CN113662586A - 一种用于超快超声微血流成像的互相关降噪方法 - Google Patents

一种用于超快超声微血流成像的互相关降噪方法 Download PDF

Info

Publication number
CN113662586A
CN113662586A CN202111094182.XA CN202111094182A CN113662586A CN 113662586 A CN113662586 A CN 113662586A CN 202111094182 A CN202111094182 A CN 202111094182A CN 113662586 A CN113662586 A CN 113662586A
Authority
CN
China
Prior art keywords
cross
matrix
blood flow
correlation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111094182.XA
Other languages
English (en)
Inventor
许凯亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Pingbo Biomedical Technology Co ltd
Original Assignee
Suzhou Pingbo Biomedical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Pingbo Biomedical Technology Co ltd filed Critical Suzhou Pingbo Biomedical Technology Co ltd
Priority to CN202111094182.XA priority Critical patent/CN113662586A/zh
Publication of CN113662586A publication Critical patent/CN113662586A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明涉及超声波成像技术领域,具体涉及一种用于超快超声微血流成像的互相关降噪方法,旨在解决传统多普勒图像中信噪比低和杂波伪影影响图像质量的问题,该方法将多角度平面波射频回波信号分为两个或多个子组,各子组以相同的方法和参数进行正交解调、相干复合和杂波滤除,得到两组或多组动态血流信号,将每两组信号进行零时延互相关,并将所得数个互相关矩阵进行平均,可得到血流功率多普勒图像,将每两组信号进行固定时延互相关,并将所得数个互相关矩阵进行平均,可得到此时延下的多普勒频偏,继而得到血流彩色多普勒图像。本发明中互相关处理可以有效抑制图像中的随机噪声和非相关杂波伪影,同时保留高度相关的动态血流信号。

Description

一种用于超快超声微血流成像的互相关降噪方法
技术领域
本发明涉及超声波成像技术领域,具体涉及一种用于超快超声微血流成像的互相关降噪方法。
背景技术
微血管检测和成像技术对于评估生理状态和病理疾病有着至关重要的作用,如癌症、慢性肾脏疾病和炎症疾病等。而超声成像是一种安全、低成本且广泛应用的方法,可用于检测和评估体内血流,已在临床实践中应用了数十年。近年来,基于超快超声成像和先进的组织杂波滤波器(如基于特征滤波器、奇异值分解)的超声多普勒微血管成像技术在动物和人体上得到了广泛的应用。
现有公告号为CN111772676A的中国专利公开了一种超快超声多普勒脊髓微血流成像系统,包含硬件和软件两部分,其中硬件部分包含超声波发射和接收模块和实验器材模块,软件部分包含超快超声成像、波束合成、运动校准、杂波滤除、多普勒成像、求差和相关性分析等模块。首先,基于超快超声成像技术和多角度平面波复合成像的理论编写超声平面波发射与接收控制模块,并由计算机软件控制硬件设备发射和接收超声波;对接收到的回波数据进行处理,最终得到多普勒血流图像;并对血流的速度、方向等参数进行分析。该系统还提供了在脊髓加压、受损伤,刺激条件下对脊髓微血流进行成像的模式,可以进行脊髓功能分析和生理病理性分析。
然而,由于非聚焦波在组织深部的穿透能力较弱,基于平面波成像的微血管超快多普勒成像的一个重要缺点是信噪比不足,背景噪声对微血管的识别和成像影响较大,尤其是在深层组织。同时,超快超声微血流成像技术的另一个挑战是由体内强反射、缓慢运动、不均匀的组织散射产生的非相干杂波伪影,传统的杂波滤除方法无法对其进行有效地消除。
发明内容
因此,本发明的目的是提供一种用于超快超声微血流成像的互相关降噪方法,通过将不同偏转角度产生的血流信号进行相关,可以同时抑制超快超声微血流图像中的噪声和非相干杂波伪影,克服传统超快多普勒图像中信噪比低和杂波伪影影响图像质量的缺点。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种用于超快超声微血流成像的互相关降噪方法,包括以下步骤:
S1、确定一个超声平面波的发射和接受序列,一个完整的序列包含多组子序列,在每一组子序列中,通过控制端激励超声换能器向目标成像区域内发射N个偏转角度的平面波;
S2、采样和存储成像区域反射或背散射的RF信号,并设定采样时长为T秒;
S3、对时间T秒内接收的每一组N个角度的RF信号按发射角度分为两个或多个子组;
S4、将每个子组中的RF信号进行正交解调后得到IQ信号;
S5、将每个子组中的IQ信号进行波束合成,重建出B-mode图像;
S6、将每个子组中通过不同发射角度得到的B-mode图像进行相干复合,每组可得到N张相干复合后的B-mode图像;
S7、将每个子组中相干复合后的B-mode图像进行杂波滤除,滤除运动缓慢的组织信号,得到动态血流信号;
S8、将每两个子组中的滤波后信号进行零时延互相关,并将所得数个互相关矩阵进行平均,得到血流功率多普勒图像;
S9、将每两个子组中的滤波后信号进行固定时延互相关,并将所得数个互相关矩阵进行平均,可得到此时延下的多普勒频偏,继而得到血流彩色多普勒图像。
可选地,所述步骤S3中,分组时不要求平均分组,各子组包含若干不同角度数的RF信号,且相邻子组之间的角度差不小于α。
可选地,所述步骤S4中,正交解调包括以下步骤:
S41、将RF信号与一个幅值为1,频率等于超声平面波发射频率的信号相乘进行下混叠;
S42、将下混叠后的信号经过一个低通滤波器,滤除负频谱和期望带宽以外的噪声;
S43、将低通滤波后的信号放大
Figure BDA0003268488070000031
倍,保证信号的能量与原RF信号相同;
S44、数据抽取以得到IQ信号。
可选地,所述步骤S5中,波束合成的方法包括但不限于延时叠加算法、自适应波束合成法、空间复合法、频域-波数域迁移算法。
可选地,所述步骤S7中,杂波滤波的方法包括但不限于高通滤波算法、自适应滤波算法、特征值分解算法、鲁棒主成分分析算法、独立成分分析算法。
可选地,所述步骤S7中,特征值分解算法包括:
S71、将连续多帧的相干复合后图像构建为一个b*k大小的二维矩阵A,并利用特征值分解算法对二维矩阵A进行特征值分解,从而得到特征值矩阵λ和特征向量矩阵U:
E(A*AT)=λ*U*UT
式中,特征向量矩阵U为b*b的矩阵,特征值矩阵λ为b*b的对角阵,该对角阵中的对角元素即为矩阵特征值,将所有矩阵特征值由大到小排列为特征值序列;
S72、计算特征向量矩阵U中每个特征向量对应的平均多普勒频移fa
Figure BDA0003268488070000032
Figure BDA0003268488070000033
式中,
Figure BDA0003268488070000034
为第a个特征向量的自相关值,NF为连续多帧的相干复合后图像帧数,ea为第a个特征向量,PRF为阵列超声换能器对应的脉冲发射频率,arg{·}表示求解复数的辐角运算,fa为第a个特征向量对应的平均多普勒频移;
S73、依次判断平均多普勒频移fa是否处于区间[f1,f2]中,判断为否时,将平均多普勒频移fa对应的特征向量置零,从而得到新特征向量矩阵U1;
S74、基于新特征向量U1以及二维矩阵A,对相干复合后图像进行图像重构,从而得到b*k大小的矩阵Y:
Figure BDA0003268488070000041
S75、将矩阵Y重构为三维图像矩阵,作为连续多帧杂波滤除后的动态血流信号。
可选地,所述步骤S8中,将每两个子组中的滤波后信号进行零时延互相关,并将所得数个互相关矩阵进行平均,得到血流功率多普勒图像,包括如下步骤:
S(x,z,t)表示一组滤波后信号,共有Ng个子组,从Ng个子组中任意选出两个子组i和j,共有
Figure BDA0003268488070000042
个组对,计算滤波后信号的零时延互相关的均值,得到血流功率多普勒图像,公式如下;
Figure BDA0003268488070000043
式中,PD(x,z)为所得的血流功率多普勒图像,Si(x,z,t)和Sj(x,z,t)分别为选中的两个子组的滤波后信号,NF为相干复合后图像帧数,*表示复数共轭。
可选地,所述步骤S9中,将每两个子组中的滤波后信号进行固定时延互相关,并将所得数个互相关矩阵进行平均,可得到此时延下的多普勒频偏,继而得到血流彩色多普勒图像,包括如下步骤:
S91、S(x,z,t)表示一组滤波后信号,共有Ng个子组,从Ng个子组中任意选出两个子组i和j,共有
Figure BDA0003268488070000044
个组对,计算滤波后信号的固定时延互相关的均值,公式如下;
Figure BDA0003268488070000045
式中,R(x,z)为求均值后的互相关矩阵,NF为相干复合后图像帧数,lag为固定非零时延,幅值为α,辐角为
Figure BDA0003268488070000046
S92、根据互相关矩阵计算多普勒速度,公式如下:
Figure BDA0003268488070000047
其中,fc为发射超声信号的中心频率。
频移与相移有如下关系:
Figure BDA0003268488070000048
综上,多普勒速度可以由下式计算得到:
Figure BDA0003268488070000049
式中,CD(x,z)表示血流彩色多普勒图像,多普勒速度大于0表示向着探头方向运动,小于0表示远离探头方向运动。
本发明的有益效果:
本发明通过将不同偏转角度产生的血流信号进行相关,可以同时抑制血流图像中的噪声和非相干杂波伪影,克服了传统超快多普勒图像中信噪比低和杂波伪影影响图像质量的缺点,具有高图像信噪比和高血流/伪影强度比,提升了微血流成像质量。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的超快超声微血流成像的流程图;
图2为本发明实施例的一帧相干复合后的大鼠脑前囟处冠状面B-mode图像;
图3为本发明实施例采用互相关去噪方法,得到的大鼠脑微血流功率多普勒图像;
图4为本发明实施例不使用互相关去噪方法,得到的大鼠脑微血流功率多普勒图像;
图5为本发明实施例采用互相关去噪方法,得到的大鼠脑微血流彩色多普勒图像;
图6为本发明实施例不使用互相关去噪方法,得到的大鼠脑微血流彩色多普勒图像。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
另外,术语“多个”的含义应为两个以及两个以上。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
一种用于超快超声微血流成像的互相关降噪方法,如图1所示,包括以下步骤:
S1、确定一个超声平面波的发射和接受序列,一个完整的序列包含多组子序列,在每一组子序列中,通过控制端激励超声换能器向目标成像区域内发射N个偏转角度的平面波;
本实施例中优选为200组子序列,即连续发射200组平面波,每组包含-10°~10°之间均匀分布的九个倾斜平面波,并设定超声发射频率为15MHz,其他实施例亦可以选用发散波作为输出方式;
S2、采样和存储成像区域反射或背散射的RF信号,并设定采样时长为T秒;
本实施例中,将目标成像区域选定为大鼠脑前囟处冠状面血流,从而实验前先手术把大鼠颅骨去除,探头选用中心频率15MHz,128阵元的相控阵,另外采样频率为两倍奈奎斯特采样频率,即60MHz,其他实施例亦可以选用不低于2倍的信号发射频率;
S3、对时间T秒内接收的每一组N个角度的RF信号按发射角度分为两个或多个子组;
分组时不要求平均分组,各子组包含若干不同角度数的RF信号,且相邻子组之间的角度差不小于α,是为了降低不同子组之间的噪声及伪影的相关性,所以分组时应尽可能使组别之间角度相差较大;
本实施例中为了方便对比和查看,可分为两个子组,其中一组包含不大于0°的五个角度的RF信号,另一组包含大于0°的四个角度的RF信号,α为45°;
S4、将每个子组中的RF信号进行正交解调后得到IQ信号,以降低回波信号的带宽,同时不丢失基本信息;
具体地,正交解调包括以下步骤:
S41、将RF信号与一个幅值为1,频率等于超声平面波发射频率的信号相乘进行下混叠;
S42、将下混叠后的信号经过一个低通滤波器,滤除负频谱和期望带宽以外的噪声;
S43、将低通滤波后的信号放大
Figure BDA0003268488070000071
倍,保证信号的能量与原RF信号相同;
S44、数据抽取以得到IQ信号,此过程中低通滤波器的截止频率为10MHz,数据抽取原数据的1/6;
S5、将每个子组中的IQ信号进行波束合成,重建出B-mode图像,其中波束合成算法为延时叠加算法、自适应波束合成法、空间复合法以及频域-波数域迁移算法中的一种或多种的组合,在实施例里优选为频域-波数域迁移算法进行波束合成,图2为本实施例的一帧相干复合后的大鼠脑前囟处冠状面B-mode图像;
S6、将每个子组中通过不同发射角度得到的B-mode图像进行相干复合,每组可得到N张相干复合后的B-mode图像;
S7、将每个子组中相干复合后的B-mode图像进行杂波滤除,滤除运动缓慢的组织信号,得到动态血流信号,其中,杂波滤除算法为高通滤波算法、自适应滤波算法、特征值分解算法、鲁棒主成分分析算法以及独立成分分析算法中一种或多种的组合;
本实施例中采用特征值分解算法,具体包括以下步骤:
S71、将连续多帧的相干复合后图像构建为一个b*k大小的二维矩阵A,并利用特征值分解算法对二维矩阵A进行特征值分解,从而得到特征值矩阵λ和特征向量矩阵U:
E(A*AT)=λ*U*UT
式中,特征向量矩阵U为b*b的矩阵,特征值矩阵λ为b*b的对角阵,该对角阵中的对角元素即为矩阵特征值,将所有矩阵特征值由大到小排列为特征值序列;
S72、计算特征向量矩阵U中每个特征向量对应的平均多普勒频移fa
Figure BDA0003268488070000081
Figure BDA0003268488070000082
式中,
Figure BDA0003268488070000083
为第a个特征向量的自相关值,NF为连续多帧的相干复合后图像帧数,ea为第a个特征向量,PRF为阵列超声换能器对应的脉冲发射频率,arg{·}表示求解复数的辐角运算,fa为第a个特征向量对应的平均多普勒频移;
S73、依次判断平均多普勒频移fa是否处于区间[f1,f2]中,判断为否时,将平均多普勒频移fa对应的特征向量置零,从而得到新特征向量矩阵U1;
S74、基于新特征向量U1以及二维矩阵A,对相干复合后图像进行图像重构,从而得到b*k大小的矩阵Y:
Figure BDA0003268488070000084
S75、将矩阵Y重构为三维图像矩阵,作为连续多帧杂波滤除后的动态血流信号;
S8、将每两个子组中的滤波后信号进行零时延互相关,并将所得数个互相关矩阵进行平均,得到血流功率多普勒图像,从而反映的图3为本实施例采用互相关去噪方法得到的大鼠脑微血流功率多普勒图像,图4为不使用互相关去噪方法,得到的大鼠脑微血流功率多普勒图像;
具体包括如下步骤:
S(x,z,t)表示一组滤波后信号,共有Ng个子组,从Ng个子组中任意选出两个子组i和j,共有
Figure BDA0003268488070000085
个组对,计算滤波后信号的零时延互相关的均值,得到血流功率多普勒图像,公式如下;
Figure BDA0003268488070000091
式中,PD(x,z)为所得的血流功率多普勒图像,Si(x,z,t)和Sj(x,z,t)分别为选中的两个子组的滤波后信号,NF为相干复合后图像帧数,*表示复数共轭,经分析后,采用分组互相关去噪步骤后,图像信噪比提升约10-15dB,信号/伪影强度比提升约8-10dB;
S9、将每两个子组中的滤波后信号进行固定时延互相关,并将所得数个互相关矩阵进行平均,可得到此时延下的多普勒频偏,继而得到血流彩色多普勒图像,从而反映的图5为本实施例采用互相关去噪方法得到的大鼠脑微血流彩色多普勒图像,图6为不使用互相关去噪方法,得到的大鼠脑微血流彩色多普勒图像;
具体包括如下步骤:
S91、S(x,z,t)表示一组滤波后信号,共有Ng个子组,从Ng个子组中任意选出两个子组i和j,共有
Figure BDA0003268488070000092
个组对,计算滤波后信号的固定时延互相关的均值,公式如下;
Figure BDA0003268488070000093
式中,R(x,z)为求均值后的互相关矩阵,NF为相干复合后图像帧数,lag为固定非零时延,幅值为α,辐角为
Figure BDA0003268488070000094
S92、根据互相关矩阵计算多普勒速度,公式如下:
Figure BDA0003268488070000095
其中,fc为发射超声信号的中心频率。
频移与相移有如下关系:
Figure BDA0003268488070000096
综上,多普勒速度可以由下式计算得到:
Figure BDA0003268488070000097
式中,CD(x,z)表示血流彩色多普勒图像,多普勒速度大于0表示向着探头方向运动,小于0表示远离探头方向运动,经分析后,采用分组互相关去噪步骤后,大幅度提高了微血流分辨率。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种用于超快超声微血流成像的互相关降噪方法,其特征在于,包括以下步骤:
S1、确定一个超声平面波的发射和接受序列,一个完整的序列包含多组子序列,在每一组子序列中,通过控制端激励超声换能器向目标成像区域内发射N个偏转角度的平面波;
S2、采样和存储成像区域反射或背散射的RF信号,并设定采样时长为T秒;
S3、对时间T秒内接收的每一组N个角度的RF信号按发射角度分为两个或多个子组;
S4、将每个子组中的RF信号进行正交解调后得到IQ信号;
S5、将每个子组中的IQ信号进行波束合成,重建出B-mode图像;
S6、将每个子组中通过不同发射角度得到的B-mode图像进行相干复合,每组可得到N张相干复合后的B-mode图像;
S7、将每个子组中相干复合后的B-mode图像进行杂波滤除,滤除运动缓慢的组织信号,得到动态血流信号;
S8、将每两个子组中的滤波后信号进行零时延互相关,并将所得数个互相关矩阵进行平均,得到血流功率多普勒图像;
S9、将每两个子组中的滤波后信号进行固定时延互相关,并将所得数个互相关矩阵进行平均,可得到此时延下的多普勒频偏,继而得到血流彩色多普勒图像。
2.根据权利要求1所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S3中,分组时不要求平均分组,各子组包含若干不同角度数的RF信号,且相邻子组之间的角度差不小于α。
3.根据权利要求1所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S4中,正交解调包括以下步骤:
S41、将RF信号与一个幅值为1,频率等于超声平面波发射频率的信号相乘进行下混叠;
S42、将下混叠后的信号经过一个低通滤波器,滤除负频谱和期望带宽以外的噪声;
S43、将低通滤波后的信号放大
Figure FDA0003268488060000021
倍,保证信号的能量与原RF信号相同;
S44、数据抽取以得到IQ信号。
4.根据权利要求1所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S5中,波束合成的方法包括但不限于延时叠加算法、自适应波束合成法、空间复合法、频域-波数域迁移算法。
5.根据权利要求1所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S7中,杂波滤波的方法包括但不限于高通滤波算法、自适应滤波算法、特征值分解算法、鲁棒主成分分析算法、独立成分分析算法。
6.根据权利要求5所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S7中,特征值分解算法包括:
S71、将连续多帧的相干复合后图像构建为一个b*k大小的二维矩阵A,并利用特征值分解算法对二维矩阵A进行特征值分解,从而得到特征值矩阵λ和特征向量矩阵U:
E(A*AT)=λ*U*UT
式中,特征向量矩阵U为b*b的矩阵,特征值矩阵λ为b*b的对角阵,该对角阵中的对角元素即为矩阵特征值,将所有矩阵特征值由大到小排列为特征值序列;
S72、计算特征向量矩阵U中每个特征向量对应的平均多普勒频移fa
Figure FDA0003268488060000022
Figure FDA0003268488060000023
式中,
Figure FDA0003268488060000024
为第a个特征向量的自相关值,NF为连续多帧的相干复合后图像帧数,ea为第a个特征向量,PRF为阵列超声换能器对应的脉冲发射频率,arg{·}表示求解复数的辐角运算,fa为第a个特征向量对应的平均多普勒频移;
S73、依次判断平均多普勒频移fa是否处于区间[f1,f2]中,判断为否时,将平均多普勒频移fa对应的特征向量置零,从而得到新特征向量矩阵U1;
S74、基于新特征向量U1以及二维矩阵A,对相干复合后图像进行图像重构,从而得到b*k大小的矩阵Y:
Figure FDA0003268488060000031
S75、将矩阵Y重构为三维图像矩阵,作为连续多帧杂波滤除后的动态血流信号。
7.根据权利要求1所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S8中,将每两个子组中的滤波后信号进行零时延互相关,并将所得数个互相关矩阵进行平均,得到血流功率多普勒图像,包括如下步骤:
S(x,z,t)表示一组滤波后信号,共有Ng个子组,从Ng个子组中任意选出两个子组i和j,共有
Figure FDA0003268488060000032
个组对,计算滤波后信号的零时延互相关的均值,得到血流功率多普勒图像,公式如下;
Figure FDA0003268488060000033
式中,PD(x,z)为所得的血流功率多普勒图像,Si(x,z,t)和Sj(x,z,t)分别为选中的两个子组的滤波后信号,NF为相干复合后图像帧数,*表示复数共轭。
8.根据权利要求1所述的一种用于超快超声微血流成像的互相关降噪方法,其特征在于,所述步骤S9中,将每两个子组中的滤波后信号进行固定时延互相关,并将所得数个互相关矩阵进行平均,可得到此时延下的多普勒频偏,继而得到血流彩色多普勒图像,包括如下步骤:
S91、S(x,z,t)表示一组滤波后信号,共有Ng个子组,从Ng个子组中任意选出两个子组i和j,共有
Figure FDA0003268488060000034
个组对,计算滤波后信号的固定时延互相关的均值,公式如下;
Figure FDA0003268488060000035
式中,R(x,z)为求均值后的互相关矩阵,NF为相干复合后图像帧数,lag为固定非零时延,幅值为α,辐角为
Figure FDA0003268488060000037
S92、根据互相关矩阵计算多普勒速度,公式如下:
Figure FDA0003268488060000036
其中,fc为发射超声信号的中心频率。
频移与相移有如下关系:
Figure FDA0003268488060000042
综上,多普勒速度可以由下式计算得到:
Figure FDA0003268488060000041
式中,CD(x,z)表示血流彩色多普勒图像,多普勒速度大于0表示向着探头方向运动,小于0表示远离探头方向运动。
CN202111094182.XA 2021-09-17 2021-09-17 一种用于超快超声微血流成像的互相关降噪方法 Withdrawn CN113662586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111094182.XA CN113662586A (zh) 2021-09-17 2021-09-17 一种用于超快超声微血流成像的互相关降噪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111094182.XA CN113662586A (zh) 2021-09-17 2021-09-17 一种用于超快超声微血流成像的互相关降噪方法

Publications (1)

Publication Number Publication Date
CN113662586A true CN113662586A (zh) 2021-11-19

Family

ID=78549666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111094182.XA Withdrawn CN113662586A (zh) 2021-09-17 2021-09-17 一种用于超快超声微血流成像的互相关降噪方法

Country Status (1)

Country Link
CN (1) CN113662586A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114129190A (zh) * 2021-11-30 2022-03-04 深圳先进技术研究院 全眼微血流的成像方法、装置及电子设备和存储介质
CN114515169A (zh) * 2021-12-31 2022-05-20 西安交通大学 一种超声心肌组织多参数成像方法及系统
CN116172612A (zh) * 2023-02-02 2023-05-30 逸超医疗科技(北京)有限公司 一种基于超快平面波复合超声微细血流成像方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114129190A (zh) * 2021-11-30 2022-03-04 深圳先进技术研究院 全眼微血流的成像方法、装置及电子设备和存储介质
CN114129190B (zh) * 2021-11-30 2022-10-21 深圳先进技术研究院 全眼微血流的成像方法、装置及电子设备和存储介质
CN114515169A (zh) * 2021-12-31 2022-05-20 西安交通大学 一种超声心肌组织多参数成像方法及系统
CN114515169B (zh) * 2021-12-31 2023-06-30 西安交通大学 一种超声心肌组织多参数成像方法及系统
CN116172612A (zh) * 2023-02-02 2023-05-30 逸超医疗科技(北京)有限公司 一种基于超快平面波复合超声微细血流成像方法
CN116172612B (zh) * 2023-02-02 2023-12-15 逸超医疗科技(北京)有限公司 一种基于超快平面波复合超声微细血流成像方法

Similar Documents

Publication Publication Date Title
Jensen et al. Ultrasound vector flow imaging—Part II: Parallel systems
JP5627890B2 (ja) 最適なスペックル追跡のための二重経路処理
CN113662586A (zh) 一种用于超快超声微血流成像的互相关降噪方法
JP5858783B2 (ja) 非集束送信ビームを用いる高フレームレートの量的ドップラーフローイメージング
EP2453800B1 (en) Spatially-fine shear wave dispersion ultrasound vibrometry sampling
US20120253194A1 (en) Methods and apparatus for ultrasound imaging
US11612381B2 (en) Method for tissue characterization by ultrasound wave attenuation measurements and ultrasound system for tissue characterization
JP2015512273A (ja) 超音波イメージングのための方法及び装置
Byram et al. 3-D phantom and in vivo cardiac speckle tracking using a matrix array and raw echo data
CN102512208A (zh) 血管内前视和侧视结合的双视场超声成像装置及其方法
Jakovljevic et al. Blood flow imaging in the neonatal brain using angular coherence power Doppler
JP6535383B2 (ja) 超音波診断システム及び超音波診断システムの作動方法
JP6912561B2 (ja) 血液を伴う試料をイメージングするための方法および関連装置
US11852754B2 (en) Ultrafast ultrasound imaging with cascaded dual-polarity waves
Kou et al. High-resolution power doppler using null subtraction imaging
US10537309B2 (en) Systems and methods for ultrasound motion display and analysis
Pedersen et al. Preliminary in-vivo evaluation of convex array synthetic aperture imaging
Li et al. High sensitivity liver vasculature visualization using a real-time coherent flow power Doppler (CFPD) imaging system: A pilot clinical study
Jensen Fast plane wave imaging
Lou et al. Filtered delay multiply and sum combined with space-time smoothing coherence factor in ultrasound imaging
JP4590609B2 (ja) 超音波検査装置
US20220386999A1 (en) Super Resolution Ultrasound Imaging
Hemmsen et al. Preliminary In-Vivo evaluation of Synthetic Aperture Sequential Beamformation using a multielement convex array
Kruizinga et al. High frame rate ultrasound displacement vector imaging
Hansen-Shearer et al. Ultrafast 3-D Transcutaneous Super Resolution Ultrasound Using Row-Column Array Specific Coherence-Based Beamforming and Rolling Acoustic Sub-aperture Processing: In Vitro, in Rabbit and in Human Study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211119

WW01 Invention patent application withdrawn after publication