac agcctgctgt acgagtactt caccgtgtat 1560
aacgagctga ccaaagtgaa atacgtgacc gagggaatga gaaagcccgc cttcctgagc 1620
ggcgagcaga aaaaggccat cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg 1680
aagcagctga aagaggacta cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc 1740
ggcgtggaag atcggttcaa cgcctccctg ggcacatacc acgatctgct gaaaattatc 1800
aaggacaagg acttcctgga caatgaggaa aacgaggaca ttctggaaga tatcgtgctg 1860
accctgacac tgtttgagga cagagagatg atcgaggaac ggctgaaaac ctatgcccac 1920
ctgttcgacg acaaagtgat gaagcagctg aagcggcgga gatacaccgg ctggggcagg 1980
ctgagccgga agctgatcaa cggcatccgg gacaagcagt ccggcaagac aatcctggat 2040
ttcctgaagt ccgacggctt cgccaacaga aacttcatgc agctgatcca cgacgacagc 2100
ctgaccttta aagaggacat ccagaaagcc caggtgtccg gccagggcga tagcctgcac 2160
gagcacattg ccaatctggc cggcagcccc gccattaaga agggcatcct gcagacagtg 2220
aaggtggtgg acgagctcgt gaaagtgatg ggccggcaca agcccgagaa catcgtgatc 2280
gaaatggcca gagagaacca gaccacccag aagggacaga agaacagccg cgagagaatg 2340
aagcggatcg aagagggcat caaagagctg ggcagccaga tcctgaaaga acaccccgtg 2400
gaaaacaccc agctgcagaa cgagaagctg tacctgtact acctgcagaa tgggcgggat 2460
atgtacgtgg accaggaact ggacatcaac cggctgtccg actacgatgt ggaccatatc 2520
gtgcctcaga gctttctgaa ggacgactcc atcgacaaca aggtgctgac cagaagcgac 2580
aagaaccggg gcaagagcga caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac 2640
tactggcggc agctgctgaa cgccaagctg attacccaga gaaagttcga caatctgacc 2700
aaggccgaga gaggcggcct gagcgaactg gataaggccg gcttcatcaa gagacagctg 2760
gtggaaaccc ggcagatcac aaagcacgtg gcacagatcc tggactcccg gatgaacact 2820
aagtacgacg agaatgacaa gctgatccgg gaagtgaaag tgatcaccct gaagtccaag 2880
ctggtgtccg atttccggaa ggatttccag ttttacaaag tgcgcgagat caacaactac 2940
caccacgccc acgacgccta cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac 3000
cctaagctgg aaagcgagtt cgtgtacggc gactacaagg tgtacgacgt gcggaagatg 3060
atcgccaaga gcgagcagga aatcggcaag gctaccgcca agtacttctt ctacagcaac 3120
atcatgaact ttttcaagac cgagattacc ctggccaacg gcgagatccg gaagcggcct 3180
ctgatcgaga caaacggcga aaccggggag atcgtgtggg ataagggccg ggattttgcc 3240
accgtgcgga aagtgctgag catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag 3300
acaggcggct tcagcaaaga gtctatcctg cccaagagga acagcgataa gctgatcgcc 3360
agaaagaagg actgggaccc taagaagtac ggcggcttcg acagccccac cgtggcctat 3420
tctgtgctgg tggtggccaa agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa 3480
gagctgctgg ggatcaccat catggaaaga agcagcttcg agaagaatcc catcgacttt 3540
ctggaagcca agggctacaa agaagtgaaa aaggacctga tcatcaagct gcctaagtac 3600
tccctgttcg agctggaaaa cggccggaag agaatgctgg cctctgccgg cgaactgcag 3660
aagggaaacg aactggccct gccctccaaa tatgtgaact tcctgtacct ggccagccac 3720
tatgagaagc tgaagggctc ccccgaggat aatgagcaga aacagctgtt tgtggaacag 3780
cacaagcact acctggacga gatcatcgag cagatcagcg agttctccaa gagagtgatc 3840
ctggccgacg ctaatctgga caaagtgctg tccgcctaca acaagcaccg ggataagccc 3900
atcagagagc aggccgagaa tatcatccac ctgtttaccc tgaccaatct gggagcccct 3960
gccgccttca agtactttga caccaccatc gaccggaaga ggtacaccag caccaaagag 4020
gtgctggacg ccaccctgat ccaccagagc atcaccggcc tgtacgagac acggatcgac 4080
ctgtctcagc tgggaggcga c 4101
<210> 14
<211> 208
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
agagactctt atcaagaatc ccatctcttg cttgcttttt tttgttgctt ccctttgata 60
gggtttgttt ttcttgtttc agtgactttc tatgttaaaa gataatgtca gtaaaaggat 120
ttggttttct attattctga atcgattacg gaagattctt gcttaattcc aatctataca 180
agtatcgtga aataatgacc gtttatgt 208
<210> 15
<211> 1026
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
atgaaaaagc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga aaagttcgac 60
agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt cagcttcgat 120
gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt ctacaaagat 180
cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt gcttgacatt 240
ggggagttta gcgagagcct gacctattgc atctcccgcc gtgcacaggg tgtcacgttg 300
caagacctgc ctgaaaccga actgcccgct gttctacaac cggtcgcgga ggctatggat 360
gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg accgcaagga 420
atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc ccatgtgtat 480
cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc tctcgatgag 540
ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc ggatttcggc 600
tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg gagcgaggcg 660
atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc gtggttggct 720
tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc aggatcgcca 780
cgactccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag cttggttgac 840
ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt ccgatccgga 900
gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg gaccgatggc 960
tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc gagggcaaag 1020
aaatag 1026
<210> 16
<211> 120
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
atggactata aggaccacga cggagactac aaggatcatg atattgatta caaagacgat 60
gacgataaga tggccccaaa gaagaagcgg aaggtcggta tccacggagt cccagcagcc 120
<210> 17
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
ggatcaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 55

Claims (10)

1. A vector capable of performing efficient gene editing in tobacco is characterized in that a 35Spro promoter, a gRNA insertion region, an eu terminator, a calreticulin promoter element, a spCas9 protein expression element, a ubp terminator and a hygromycin screening marker are sequentially inserted into the vector, and the nucleotide sequence of the calreticulin promoter element is SEQ ID No. 1.
2. The vector of claim 1, wherein the nucleotide sequence of the 35Spro promoter is SEQ ID No. 10; the nucleotide sequence of the gRNA insertion region is SEQ ID NO. 11; the nucleotide sequence of the eu terminator is SEQ ID NO. 12; the nucleotide sequence of the spCas9 protein expression element is SEQ ID NO. 13; the nucleotide sequence of the ubp terminator is SEQ ID NO. 14; the nucleotide sequence of the hygromycin screening marker is SEQ ID NO. 15.
3. The vector of claim 1, wherein the gRNA insertion region has at least 2 tRNA cleavage sequences inserted therein; the nucleotide sequence of the tRNA cutting sequence is SEQ ID NO. 8; the spCas9 protein expression element has an NLS element and a PA50 element.
4. The vector of claim 1, wherein the nucleotide sequence of the vector is SEQ ID No. 9.
5. A method for efficient gene editing in tobacco, comprising the steps of:
(1) inserting a gRNA coding sequence targeting a gene to be edited into a gRNA insertion region of the vector of any one of claims 1 to 4 to obtain a gene editing vector;
(2) transforming agrobacterium with the gene editing vector to obtain a transformant;
(3) infecting the pre-cultured tobacco leaves with the transformant to obtain infected tobacco leaves;
(4) and culturing the infected tobacco leaves in a culture medium containing hygromycin.
6. The method according to claim 5, wherein the nucleotide sequence of the gRNA targeting the gene to be edited is SEQ ID No.4, 5, 6 or 7.
7. The method according to claim 5, wherein the nucleotide sequence of the gene editing vector is a sequence obtained by replacing positions 9754 to 9769 of SEQ ID NO.9 with SEQ ID NO.2, or a sequence obtained by replacing positions 9754 to 9769 of SEQ ID NO.9 with SEQ ID NO. 3.
8. The calreticulin promoter element, wherein the nucleotide sequence of the calreticulin promoter element is SEQ ID No. 1.
9. The application of the calreticulin promoter element in constructing a gene editing vector, wherein the nucleotide sequence of the calreticulin promoter element is SEQ ID No. 1.
10. The gRNA of the targeted gene to be edited has a nucleotide sequence of SEQ ID No.4, 5, 6 or 7.
CN202110786304.5A 2021-07-12 2021-07-12 Vector capable of carrying out efficient gene editing in tobacco and application thereof Active CN113667689B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110786304.5A CN113667689B (en) 2021-07-12 2021-07-12 Vector capable of carrying out efficient gene editing in tobacco and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110786304.5A CN113667689B (en) 2021-07-12 2021-07-12 Vector capable of carrying out efficient gene editing in tobacco and application thereof

Publications (2)

Publication Number Publication Date
CN113667689A true CN113667689A (en) 2021-11-19
CN113667689B CN113667689B (en) 2023-04-11

Family

ID=78538965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110786304.5A Active CN113667689B (en) 2021-07-12 2021-07-12 Vector capable of carrying out efficient gene editing in tobacco and application thereof

Country Status (1)

Country Link
CN (1) CN113667689B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672513A (en) * 2022-04-12 2022-06-28 北京大学现代农业研究院 Gene editing system and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171864B1 (en) * 1996-07-05 2001-01-09 Pioneer Hi-Bred International, Inc. Calreticulin genes and promoter regions and uses thereof
CN109234310A (en) * 2018-11-13 2019-01-18 云南省烟草农业科学研究院 It is quickly obtained the recombinant vector and application method of no transgene gene editor plant
CN112725348A (en) * 2019-10-28 2021-04-30 安徽省农业科学院水稻研究所 Gene and method for improving single-base editing efficiency of rice and application of gene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171864B1 (en) * 1996-07-05 2001-01-09 Pioneer Hi-Bred International, Inc. Calreticulin genes and promoter regions and uses thereof
CN109234310A (en) * 2018-11-13 2019-01-18 云南省烟草农业科学研究院 It is quickly obtained the recombinant vector and application method of no transgene gene editor plant
CN112725348A (en) * 2019-10-28 2021-04-30 安徽省农业科学院水稻研究所 Gene and method for improving single-base editing efficiency of rice and application of gene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUN-WOO LEE等: "Development of a species-specific transformation system using the novel endogenous promoter calreticulin from oleaginous microalgae Ettlia sp", 《SCI REP》 *
谢红军等: "基因编辑技术研究进展及在水稻品质研究中的展望(英文)", 《AGRICULTURAL SCIENCE & TECHNOLOGY》 *
陈安和: "钙网蛋白研究进展", 《生命的化学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672513A (en) * 2022-04-12 2022-06-28 北京大学现代农业研究院 Gene editing system and application thereof
CN114672513B (en) * 2022-04-12 2024-04-02 北京大学现代农业研究院 Gene editing system and application thereof

Also Published As

Publication number Publication date
CN113667689B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
Ellison et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs
Ren et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters
Ali et al. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis
Zhu et al. Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9
Jacobs et al. Targeted genome modifications in soybean with CRISPR/Cas9
Ren et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)
Wang et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation
Zhang et al. CRISPR/Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function
CN112852791B (en) Adenine base editor and related biological material and application thereof
Wang et al. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum)
Maliga Engineering the plastid and mitochondrial genomes of flowering plants
Fursova et al. An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall
CN110951763B (en) Potato Yvirus induced gene silencing system and application thereof
Dong et al. Efficient targeted mutagenesis mediated by CRISPR-Cas12a ribonucleoprotein complexes in maize
CN113473845A (en) Gene silencing via genome editing
US20220282266A1 (en) Rna guide genome editing in citrus using crispr-ribonucleoprotein complexes
CN114591977B (en) Method for obtaining glyphosate-resistant rice by precisely editing endogenous EPSPS gene and system used by method
CN113667689B (en) Vector capable of carrying out efficient gene editing in tobacco and application thereof
Schiermeyer et al. Targeted insertion of large DNA sequences by homology‐directed repair or non‐homologous end joining in engineered tobacco BY‐2 cells using designed zinc finger nucleases
Lei et al. Efficient virus-mediated genome editing in cotton using the CRISPR/Cas9 system
Char et al. CRISPR/Cas9 for mutagenesis in rice
Chou et al. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane
Wang et al. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar
Uranga et al. RNA virus-mediated gene editing for tomato trait breeding
US20220315938A1 (en) AUGMENTED sgRNAS AND METHODS FOR THEIR USE TO ENHANCE SOMATIC AND GERMLINE PLANT GENOME ENGINEERING

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant