CN113644652A - 一种基于用户不确定性行为的负荷调控优化系统 - Google Patents

一种基于用户不确定性行为的负荷调控优化系统 Download PDF

Info

Publication number
CN113644652A
CN113644652A CN202110926900.9A CN202110926900A CN113644652A CN 113644652 A CN113644652 A CN 113644652A CN 202110926900 A CN202110926900 A CN 202110926900A CN 113644652 A CN113644652 A CN 113644652A
Authority
CN
China
Prior art keywords
load
regulation
user
control
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110926900.9A
Other languages
English (en)
Other versions
CN113644652B (zh
Inventor
孙毅
苏晓明
黄绍模
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202110926900.9A priority Critical patent/CN113644652B/zh
Publication of CN113644652A publication Critical patent/CN113644652A/zh
Application granted granted Critical
Publication of CN113644652B publication Critical patent/CN113644652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/16Energy services, e.g. dispersed generation or demand or load or energy savings aggregation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于用户不确定性行为的负荷调控两阶段优化方法,本发明所要解决的技术问题在于,提供一种基于用户不确定性行为的负荷调控两阶段优化方法,该方法包括如下步骤:步骤1,利用智能电表等工具采集用户历史数据;步骤2,基于历史数据预测用户用电行为;步骤3,用户根据用电计划与负荷聚合商签订调控合同;步骤4,引入具有概率约束的预测误差不确定集,构建聚合负荷调控模型;步骤5,构建用户违约行为不确定集,以鲁棒性和经济性为目标求解负荷调控两阶段优化结果。

Description

一种基于用户不确定性行为的负荷调控优化系统
技术领域
本发明涉及智能用电技术领域,具体涉及基于一种基于用户
不确定性行为的负荷调控两阶段优化系统。
背景技术
随着可再生能源的大规模接入以及智能电网技术的不断发展,使得需求侧柔性负荷已逐步成为应对电网柔性调控需求的主要手段之一,改变传统“发电跟踪负荷”的调度模式。以满足经济性、安全性等不同目标的负荷调控策略方法,有效拓展了需求侧负荷的应用范围,使其能广泛参与需求响应、辅助调峰调频、可再生能源消纳等电网调度场景。
不同于工业用户,家庭用户具有多样性的特点,从而其用电情况也呈现多样化。某些家庭的用电负荷高峰可能是另外一些家庭的用电负荷的低谷期,这也为各个不同的家庭对于需求响应调节的合作成为了可能。
现在现有的各个需求响应的模型考虑的都是单个用户与电力公司之间的互动关系。一般来说,现有的需求响应调节大都是电力公司通过分时电价或其它激励措施引导居民的用电行为或与智能用电的家庭签订需求响应的合同,在不同的符合条件下各个用户根据合同约定的电量进行负荷的调节。而作为用户来说,一旦与电力公司签订了需求响应合同,在电力高峰时只能通过削减负荷来完成响应,对自己的用电舒适度造成了较大的影响,同时大大增加了用户违约超负荷用电的可能。同时,在某些时段,用户的负荷量又远远小于与电力公司合同约定的负荷量,造成某些负荷浪费。
为了使负荷调控策略更符合实际情况,已有较多的研究在负荷调控策略考虑了用户不确定性行为的影响。目前的研究为研究负荷调控中用户行为的不确定性提供了良好的参考,但并未深入分析用户不确定性行为的特点及其对负荷调控影响的机制,难以进一步对构建的不确定性模型优化调整。
针对以上研究缺乏考虑或未能深入分析用户不确定性行为的不足,本发明从时域角度分析用户的不确定性行为,研究用户不确定性行为随时间变化的特性对负荷调控的影响。
发明内容
本发明所要解决的问题是在确定性场景或简单分析用户行为的不确定性的基础上,从时域角度分析用户的不确定性行为,研究用户不确定性行为随时间变化的特性对负荷调控的影响。
本发明提供一种基于用户不确定性行为的负荷调控两阶段优化方法,以电热水器为例,所述方法包括下述步骤。
具体步骤流程图详见图1
步骤1:利用智能电表等监测工具对用户历史的离散性数据进行采集。
步骤2:根据采集数据对用户未来一段时间的用电情况进行预测。由于智能电表等监测工具的周期性采集,历史数据一般为离散性数据,因而利用已有的历史数据对未来负荷值进行预测,应得到负荷的离散性预测结果。
步骤3:电热水器用户根据自身的用电计划与负荷聚合商签订合同,与负荷聚合商提前约定控制时间功率等内容,由于预测过程会出现偏差导致负荷群不能满足实际要求,出现第一阶段偏差,本发明采用基于概率分布的不确定集刻画预测误差的不确定性。
步骤4:聚合商根据功率预测的预测结果对负荷进行聚合,以电热水器为例,分析负荷调控不确定性对电热水器负荷聚合功率的影响,并以最小化负荷聚合功率与出力功率的差值为目标函数进行优化。
步骤5:电热水器负荷群在完成聚合后,进入持续时间较长的负荷调控,用户在此步骤中中途退出消纳或其余用户负荷中途加入消纳,则会出现第二阶段偏差。并以负荷调度收益最大化为上层目标进行优化。
附图说明
图1是负荷调控过程流程图
图2是负荷调控中不确定性造成的偏差。
具体实施方式
步骤1:利用智能电表等监测工具对用户历史的离散性数据进行采集。
为进一步分析负荷调控中不确定性的影响,本发明选用等效热参数模型(ETP)描述单台电热水器负荷的运行状态,ETP模型如下:
Figure DEST_PATH_IMAGE001
其中,
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
Figure DEST_PATH_IMAGE004
分别是t时刻的温控负荷温度、环境温度、开关状态,P是负荷额定功率,R是热阻,C是比热容。
步骤2:根据采集数据对用户未来一段时间的用电情况进行预测。由于智能电表等监测工具的周期性采集,历史数据一般为离散性数据,因而利用已有的历史数据对未来负荷值进行预测,应得到负荷的离散性预测结果。
由于数学模型匹配不精准、负荷数据失真、外界随机性干扰等因素的影响,负荷预测技术难以完全消除预测误差,使得在功率预测与负荷聚合的时间差内负荷状态等信息产生的变化与功率预测结果存在一定的偏差。
步骤3:电热水器用户根据自身的用电计划与负荷聚合商签订合同,与负荷聚合商提前约定控制时间、功率等内容,用户以此获得经济补偿,聚合商通过买电与卖电的价格差获得利润。
由于步骤2中的预测出现偏差,导致聚合商在负荷聚合步骤根据功率预测的预测结果对负荷进行聚合,会导致聚合的负荷群不能完全满足实际的负荷调控需求,出现第一阶段偏差。第一阶段偏差出现时间见图2。
基于各时刻负荷聚合功率的实际历史数据,可以得到负荷预测技术在各时刻的预测误差,按下式计算。
Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE006
为各时刻的负荷聚合功率预测值,
Figure DEST_PATH_IMAGE007
为各时刻的负荷聚合功率实际值,
Figure DEST_PATH_IMAGE008
为各时刻负荷聚合功率预测值与实际值之间的误差。在同一场景下,负荷的预测误差较为稳定,其波动范围有限,令
Figure DEST_PATH_IMAGE009
,则
Figure DEST_PATH_IMAGE010
可视为关于取值空间有限的预测误差随机变量。
对同一负荷预测技术而言,
Figure 429104DEST_PATH_IMAGE010
的随机性可用一个不确定性的区间来描述,但
Figure 861091DEST_PATH_IMAGE010
同时呈现出一定的分布特点。为充分描述预测误差的不确定性影响,本发明采用基于概率分布的不确定集刻画预测误差的不确定性。在置信水平为
Figure DEST_PATH_IMAGE011
时,其不确定集的表达式如下。
Figure DEST_PATH_IMAGE012
步骤4:聚合商根据功率预测的预测结果对负荷进行聚合。由于单台热水器复合功率小,通常按照一定的方式对多台热水器负荷进行聚合,形成能够参与消纳调控的负荷群。
在电热水器负荷聚合过程中引入不确定性变量,分析负荷调控中不确定性对电热水器负荷聚合功率
Figure DEST_PATH_IMAGE013
的影响,如下:
Figure DEST_PATH_IMAGE014
式中,
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
均为不确定性变量,不同之处在于
Figure 499883DEST_PATH_IMAGE015
表示从负荷预测到负荷聚合过程中的不确定性影响,
Figure 911404DEST_PATH_IMAGE016
表示电热水器负荷在消纳调控中用户不确定性行为的影响。
Figure 991355DEST_PATH_IMAGE015
Figure 813818DEST_PATH_IMAGE016
都会对电热水器负荷群的功率产生正偏差或负偏差的影响。
下层优化目标以最小化负荷聚合功率与出力功率之间的差值为目标。在负荷参与调度的过程中,负荷预测调度值与实际调度值之间存在误差,若该误差较大,按照负荷预测调度值制定调度方案可能造成电网的运行安全。在确定性场景下,聚合商要尽可能减小负荷聚合功率与出力功率
Figure DEST_PATH_IMAGE017
之间的差值,其线性优化目标一般为:
Figure DEST_PATH_IMAGE018
该目标函数在确定性场景下寻求调控时段m内负荷实际调度效果最好,但是忽略了实际中负荷预测技术误差的不确定性影响。因此在考虑不确定性的基础上,负荷聚合功率与出力功率差值的目标函数如下所示:
Figure DEST_PATH_IMAGE019
步骤5:电热水器负荷群在完成聚合后,进入持续时间较长的调控实施步骤。
若该步骤中出现违反调控合同约定的用户,如用户负荷在调控实施步骤执行中途退出消纳或其余用户负荷中途加入消纳,则调控实施步骤中会出现第二阶段偏差。第二阶段偏差出现时间见图2.
在实际中,用户在负荷调控中的违约行为在整体上会呈现出一定的离散分布特征。由于聚合商与不同用户签订的具体调控合同不一样,从历史数据中判定用户违约行为,可根据用户参与调控时长来判定。用户的违约行为可看成随机变量
Figure DEST_PATH_IMAGE020
。根据合同计划调控时间与用户实际参与调控时间的对比可得到用户的整体违约情况,最后得到
Figure 408747DEST_PATH_IMAGE020
的取值空间
Figure DEST_PATH_IMAGE021
。假设用户违约行为服从如下分布。
Figure DEST_PATH_IMAGE022
则对于给定的置信水平,用户违约行为的不确定集如下:
Figure 919232DEST_PATH_IMAGE012
上层优化目标关注负荷调度的经济性,以负荷聚合商的负荷调度收益最大化为目标。购电成本是聚合商的主要成本,且考虑负荷参与调控过程中用户的违约行为影响,违约行为包括在调控过程中用户退出调控或加入调控。在下层问题的鲁棒优化决策结果的基础上,该层在目标函数式的引导下对负荷调控进行优化,以使聚合商的调度成本最小,目标函数如下。
Figure 588111DEST_PATH_IMAGE019
其中,
Figure DEST_PATH_IMAGE023
为t时刻向新能源电站购电的价格,
Figure DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE025
分别为用户在调控中退出调控、加入调控的额外成本价格,价格由聚合商根据实际电力交易制定,为固定常数;
Figure DEST_PATH_IMAGE026
为t时刻聚合商向电站的购电总功率,为聚合商的待决策变量;
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE028
分别为用户n调控中退出的实际调控时间与不按照计划参与调控的时间,为不确定性变量;
Figure DEST_PATH_IMAGE029
为调控时段的总时间,
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
分别为用户n计划参与调控的时间与负荷可调时间,皆为固定常数。
上层目标函数考虑交易价格、调控方面等时间的约束,具体如下:
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE033
为下层目标函数的最优值,
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
分别表示调控过程中退出或加入的第n个用户负荷,约束式表明了上层目标函数在优化调控经济性时,由于考虑该过程中负荷的不确定性影响,调控过程中负荷聚合功率与新能源出力功率之间的差值会出现变化,其变化最大值不能超过下层函数的鲁棒优化结果的约束。通过该约束对上层、下层目标函数进行了统筹兼顾,使得最终的负荷调控解能同时兼顾鲁棒性与经济性。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

1.本发明所要解决的技术问题在于,提供一种基于用户不确定性行为的负荷调控两阶段优化系统,旨在从时域角度分析用户的不确定性行为,研究用户不确定性行为随时间变化的特性对负荷调控的影响,以比现有方法取得更精确的结果,能够进一步对构建的不确定性模型优化调整;其特征在于:
1)建立用户不确定性行为的影响机制,分析其在调控过程中的时域特性,奠定对用户行为不确定性的数学分析基础
2)提出基于用户历史数据构建具有概率约束的不确定集的方法,并使用该不确定集,通过设置合适的置信度描述用户不确定性行为中的时域特性
3)将具有概率约束的不确定集引入两阶段优化模型,通过KKT条件的方式求解,得到兼顾负荷调控鲁棒性与经济性的优化结果。
2.根据权利要求1所述策略,一种基于用户不确定性行为的负荷调控两阶段优化系统中利用智能电表监测工具对用户历史的离散性数据进行采集,其特征在于:
为进一步分析负荷调控中不确定性的影响,本发明选用等效热参数模型(ETP)描述单台电热水器负荷的运行状态,ETP模型如下:
Figure 117643DEST_PATH_IMAGE001
其中,
Figure 710299DEST_PATH_IMAGE002
Figure 994650DEST_PATH_IMAGE003
Figure 938335DEST_PATH_IMAGE004
分别是t时刻的温控负荷温度、环境温度、开关状态,P是负荷额定功率,R是热阻,C是比热容。
3.根据权利要求1所述策略,一种基于用户不确定性行为的负荷调控两阶段优化系统中,由于智能电表等监测工具的周期性采集,历史数据一般为离散性数据,因而利用已有的历史数据对未来负荷值进行预测,应得到负荷的离散性预测结果,其特征在于:
由于数学模型匹配不精准、负荷数据失真、外界随机性干扰等因素的影响,负荷预测技术难以完全消除预测误差,使得在功率预测与负荷聚合的时间差内负荷状态等信息产生的变化与功率预测结果存在一定的偏差。
4.根据权利要求1所述策略,一种基于用户不确定性行为的负荷调控两阶段优化系统中,电热水器用户根据自身的用电计划与负荷聚合商签订合同,与负荷聚合商提前约定控制时间、功率等内容,用户以此获得经济补偿,聚合商通过买电与卖电的价格差获得利润,其特征在于:
由于步骤2中的预测出现偏差,导致聚合商在负荷聚合步骤根据功率预测的预测结果对负荷进行聚合,会导致聚合的负荷群不能完全满足实际的负荷调控需求,出现第一阶段偏差;
基于各时刻负荷聚合功率的实际历史数据,可以得到负荷预测技术在各时刻的预测误差,按下式计算;
Figure 231913DEST_PATH_IMAGE005
Figure 679075DEST_PATH_IMAGE006
为各时刻的负荷聚合功率预测值,
Figure 649174DEST_PATH_IMAGE007
为各时刻的负荷聚合功率实际值,
Figure 548997DEST_PATH_IMAGE008
为各时刻负荷聚合功率预测值与实际值之间的误差;在同一场景下,负荷的预测误差较为稳定,其波动范围有限,令
Figure 380686DEST_PATH_IMAGE009
,则
Figure 213513DEST_PATH_IMAGE010
可视为关于取值空间有限的预测误差随机变量;
对同一负荷预测技术而言,
Figure 105246DEST_PATH_IMAGE010
的随机性可用一个不确定性的区间来描述,但
Figure 492365DEST_PATH_IMAGE010
同时呈现出一定的分布特点;为充分描述预测误差的不确定性影响,本发明采用基于概率分布的不确定集刻画预测误差的不确定性;在置信水平为
Figure 127745DEST_PATH_IMAGE011
时,其不确定集的表达式如下。
Figure 300232DEST_PATH_IMAGE012
5.根据权利要求1所述策略,一种基于用户不确定性行为的负荷调控两阶段优化系统中,聚合商根据功率预测的预测结果对负荷进行聚合;由于单台热水器复合功率小,通常按照一定的方式对多台热水器负荷进行聚合,形成能够参与消纳调控的负荷群,其特征在于:
在电热水器负荷聚合过程中引入不确定性变量,分析负荷调控中不确定性对电热水器负荷聚合功率
Figure 362866DEST_PATH_IMAGE013
的影响,如下:
Figure 237281DEST_PATH_IMAGE014
式中,
Figure 410773DEST_PATH_IMAGE015
Figure 687034DEST_PATH_IMAGE016
均为不确定性变量,不同之处在于
Figure 920569DEST_PATH_IMAGE015
表示从负荷预测到负荷聚合过程中的不确定性影响,
Figure 282280DEST_PATH_IMAGE016
表示电热水器负荷在消纳调控中用户不确定性行为的影响;
Figure 259464DEST_PATH_IMAGE015
Figure 639498DEST_PATH_IMAGE016
都会对电热水器负荷群的功率产生正偏差或负偏差的影响;
下层优化目标以最小化负荷聚合功率与出力功率之间的差值为目标;在负荷参与调度的过程中,负荷预测调度值与实际调度值之间存在误差,若该误差较大,按照负荷预测调度值制定调度方案可能造成电网的运行安全;在确定性场景下,聚合商要尽可能减小负荷聚合功率与出力功率
Figure 43935DEST_PATH_IMAGE017
之间的差值,其线性优化目标一般为:
Figure 892942DEST_PATH_IMAGE018
该目标函数在确定性场景下寻求调控时段m内负荷实际调度效果最好,但是忽略了实际中负荷预测技术误差的不确定性影响;因此在考虑不确定性的基础上,负荷聚合功率与出力功率差值的目标函数如下所示:
Figure 673816DEST_PATH_IMAGE019
6.根据权利要求1所述策略,一种基于用户不确定性行为的负荷调控两阶段优化系统中,电热水器负荷群在完成聚合后,进入持续时间较长的调控实施步骤,其特征在于:
若该步骤中出现违反调控合同约定的用户,如用户负荷在调控实施步骤执行中途退出消纳或其余用户负荷中途加入消纳,则调控实施步骤中会出现第二阶段偏差;
在实际中,用户在负荷调控中的违约行为在整体上会呈现出一定的离散分布特征;由于聚合商与不同用户签订的具体调控合同不一样,从历史数据中判定用户违约行为,可根据用户参与调控时长来判定;用户的违约行为可看成随机变量
Figure 659090DEST_PATH_IMAGE020
;根据合同计划调控时间与用户实际参与调控时间的对比可得到用户的整体违约情况,最后得到
Figure 234428DEST_PATH_IMAGE020
的取值空间
Figure 570731DEST_PATH_IMAGE021
;假设用户违约行为服从如下分布;
Figure 906029DEST_PATH_IMAGE022
则对于给定的置信水平,用户违约行为的不确定集如下:
Figure 11388DEST_PATH_IMAGE023
上层优化目标关注负荷调度的经济性,以负荷聚合商的负荷调度收益最大化为目标;购电成本是聚合商的主要成本,且考虑负荷参与调控过程中用户的违约行为影响,违约行为包括在调控过程中用户退出调控或加入调控;在下层问题的鲁棒优化决策结果的基础上,该层在目标函数式的引导下对负荷调控进行优化,以使聚合商的调度成本最小,目标函数如下;
Figure 757627DEST_PATH_IMAGE024
其中,
Figure 581226DEST_PATH_IMAGE025
为t时刻向新能源电站购电的价格,
Figure 703903DEST_PATH_IMAGE026
Figure 663769DEST_PATH_IMAGE027
分别为用户在调控中退出调控、加入调控的额外成本价格,价格由聚合商根据实际电力交易制定,为固定常数;
Figure 846489DEST_PATH_IMAGE028
为t时刻聚合商向电站的购电总功率,为聚合商的待决策变量;
Figure 141073DEST_PATH_IMAGE029
Figure 801861DEST_PATH_IMAGE030
分别为用户n调控中退出的实际调控时间与不按照计划参与调控的时间,为不确定性变量;
Figure 147392DEST_PATH_IMAGE031
为调控时段的总时间,
Figure 235433DEST_PATH_IMAGE032
Figure 33625DEST_PATH_IMAGE033
分别为用户n计划参与调控的时间与负荷可调时间,皆为固定常数;
上层目标函数考虑交易价格、调控方面等时间的约束,具体如下:
Figure 498105DEST_PATH_IMAGE034
Figure 183295DEST_PATH_IMAGE035
为下层目标函数的最优值,
Figure 504555DEST_PATH_IMAGE036
Figure 582187DEST_PATH_IMAGE037
分别表示调控过程中退出或加入的第n个用户负荷,约束式表明了上层目标函数在优化调控经济性时,由于考虑该过程中负荷的不确定性影响,调控过程中负荷聚合功率与新能源出力功率之间的差值会出现变化,其变化最大值不能超过下层函数的鲁棒优化结果的约束;通过该约束对上层、下层目标函数进行了统筹兼顾,使得最终的负荷调控解能同时兼顾鲁棒性与经济性。
CN202110926900.9A 2021-08-12 2021-08-12 一种基于用户不确定性行为的负荷调控优化系统 Active CN113644652B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110926900.9A CN113644652B (zh) 2021-08-12 2021-08-12 一种基于用户不确定性行为的负荷调控优化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110926900.9A CN113644652B (zh) 2021-08-12 2021-08-12 一种基于用户不确定性行为的负荷调控优化系统

Publications (2)

Publication Number Publication Date
CN113644652A true CN113644652A (zh) 2021-11-12
CN113644652B CN113644652B (zh) 2022-11-25

Family

ID=78421229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110926900.9A Active CN113644652B (zh) 2021-08-12 2021-08-12 一种基于用户不确定性行为的负荷调控优化系统

Country Status (1)

Country Link
CN (1) CN113644652B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116933216A (zh) * 2023-09-18 2023-10-24 湖北华中电力科技开发有限责任公司 一种基于柔性负荷资源聚合特征分析的管理系统及方法
CN117200461A (zh) * 2023-11-07 2023-12-08 东方电子股份有限公司 一种基于历史数据的全要素调节电网调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106846179A (zh) * 2017-03-15 2017-06-13 东南大学 一种基于非合作博弈的居民负荷双层调度优化方法
CN107591844A (zh) * 2017-09-22 2018-01-16 东南大学 考虑节点注入功率不确定性的主动配电网鲁棒重构方法
CN110728410A (zh) * 2019-10-16 2020-01-24 重庆大学 一种计及需求响应灵活性和不确定性的负荷聚合商经济调度方法
US20200358290A1 (en) * 2017-11-20 2020-11-12 Ihi Corporation Energy management system, power demand plan optimization method, and power demand plan optimization program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106846179A (zh) * 2017-03-15 2017-06-13 东南大学 一种基于非合作博弈的居民负荷双层调度优化方法
CN107591844A (zh) * 2017-09-22 2018-01-16 东南大学 考虑节点注入功率不确定性的主动配电网鲁棒重构方法
US20200358290A1 (en) * 2017-11-20 2020-11-12 Ihi Corporation Energy management system, power demand plan optimization method, and power demand plan optimization program
CN110728410A (zh) * 2019-10-16 2020-01-24 重庆大学 一种计及需求响应灵活性和不确定性的负荷聚合商经济调度方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMMANUEL MANASSEH,ETC.: "Autonomous demand-side optimization with load uncertainty", 《2014 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION AND COMMUNICATIONS (ICEIC)》 *
MINGYANG ZHANG,ETC.: "A Robust Two-stage Dispatching Model With Wind", 《2020 IEEE 4TH CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2)》 *
孙毅等: "考虑用户行为不确定性的智能家电控制策略", 《电力系统保护与控制》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116933216A (zh) * 2023-09-18 2023-10-24 湖北华中电力科技开发有限责任公司 一种基于柔性负荷资源聚合特征分析的管理系统及方法
CN116933216B (zh) * 2023-09-18 2023-12-01 湖北华中电力科技开发有限责任公司 一种基于柔性负荷资源聚合特征分析的管理系统及方法
CN117200461A (zh) * 2023-11-07 2023-12-08 东方电子股份有限公司 一种基于历史数据的全要素调节电网调度方法
CN117200461B (zh) * 2023-11-07 2024-03-01 东方电子股份有限公司 一种基于历史数据的全要素调节电网调度方法

Also Published As

Publication number Publication date
CN113644652B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Lu et al. Demand response for home energy management using reinforcement learning and artificial neural network
Li et al. A real-time electricity scheduling for residential home energy management
Celik et al. Electric energy management in residential areas through coordination of multiple smart homes
Ju et al. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response
Joe-Wong et al. Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility
Zhang et al. Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets
Hussain et al. An innovative heuristic algorithm for IoT-enabled smart homes for developing countries
Huang et al. Robust coordination expansion planning for active distribution network in deregulated retail power market
Oprea et al. Edge and fog computing using IoT for direct load optimization and control with flexibility services for citizen energy communities
Yin et al. Energy pricing and sharing strategy based on hybrid stochastic robust game approach for a virtual energy station with energy cells
Ye et al. Multi-agent deep reinforcement learning for coordinated energy trading and flexibility services provision in local electricity markets
Qiu et al. Mean-field multi-agent reinforcement learning for peer-to-peer multi-energy trading
CN113644652B (zh) 一种基于用户不确定性行为的负荷调控优化系统
Fan et al. Evaluating and increasing the renewable energy share of customers’ electricity consumption
Fraija et al. A discount-based time-of-use electricity pricing strategy for demand response with minimum information using reinforcement learning
de Souza Dutra et al. A framework for peak shaving through the coordination of smart homes
Salazar et al. Dynamic customer demand management: A reinforcement learning model based on real-time pricing and incentives
Ran et al. Robust scatter index method for the appliances scheduling of home energy local network with user behavior uncertainty
Abaza et al. Demand-side management-based dynamic pricing within smart grid environment
Oprea et al. A signaling game-optimization algorithm for residential energy communities implemented at the edge-computing side
Amasyali et al. A Data-Driven, Distributed Game-Theoretic Transactional Control Approach for Hierarchical Demand Response
Wang An approximate dynamic programming based home energy management system and its impact on the distribution system
De Ridder et al. On a fair distribution of consumer's flexibility between market parties with conflicting interests
Juárez et al. Optimal real-time scheduling of battery operation using reinforcement learning
Chang et al. Short-term load forecasting method based on LSTM-SVR considering generalized demand-side resources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant