CN113651996B - 一种促进塑料降解的方法 - Google Patents

一种促进塑料降解的方法 Download PDF

Info

Publication number
CN113651996B
CN113651996B CN202110785477.5A CN202110785477A CN113651996B CN 113651996 B CN113651996 B CN 113651996B CN 202110785477 A CN202110785477 A CN 202110785477A CN 113651996 B CN113651996 B CN 113651996B
Authority
CN
China
Prior art keywords
iron
plastics
degradation
plastic
reducing bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110785477.5A
Other languages
English (en)
Other versions
CN113651996A (zh
Inventor
陈姗姗
杨钰婷
李苏洁
栾天罡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110785477.5A priority Critical patent/CN113651996B/zh
Publication of CN113651996A publication Critical patent/CN113651996A/zh
Application granted granted Critical
Publication of CN113651996B publication Critical patent/CN113651996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/346Iron bacteria
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/28Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic compounds containing nitrogen, sulfur or phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

本发明公开了一种促进塑料降解的方法,在含三价铁、铁还原菌和塑料的体系中实现塑料的降解。在含三价铁、铁还原菌和塑料的体系中,可以有效促进塑料污染的原位降解,该方法操作简单,成本低廉。

Description

一种促进塑料降解的方法
技术领域
本发明涉及环境治理领域,具体涉及一种促进塑料降解的方法。
背景技术
自然环境中的微塑料和纳米塑料尺寸微小且分布十分广泛、分散,其强吸附亲和性和迁移能力使之成为潜在的污染物载体,从而加剧了环境风险,此外,微塑料容易被水生生物摄食和陆生植物富集从而在体内积累,尤其当微塑料吸附污染物和病原体之后,毒性会随着微塑料沿食物网逐级传递,最终对人类产生威胁。微塑料体系小且分散的特点,使之难以回收和集中处理,因此原位自然降解塑料是解决该问题的有效手段之一,然而塑料在生态系统中的自然降解非常缓慢,完全降解需要数百或上千年时间。
发明内容
为了克服现有技术存在塑料在生态系统中难降解的问题,本发明的目的在于提供一种促进塑料降解的方法。
为了实现上述目的,本发明所采取的技术方案是:
一种促进塑料降解的方法,在含三价铁、铁还原菌和塑料的体系中实现塑料的降解。
优选的,这种促进塑料降解的方法,塑料的降解过程在无氧和有氧交替环境下进行;进一步优选的,无氧环境的氧浓度≤30μmol/L,有氧环境的氧浓度范围为130-180μmol/L。
优选的,这种促进塑料降解的方法,含三价铁、铁还原菌和塑料的体系中,还包含铁配位体;进一步优选的,铁配位体为三聚磷酸盐、乙二胺四乙酸(EDTA)、草酸(H2C2O4)、四聚磷酸钠、焦磷酸钠、磷酸钠中的至少一种;再进一步优选的,铁配位体为三聚磷酸盐、乙二胺四乙酸(EDTA)、草酸(H2C2O4)中的至少一种;更进一步优选的,铁配位体为三聚磷酸钠(TPP)、乙二胺四乙酸(EDTA)中的至少一种;乙二胺四乙酸(EDTA),具有六个配位原子,能和碱金属、稀土元素和过渡金属等形成稳定的水溶性配合物,EDTA能与Fe2+形成Fe2+-EDTA配合物,该配体可原位活化分子氧产生H2O2,进而产生羟基自由基进行污染物降解,有利于Fe2 +的重新活化,产生更多的芬顿(Fenton)试剂;三聚磷酸钠(TPP),含氧配合物与铁离子以“Fe-O”配位形成可溶性Fe2+-TPP配合物,保证了在宽范围pH内Fe2+以离子状态稳定存在于溶液中,TPP能够强化芬顿的氧化效能,氧化能力的提高得益于Fe2+-TPP配合物能够活化分子氧,遵循O2→O2·-→H2O2→·OH路径强化·OH产生。
优选的,这种促进塑料降解的方法中塑料为聚苯乙烯(PS)、聚乳酸(PLA)、聚氯乙烯(PVC)中的至少一种;进一步优选的,塑料为聚苯乙烯(PS)、聚乳酸(PLA)中的至少一种;再进一步优选的,塑料为聚苯乙烯(PS)。
优选的,这种促进塑料降解的方法中铁还原菌为兼性厌氧菌;进一步优选的,铁还原菌为Shewanella putrefaciens、Shewanella oneidensis、Rhodoferax ferrireducens、Pseudomonas aeruginosa中的至少一种;再进一步优选的,铁还原菌为Shewanellaputrefaciens、Shewanella oneidensis中的至少一种;菌种均来自市面上购买的到的,常规菌种保藏中心如美国菌种保藏管理中心(ATCC)、德国微生物菌种保藏中心(DSMZ)、中国普通微生物菌种保藏管理中心(CGMCC)等。
优选的,这种促进塑料降解的方法,含三价铁、铁还原菌和塑料的体系中,每毫克塑料中的铁还原菌有效活菌数≥0.5×109cfu;进一步优选的,在含三价铁、铁还原菌和塑料的体系中,每毫克塑料中的铁还原菌有效活菌数≥1×109cfu;铁还原菌取对数生长期的铁还原菌。
优选的,这种促进塑料降解的方法,塑料降解过程无氧和有氧交替环境交替周期为4-8h进行一次;进一步优选的,无氧和有氧交替环境交替周期为6h进行一次;再进一步优选的,通过曝氮气维持无氧环境的氧浓度;在交替有氧-无氧的含铁体系中,发生类芬顿反应,生成羟基自由基,兼性厌氧铁还原微生物持续消耗电子供体并生成电子,厌氧条件下,微生物以Fe(III)作为电子受体,Fe(III)得到电子后被还原为Fe(II);好氧条件下,微生物以O2作为电子受体,O2得到电子后被还原为H2O2,生成的Fe(II)和H2O2两者再进一步发生反应生成羟基自由基。
优选的,这种促进塑料降解的方法,含三价铁、铁还原菌和塑料的体系中,加入铁配位体,铁配位体与含三价铁、铁还原菌和塑料的体系中总铁的摩尔比为(0.08-0.5):1;进一步优选的,这种促进塑料降解的方法中铁配位体为三聚磷酸盐时,铁配位体与总铁(Fe)的摩尔比为(0.08-0.2):1;再进一步优选的,铁配位体为三聚磷酸盐时,铁配位体与总铁(Fe)的摩尔比为0.09:1。
进一步优选的,这种促进塑料降解的方法中铁配位体为乙二胺四乙酸(EDTA)时,铁配位体与含三价铁、铁还原菌和塑料的体系中总铁(Fe)的摩尔比为(0.2-0.5):1;再进一步优选的,铁配位体为乙二胺四乙酸(EDTA)时,铁配位体与总铁(Fe)的摩尔比为0.3:1。
本发明还提供了上述塑料降解方法在水体、土壤、底泥和污泥环境中塑料污染治理的应用。
本发明的有益效果是:
含三价铁、铁还原菌和塑料的体系中,可以有效促进塑料污染的原位降解,该方法操作简单,成本低廉。
在交替有氧-无氧的含铁环境中,会发生类芬顿(Fenton)反应生成羟基自由基,类芬顿反应产生的自由基能促进塑料的降解;兼性厌氧铁还原微生物持续消耗电子供体并生成电子,厌氧条件下,微生物以Fe(III)作为电子受体,Fe(III)得到电子后被还原为Fe(II);好氧条件下,微生物以O2作为电子受体,O2得到电子后被还原为H2O2,生成的Fe(II)和H2O2两者再进一步发生反应生成羟基自由基。
附图说明
图1赤铁矿水体环境不投加铁配位体14天后聚苯乙烯塑料扫描电镜图;
图2赤铁矿水体环境投加铁配位体乙二胺四乙酸14天后聚苯乙烯塑料扫描电镜图;
图3赤铁矿水体环境投加铁配位体三聚磷酸钠14天后聚苯乙烯塑料扫描电镜图;
图4针铁矿水体环境不投加铁配位体14天后聚苯乙烯塑料扫描电镜图;
图5针铁矿水体环境投加铁配位体乙二胺四乙酸14天后聚苯乙烯塑料扫描电镜图;
图6针铁矿水体环境投加铁配位体三聚磷酸钠14天后聚苯乙烯塑料扫描电镜图;
图7潮间带底泥投加铁配位体与不投加配位体14天后XPS扫描谱图。
具体实施方式
以下通过具体的实施例对本发明的内容作进一步详细的说明。实施例和对比例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有技术方法得到。除非特别说明,试验或测试方法均为本领域的常规方法。
实施例1
(1)在含聚苯乙烯塑料和赤铁矿(Hematite)的液体环境中,投加对数期铁还原菌Shewanella putrefaciens和铁配位体,聚苯乙烯用量为500mg/L,赤铁矿总铁量为10mmol/L,每毫克塑料中的铁还原菌有效活菌数为1×109cfu,铁配位体选用三聚磷酸钠(TPP)或乙二胺四乙酸(EDTA)。
(2)以TPP与总铁摩尔比为0.09:1的比例投加TPP,以EDTA与总铁摩尔比为0.3:1的比例投加EDTA,一次性投加,运行期间无需补充。
(3)曝氮气和空气分别维持无氧和有氧环境,无氧6小时,有氧6小时然后重复,反应在常温下进行,反应时间为14d。
对比例1
在实施例1的基础上,不投加铁配位体,其余与实施例1相同。
实施例2
(1)在含聚苯乙烯塑料和针铁矿(Goethite)的液体环境中,投加对数期铁还原菌Shewanella putrefaciens和铁配位体,聚苯乙烯用量为500mg/L,针铁矿总铁量为10mmol/L,每毫克塑料中的铁还原菌有效活菌数为1×109cfu,铁配位体选用三聚磷酸钠(TPP)或乙二胺四乙酸(EDTA)。
(2)以TPP与总铁摩尔比为0.09:1的比例投加TPP,以EDTA与总铁摩尔比为0.3:1的比例投加EDTA,一次性投加,运行期间无需补充。
(3)曝氮气和空气分别维持无氧和有氧环境,无氧6小时,有氧6小时然后重复,反应在常温下进行,反应时间为14d。
对比例2
在实施例2的基础上,不投加铁配位体,其余与实施例2相同。
实施例3
(1)在含聚苯乙烯塑料的潮间带底泥(Sediment)中,投加对数期铁还原菌Shewanella oneidensis和铁配位体,聚苯乙烯用量为100mg,潮间带底泥干重500g,潮间带底泥总铁含量为141.12±26.32mmol/kg、TN含量为1.19±0.21g/kg、TOC含量为14.18±1.58g/kg,每毫克塑料中的铁还原菌有效活菌数为1×109cfu,铁配位体选用三聚磷酸钠(TPP)或乙二胺四乙酸(EDTA)。
(2)以TPP与总铁摩尔比为0.09:1的比例投加TPP,以EDTA与总铁摩尔比为0.3:1的比例投加EDTA,一次性投加,运行期间每7天补充投加1次配位体,后期补充投加量为初始投加量的50%。反应在常温下进行,反应时间为14d。
对比例3
在实施例3的基础上,不投加铁配位体,其余与实施例3相同。
实施例4
(1)在含聚苯乙烯塑料的污泥中,投加对数期还原菌Shewanella oneidensis和铁配位体,聚苯乙烯用量为100mg,污泥干重100g,污泥总铁含量为111.43±26.32mmol/kg,每毫克塑料中的铁还原菌有效活菌数为1×109cfu,铁配位体选用三聚磷酸钠(TPP)或乙二胺四乙酸(EDTA)。
(2)以TPP与总铁摩尔比为0.09:1的比例投加TPP,以EDTA与总铁摩尔比为0.3:1的比例投加EDTA,一次性投加,运行期间无需补充。
(3)曝氮气和空气分别营造无氧和有氧环境,无氧6小时,有氧6小时然后重复,反应在常温下进行,反应时间为14d。
对比例4
在实施例4的基础上,不投加铁配位体,其余与实施例4相同。
测试结果
对实施例1-2和对比例1-2的·OH累积量进行测试,·OH累积量的测试方法为:苯甲酸为羟基自由基的捕获剂,再用液相色谱测捕获自由基后生成的对羟基苯甲酸的含量,得到羟基自由基的量,测试结果如表1所示;对实施例1-2和对比例1-2的塑料减重率进行测试,根据反应前后塑料的重量确定塑料减重率,测试结果如表2所示;对实施例1-2和对比例1-2的O/C比进行测试,O/C比通过XPS测定,测试结果表3所示;实施例1-2和对比例1-2反应14天后聚苯乙烯塑料扫描电镜图如附图1-6所示。
表1实施例1-2、对比例1-2羟基自由基累积量
Figure BDA0003158569810000051
表2实施例1-2、对比例1-2塑料减重率
赤铁矿 赤铁矿+TPP 赤铁矿+EDTA
减重率(%) 10.44 13.65 11.65
针铁矿 针铁矿+TPP 针铁矿+EDTA
减重率(%) 6.90 17.87 15.60
表3实施例1-2、对比例1-2O/C比测试结果
赤铁矿 赤铁矿+TPP 赤铁矿+EDTA
O/C比(%) 6.25 11.54 10.01
针铁矿 针铁矿+TPP 针铁矿+EDTA
O/C比(%) 7.49 8.25 11.42
在含聚苯乙烯塑料的液体环境中,如表1-3所示,当赤铁矿组中有配位体时(赤铁矿+TPP和赤铁矿+EDTA组)聚苯乙烯塑料减重率比无配体对照组(赤铁矿组)增加10%-30%,·OH累积量增加18%-250%,O/C比增加60%-84%;含针铁矿组中有配位体时(针铁矿+TPP和针铁矿+EDTA组)聚苯乙烯塑料减重率比无配体对照组(针铁矿组)增加126%-159%,·OH累积量增加91%-198%,O/C比增加10%-52%;如图1-6所示,添加铁配位体组塑料的表面出现孔洞比不添加铁配位体组的多且大,表明在交替无氧-有氧环境中添加铁配位体促进了水体中塑料的降解。
对实施例3-4和对比例3-4的·OH累积量进行测试,测试结果如表4所示;对实施例3-4和对比例3-4的O/C比进行测试,测试结果如表5所示;实施例3与对比例3聚苯乙烯14天后XPS扫描谱图如附图7所示。
表4实施例3-4、对比例3-4羟基自由基累积量
Figure BDA0003158569810000061
表5实施例3-4、对比例3-4O/C比测试结果
潮间带底泥 潮间带底泥+TPP 潮间带底泥+EDTA
O/C比(%) 5.11 24.69 17.08
污泥 污泥+TPP 污泥+EDTA
O/C比(%) 4.92 11.97 19.58
在含聚苯乙烯塑料的潮间带底泥、污泥环境中,如表4-5所示,当潮间带底泥组中有配位体时(潮间带底泥+TPP和潮间带底泥+EDTA组)比无配体对照组(潮间带底泥组)·OH累积量增加74%-121%,O/C比增加234%-383%;含污泥组中有配位体时(污泥+TPP和污泥+EDTA组)比无配体对照组(污泥组)·OH累积量增加89%-155%,O/C比增加143%-297%;交替无氧-有氧环境或添加铁配位体均能有效促进塑料的降解。

Claims (6)

1.一种促进塑料降解的方法,其特征在于,在含三价铁、铁还原菌和塑料的体系中实现塑料的降解;
所述塑料为聚苯乙烯、聚乳酸、聚氯乙烯中的至少一种;
所述含三价铁、铁还原菌和塑料的体系中,还包含铁配位体;
所述铁配位体为三聚磷酸盐、乙二胺四乙酸、草酸、四聚磷酸钠、焦磷酸钠、磷酸钠中的至少一种;
所述铁配位体与含三价铁、铁还原菌和塑料的体系中总铁的摩尔比为(0.08-0.5):1。
2.根据权利要求1所述的一种促进塑料降解的方法,其特征在于,所述塑料的降解过程在无氧和有氧交替环境下进行。
3.根据权利要求1所述的一种促进塑料降解的方法,其特征在于,所述铁还原菌为兼性厌氧菌。
4.根据权利要求1所述的一种促进塑料降解的方法,其特征在于,在含三价铁、铁还原菌和塑料的体系中,每毫克塑料中的铁还原菌有效活菌数≥0.5×109cfu。
5.根据权利要求2所述的一种促进塑料降解的方法,其特征在于,所述无氧和有氧交替环境交替周期为4-8h进行一次。
6.权利要求1至5任一项所述的促进塑料降解的方法在水体、土壤、底泥和污泥环境中塑料污染治理的应用。
CN202110785477.5A 2021-07-12 2021-07-12 一种促进塑料降解的方法 Active CN113651996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110785477.5A CN113651996B (zh) 2021-07-12 2021-07-12 一种促进塑料降解的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110785477.5A CN113651996B (zh) 2021-07-12 2021-07-12 一种促进塑料降解的方法

Publications (2)

Publication Number Publication Date
CN113651996A CN113651996A (zh) 2021-11-16
CN113651996B true CN113651996B (zh) 2022-11-01

Family

ID=78477986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110785477.5A Active CN113651996B (zh) 2021-07-12 2021-07-12 一种促进塑料降解的方法

Country Status (1)

Country Link
CN (1) CN113651996B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715818A (zh) * 2018-04-28 2018-10-30 福建农林大学 一种复合高温菌剂及其在堆肥中协同降解聚苯乙烯的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586094A (zh) * 2007-06-01 2009-11-25 广东省生态环境与土壤研究所 一种可加速有机氯降解的铁还原菌-矿物复合菌剂及其制备方法
CN101353201A (zh) * 2007-07-24 2009-01-28 宝山钢铁股份有限公司 一种废水处理的新方法
CN102390914B (zh) * 2011-10-25 2013-11-06 合肥工业大学 一种抑制有机废弃物厌氧过程中硫化氢释放的方法
CN110117079A (zh) * 2019-04-28 2019-08-13 上海大学 利用铁还原菌-矿物协同去除水体中硝酸盐和难降解有机物的方法
CN110092484A (zh) * 2019-05-14 2019-08-06 上海环联生态科技有限公司 高渗透反应墙填料及采用其去除地下水有机污染物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715818A (zh) * 2018-04-28 2018-10-30 福建农林大学 一种复合高温菌剂及其在堆肥中协同降解聚苯乙烯的方法

Also Published As

Publication number Publication date
CN113651996A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
Ma et al. Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands
Mejia et al. Influence of oxygen and nitrate on Fe (hydr) oxide mineral transformation and soil microbial communities during redox cycling
Han et al. Pathway for the production of hydroxyl radicals during the microbially mediated redox transformation of iron (oxyhydr) oxides
Ortiz-Bernad et al. Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater
Luu et al. Microbial mechanisms of accessing insoluble Fe (III) as an energy source
Lu et al. Simultaneously enhanced removal of PAHs and nitrogen driven by Fe2+/Fe3+ cycle in constructed wetland through automatic tidal operation
Liu et al. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification
Shi et al. A novel enhanced anaerobic biodegradation method using biochar and Fe (OH) 3@ biochar for the removal of nitrogen heterocyclic compounds from coal gasification wastewater
Rampuria et al. Nitrogen transformation processes and mass balance in deep constructed wetlands treating sewage, exploring the anammox contribution
Lovley Anaerobes into heavy metal: dissimilatory metal reduction in anoxic environments
Gao et al. A pilot study on the regeneration of ferrous chelate complex in NOx scrubber solution by a biofilm electrode reactor
Cao et al. Activated carbon as an insoluble electron shuttle to enhance the anaerobic ammonium oxidation coupled with Fe (III) reduction process
Desireddy et al. A review on metal oxide (FeO x/MnO x) mediated nitrogen removal processes and its application in wastewater treatment
Ahmed et al. Ferric reduction in organic matter oxidation and its applicability for anaerobic wastewater treatment: a review and future aspects
Kang et al. Enhanced reduction of Cr (VI) in iron-carbon micro-electrolysis constructed wetlands: Mechanisms of iron cycle and microbial interactions
Zhang et al. Immobilization of nitrifying bacteria in magnetic PVA–SA-diatomite carrier for efficient removal of NH4+-N from effluents
Li et al. Potentiality of phosphorus− accumulating organisms biomasses in biosorption of Cd (II), Pb (II), Cu (II) and Zn (II) from aqueous solutions: Behaviors and mechanisms
Yu et al. Insights into Anammox activity inhibition under trivalent and hexavalent chromium stresses
Wang et al. Hydraulic flow direction alters nutrients removal performance and microbial mechanisms in electrolysis-assisted constructed wetlands
Fei et al. The overlooked role of denitrifying bacteria in mediating vanadate reduction
Zhu et al. Effects of sponge iron dosage on nitrogen removal performance and microbial community structure in sequencing batch reactors
CN113651996B (zh) 一种促进塑料降解的方法
Zheng et al. Enhanced removal of organic, nutrients, and PFCs in the iron-carbon micro-electrolysis constructed wetlands: Mechanism and iron cycle
CN113044953B (zh) 经单质硼强化的芬顿体系及去除地下水中1,2-dca的方法
Wang et al. Solid-phase Fe (II)-mediated autotrophic denitrification for nitrate removal from wastewater with a low carbon-to-nitrogen ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant