CN113649048A - 一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法 - Google Patents

一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法 Download PDF

Info

Publication number
CN113649048A
CN113649048A CN202110977447.4A CN202110977447A CN113649048A CN 113649048 A CN113649048 A CN 113649048A CN 202110977447 A CN202110977447 A CN 202110977447A CN 113649048 A CN113649048 A CN 113649048A
Authority
CN
China
Prior art keywords
coated
assembly
codoped
quantum dot
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110977447.4A
Other languages
English (en)
Other versions
CN113649048B (zh
Inventor
宋彩霞
孙媛媛
刘东政
王德宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110977447.4A priority Critical patent/CN113649048B/zh
Publication of CN113649048A publication Critical patent/CN113649048A/zh
Application granted granted Critical
Publication of CN113649048B publication Critical patent/CN113649048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1‑xS组装体及其制备方法,该组装体是由C,N,O共掺杂的MnxCd1‑xS纳米棒及其顶端和表面负载的C,N,O共掺杂MnxCd1‑xS纳米颗粒和C包覆的W5O14量子点组装成的花状微球。其制备方法为,先将WCl6和丙二酸混合,油浴加热搅拌,形成均匀液体,转移到容器中并放入管式炉焙烧,得到C包覆W5O14量子点。再将该量子点分散在含有MnSO4、CdSO4和硫脲嘧啶的水溶液中,在高压釜中反应,所得沉淀用去离子水和无水乙醇各洗涤3次,得到所述组装体。该组装体用作光催化剂,对于可见光光催化分解水制氢,光催化吸附降解水中有机污染物和空气净化都有很好的光催化活性。

Description

一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备 方法
技术领域
本发明属于太阳能转化材料与技术领域,涉及一种C包覆W5O14量子点/C,N,O共掺杂的MnxCd1-xS组装体及其制备方法,具体地说,是涉及一种由C,N,O共掺杂的MnxCd1-xS纳米棒及其顶端和表面负载的C,N,O共掺杂的MnxCd1-xS纳米颗粒和C包覆的W5O14量子点组装成组成的花状微球,进一步地,是涉及一种C包覆W5O14量子点/C,N,O共掺杂的MnxCd1-xS组装体光催化剂及其制备方法。
背景技术
在过去十多年中,许多研究工作都集中在可再生能源的使用上。光催化分解水产生氢气(H2)已被视为以可持续方式解决全球能源供应挑战的最有前途的途径之一。迄今为止,已经开发了丰富的用于制氢的活性光催化材料,如金属氧化物、金属硫化物和氮氧化物半导体材料。其中,MnxCd1-xS、Zn1-xCdxS等金属硫化物固溶体,由于其广泛的太阳光谱响应和合适的能带边缘位置而显示出有希望的制氢性能。其中,MnxCd1-xS固溶体是极具吸引力的候选。然而,MnxCd1-xS通常具有较高的光致电荷复合率和光腐蚀敏感性,而使性能降低。为了解决这些缺陷,加速了光生电子和空穴的分离,异质结结构的构建被认为是提高光催化性能和延长工作稳定性的有前途的策略。氧化钨作为一种重要的n型半导体,由于其良好的物理和化学性质而引起了广泛的关注。
发明内容:
本发明针对现有技术中现有技术制备MnxCd1-xS易于发生光腐蚀,光致电荷复合率高等缺点,提出了一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法,其特征在于所述组装体是由C,N,O共掺杂的MnxCd1-xS固溶体纳米棒组装成的花状微球,所述C,N,O共掺杂的MnxCd1-xS固溶体纳米棒的顶端和表面负载有C,N,O共掺杂的MnxCd1-xS固溶体纳米颗粒和C包覆的W5O14量子点,其制备方法包括下述步骤:
(1)将0.1-10mmol WCl6和0.1-30mmol丙二酸混合,在50-100℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在300-600℃焙烧1-4h,得到C包覆W5O14量子点;
(3)将0.1-10mmol MnSO4·H2O、0.1-10mmol 3CdSO4·8H2O和0.2-50mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.1-0.5g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在100-220℃下反应1-24h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
本发明的优点在于:该方法工艺简单,所制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体是由C,N,O共掺杂的MnxCd1-xS纳米棒组装成的菜花状微球,C,N,O共掺杂的MnxCd1-xS纳米棒的顶端和表面负载有C,N,O共掺杂的MnxCd1-xS纳米颗粒和C包覆的W5O14量子点,这种结构的复合光催化剂有利于增加光的吸收,促进载流子的分离,避免了光腐蚀,从而提高了光催化性能。
本发明所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的光催化效率高,对于可见光光催化分解水制氢,光催化吸附降解水中有机污染物和空气净化都有很好的光催化活性。还可用于染料敏化太阳能电池。
附图说明
图1为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的XRD谱图。
图2为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的拉曼谱图。
图3为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的SEM照片。
图4为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的(a)TEM和(b,c)HRTEM照片。
图5为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的STEM照片和各元素的STEM-mapping照片
图6为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的Cd、Mn、S、W、O、C、N七种元素的XPS谱图。
图7为利用本发明实施例一、实施例二所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体和对比例一所述方法制备的催化剂光催化水分解产氢速率图。
图8为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体光催化水分解产氢循环稳定性。
具体实施方式
下面通过实施例对本发明作进一步详细说明:
实施例一:
(1)1.6mmol WCl6和3.0mmol丙二酸混合,在85℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在450℃焙烧3h,得到C包覆W5O14量子点;
(3)将1.25mmol MnSO4·H2O、3.375mmol 3CdSO4·8H2O和12mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.1g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在200℃下反应24h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
实施例二:
(1)1.6mmol WCl6和3.0mmol丙二酸混合,在85℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在450℃焙烧3h,得到C包覆W5O14量子点;
(3)将1.25mmol MnSO4·H2O、3.375mmol 3CdSO4·8H2O和12mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.1g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在200℃下反应6h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
实施例三:
(1)1.6mmol WCl6和3.0mmol丙二酸混合,在85℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在500℃焙烧3h,得到C包覆W5O14量子点;
(3)将1.25mmol MnSO4·H2O、3.375mmol 3CdSO4·8H2O和12mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.1g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在150℃下反应6h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
实施例四:
(1)1.6mmol WCl6和4.8mmol丙二酸混合,在85℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在550℃焙烧4h,得到C包覆W5O14量子点;
(3)将2.5mmol MnSO4·H2O、2.5mmol 3CdSO4·8H2O和10mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.2g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在200℃下反应24h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
实施例五:
(1)1.6mmol WCl6和4.8mmol丙二酸混合,在60℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在550℃焙烧4h,得到C包覆W5O14量子点;
(3)将2.5mmol MnSO4·H2O、2.5mmol 3CdSO4·8H2O和10mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.2g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在200℃下反应24h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
实施例六:
(1)3.2mmol WCl6和4.8mmol丙二酸混合,在80℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在550℃焙烧2h,得到C包覆W5O14量子点;
(3)将3.375mmol MnSO4·H2O、1.25mmol 3CdSO4·8H2O和20mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.2g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在150℃下反应12h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
实施例七:
(1)0.8mmol WCl6和2.4mmol丙二酸混合,在75℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在350℃焙烧4h,得到C包覆W5O14量子点;
(3)将2.5mmol MnSO4·H2O、2.5mmol 3CdSO4·8H2O和20mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.3g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在120℃下反应8h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
对比例一
将1.25mmol MnSO4·H2O、3.375mmol 3CdSO4·8H2O和12mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,将该溶液转移到聚四氟乙烯的不锈钢高压釜中,在200℃下反应24h,然后冷却至室温,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C,N,O共掺杂MnxCd1-xS组装体。
图1为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的XRD谱图。由XRD谱图可以看出,7个比较强的衍射峰,可以指认为六方相Mn0.1Cd0.9S固溶体(PDF#89-0442)对应的晶面,说明实施例一所述方法制备的MnxCd1-xS固溶体组成是Mn0.1Cd0.9S。图谱中比较弱的衍射峰,可以指认为四方相W5O14(PDF#41-0745)对应的晶面,弱的衍射峰说明W5O14的含量低或晶粒尺寸比较小。另外,从图1还可以看出,Mn0.1Cd0.9S的(002)衍射峰的相对强度明显增强,说明MnxCd1-xS纳米棒是沿<001>方向取向生长而成的。
图2为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的拉曼谱图。由图中可以看出,出现了石墨碳晶体的两个Raman特征峰D-峰和G-峰,Raman峰强度整体较弱,且D-峰强度大于G-峰,说明样品中C包覆量较少。
图3为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的SEM照片。由图可以看出,所得组装体成菜花状,每一束菜花是由纳米棒以及纳米棒上负载的纳米颗粒组装而成。
图4为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的(a)TEM和(b,c)HRTEM照片。从图(a)中的TEM照片可以看出,纳米棒的顶端和纳米棒上负载有纳米颗粒。图(b,c)中的HRTEM照片分别对纳米棒和纳米棒上负载的纳米颗粒进行分析,间距为0.356nm和0.244nm的晶面分别对应于Mn0.1Cd0.9S固溶体(PDF#89-0442)的(100)和(012)晶面,说明纳米棒顶端负载的大的纳米颗粒为Mn0.1Cd0.9S固溶体。与纳米棒垂直、间距为0.334nm的晶面对应于Mn0.1Cd0.9S固溶体(PDF#89-0442)的(002)晶面,进一步证明纳米棒是沿着<001>方向取向生长的。间距为0.190nm、0.264nm和0.382nm的晶面与四方相W5O14(PDF#41-0745)的(002)、(621)和(001)晶面相对应,说明纳米棒表面负载的为W5O14量子点。此外,图4(b,c)高分辨率透射电子显微镜照片显示W5O14量子点表面包覆一层碳层,该碳层促进了光激发过程中电荷从W5O14转移到Mn0.1Cd0.9S。
图5为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的STEM照片和各元素的STEM-mapping照片。从图中STEM照片可以更清楚看出Mn0.1Cd0.9S纳米棒的顶端和纳米棒上负载有纳米颗粒。STEM-Mapping元素分布图清晰的显示出纳米棒和纳米颗粒中Cd、Mn、S、W、O、C、N七种元素的分布情况,进一步确认纳米棒和纳米棒顶端负载的大的纳米颗粒为C,N,O共掺杂的Mn0.1Cd0.9S固溶体,纳米棒表面负载的为C包覆的W5O14量子点。
图6为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的Cd、Mn、S、W、O、C、N七种元素的XPS谱图。如图6所示,位于405.1和411.8eV的两个峰分别对应于Cd2+的3d5/2和3d/2结合能,Mn 2p光谱中652.3和640.8eV处的两个拟合峰,分别对应于Mn2+的2p1/2和2p3/2。S 2p3/2和2p1/2的结合能分别为159.9和161.2eV的峰值,W4f光谱在35.2(W 4f7/2)和37.3eV(W 4f5/2)处显示了两个峰。O1s谱显示样品有531eV的晶格O和532eV的缺陷O两种形态的O。C1s谱经拟合,存在C=N或C=O,C-N或C-OH,和C-C等形态的C。N1s谱显示样品中含有N元素。
图7为利用本发明实施例一、实施例二所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体和对比例一所述方法制备的催化剂光催化水分解产氢速率图。利用CEL-SPH2N在线光催化制氢系统进行了光催化制氢活性研究。光照由300W氙灯(北京中教金源)提供,可见光照射时配备400nm截止滤波器。在每次试验中,用超声波将20mg催化剂分散在90ml去离子水和10mL乳酸牺牲剂的混合溶液中。通过循环冷却水将系统的温度维持在7℃。采用在线气相色谱仪(Agilent 7890A,高纯度N2为载气)每30min自动检测一次生成的氢气。由图可以看出对比例一所述方法制备的催化剂的光催化水分解产氢效率只有0.83mmol·h-1·g-1,而实施例一所述方法制备的催化剂的光催化水分解产氢效率可以达到19.80mmol·h-1·g-1,是对比例一产氢效率的24倍,说明本发明所述方法制备的催化剂具有很高的光催化水分解产氢效率。
图8为利用本发明实施例一所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体光催化水分解产氢循环稳定性。可以看出,催化剂经循环使用4次24小时,产氢量并没有明显地降低,进一步说明本发明所述方法制备的光催化剂的高产氢活性和高稳定性。
将本发明所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体的光催化剂用于水中有机污染物的吸附降解和空气中有害气体的净化,都有很好的光催化活性,本发明所述方法制备的C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体还可用于染料敏化太阳能电池。
上述实施例是本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,未背离本发明的原理与工艺过程下所作的其它任何改变、替代、简化等,均为等效的置换,都应包含在本发明的保护范围之内。

Claims (1)

1.一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法,其特征在于所述组装体是由C,N,O共掺杂MnxCd1-xS固溶体纳米棒组装成的菜花状微球,所述C,N,O共掺杂MnxCd1-xS固溶体纳米棒的顶端和表面负载有C,N,O共掺杂的MnxCd1-xS固溶体纳米颗粒和C包覆的W5O14量子点,其制备方法包括下述步骤:
(1)将0.1-10mmol WCl6和0.1-30mmol丙二酸混合,在50-100℃的油浴中加热,搅拌形成均匀液体;
(2)将步骤(1)得到的液体转移到容器中,放入管式炉中,在300-600℃焙烧1-4h,得到C包覆W5O14量子点;
(3)将0.1-10mmol MnSO4·H2O、0.1-10mmol 3CdSO4·8H2O和0.2-50mmol的2-硫脲嘧啶在不断搅拌下溶解于20mL去离子水中,作为溶液A;
(4)将步骤(2)制备的0.1-0.5g的C包覆W5O14量子点分散于5mL蒸馏水中,作为分散液B;
(5)在连续搅拌下将分散液B缓慢加入到溶液A中,将所得悬浮液加入到内衬聚四氟乙烯的不锈钢高压釜中,在100-220℃下反应1-24h,然后冷却至室温后,所得沉淀用去离子水和无水乙醇各洗涤3次,得到C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体。
CN202110977447.4A 2021-08-24 2021-08-24 一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法 Active CN113649048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110977447.4A CN113649048B (zh) 2021-08-24 2021-08-24 一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110977447.4A CN113649048B (zh) 2021-08-24 2021-08-24 一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法

Publications (2)

Publication Number Publication Date
CN113649048A true CN113649048A (zh) 2021-11-16
CN113649048B CN113649048B (zh) 2023-09-12

Family

ID=78492782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110977447.4A Active CN113649048B (zh) 2021-08-24 2021-08-24 一种C包覆W5O14量子点/C,N,O共掺杂MnxCd1-xS组装体及其制备方法

Country Status (1)

Country Link
CN (1) CN113649048B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142890B1 (en) * 2007-12-05 2012-03-27 University Of Central Florida Research Foundation, Inc. Fabrication of high aspect ratio core-shell CdS-Mn/ZnS nanowires
US20120156127A1 (en) * 2007-02-26 2012-06-21 Institut "Jozef Stefan" Procedure for the synthesis of threadlike tungsten oxide w5o14
CN109926070A (zh) * 2019-04-01 2019-06-25 河南师范大学 一种Mn0.5Cd0.5S/WO3/Au负载型光催化剂的制备方法
CN110052242A (zh) * 2019-04-26 2019-07-26 黑龙江大学 一种负载碳量子点/w18o49光催化可再生多孔碳吸附剂的制备方法
CN110586135A (zh) * 2019-09-24 2019-12-20 河南师范大学 一种含有Mn0.5Cd0.5S和Cu2O负载型光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156127A1 (en) * 2007-02-26 2012-06-21 Institut "Jozef Stefan" Procedure for the synthesis of threadlike tungsten oxide w5o14
US8142890B1 (en) * 2007-12-05 2012-03-27 University Of Central Florida Research Foundation, Inc. Fabrication of high aspect ratio core-shell CdS-Mn/ZnS nanowires
CN109926070A (zh) * 2019-04-01 2019-06-25 河南师范大学 一种Mn0.5Cd0.5S/WO3/Au负载型光催化剂的制备方法
CN110052242A (zh) * 2019-04-26 2019-07-26 黑龙江大学 一种负载碳量子点/w18o49光催化可再生多孔碳吸附剂的制备方法
CN110586135A (zh) * 2019-09-24 2019-12-20 河南师范大学 一种含有Mn0.5Cd0.5S和Cu2O负载型光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏程裕;张奕杰;林庆;林中魁;许金元;杨宗坤;: "W_5O_(14)纳米棒结构及气体感测特性研究", 过程工程学报 *

Also Published As

Publication number Publication date
CN113649048B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
Wang et al. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production
Tahir La-modified TiO2/carbon nanotubes assembly nanocomposite for efficient photocatalytic hydrogen evolution from glycerol-water mixture
Wang et al. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction
Zhu et al. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light
Wang et al. Photocatalytic reduction of CO2 to methane over PtOx-loaded ultrathin Bi2WO6 nanosheets
CN104959158B (zh) 一种Mo2C/CdS复合光催化剂及其制备和应用
Zhao et al. Cocatalysts from types, preparation to applications in the field of photocatalysis
CN108927178B (zh) 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用
CN103521252B (zh) 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
He et al. Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water
Sun et al. Uniform Pt quantum dots-decorated porous g-C3N4 nanosheets for efficient separation of electron-hole and enhanced solar-driven photocatalytic performance
Hu et al. Synthesis of Ag-loaded SrTiO 3/TiO 2 heterostructure nanotube arrays for enhanced photocatalytic performances
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Liang et al. ZIF-L-derived C-doped ZnO via a two-step calcination for enhanced photocatalytic hydrogen evolution
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
CN113856702B (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
Kuspanov et al. Multifunctional strontium titanate perovskite-based composite photocatalysts for energy conversion and other applications
CN102641741A (zh) 以金属镉为核异质结构为壳的复合型光催化剂及制备方法
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
Zhao et al. Efficient charge transfer in cadmium sulfide quantum dot-decorated hierarchical zinc sulfide-coated tin disulfide cages for carbon dioxide photoreduction
CN109967095B (zh) 一种全晶体异质结光催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant